Skip to content

Instantly share code, notes, and snippets.

@odubno
Last active August 29, 2015 14:07
Show Gist options
  • Save odubno/48f9b603c14a0dc4a689 to your computer and use it in GitHub Desktop.
Save odubno/48f9b603c14a0dc4a689 to your computer and use it in GitHub Desktop.
Oleh_Dubno_Animal Sleep vs Animal Weight
Display the source blob
Display the rendered blob
Raw
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>Oleh_Dubno_DataScience_Unit2_Loans</title>
<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
<style type="text/css">
.clearfix{*zoom:1}.clearfix:before,.clearfix:after{display:table;content:"";line-height:0}
.clearfix:after{clear:both}
.hide-text{font:0/0 a;color:transparent;text-shadow:none;background-color:transparent;border:0}
.input-block-level{display:block;width:100%;min-height:30px;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}
article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}
audio,canvas,video{display:inline-block;*display:inline;*zoom:1}
audio:not([controls]){display:none}
html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}
a:focus{outline:thin dotted #333;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}
a:hover,a:active{outline:0}
sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}
sup{top:-0.5em}
sub{bottom:-0.25em}
img{max-width:100%;width:auto\9;height:auto;vertical-align:middle;border:0;-ms-interpolation-mode:bicubic}
#map_canvas img,.google-maps img{max-width:none}
button,input,select,textarea{margin:0;font-size:100%;vertical-align:middle}
button,input{*overflow:visible;line-height:normal}
button::-moz-focus-inner,input::-moz-focus-inner{padding:0;border:0}
button,html input[type="button"],input[type="reset"],input[type="submit"]{-webkit-appearance:button;cursor:pointer}
label,select,button,input[type="button"],input[type="reset"],input[type="submit"],input[type="radio"],input[type="checkbox"]{cursor:pointer}
input[type="search"]{-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;-webkit-appearance:textfield}
input[type="search"]::-webkit-search-decoration,input[type="search"]::-webkit-search-cancel-button{-webkit-appearance:none}
textarea{overflow:auto;vertical-align:top}
@media print{*{text-shadow:none !important;color:#000 !important;background:transparent !important;box-shadow:none !important} a,a:visited{text-decoration:underline} a[href]:after{content:" (" attr(href) ")"} abbr[title]:after{content:" (" attr(title) ")"} .ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""} pre,blockquote{border:1px solid #999;page-break-inside:avoid} thead{display:table-header-group} tr,img{page-break-inside:avoid} img{max-width:100% !important} @page {margin:.5cm}p,h2,h3{orphans:3;widows:3} h2,h3{page-break-after:avoid}}body{margin:0;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:13px;line-height:20px;color:#000;background-color:#fff}
a{color:#08c;text-decoration:none}
a:hover,a:focus{color:#005580;text-decoration:underline}
.img-rounded{border-radius:6px;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}
.img-polaroid{padding:4px;background-color:#fff;border:1px solid #ccc;border:1px solid rgba(0,0,0,0.2);-webkit-box-shadow:0 1px 3px rgba(0,0,0,0.1);-moz-box-shadow:0 1px 3px rgba(0,0,0,0.1);box-shadow:0 1px 3px rgba(0,0,0,0.1)}
.img-circle{border-radius:500px;-webkit-border-radius:500px;-moz-border-radius:500px;border-radius:500px}
.row{margin-left:-20px;*zoom:1}.row:before,.row:after{display:table;content:"";line-height:0}
.row:after{clear:both}
[class*="span"]{float:left;min-height:1px;margin-left:20px}
.container,.navbar-static-top .container,.navbar-fixed-top .container,.navbar-fixed-bottom .container{width:940px}
.span12{width:940px}
.span11{width:860px}
.span10{width:780px}
.span9{width:700px}
.span8{width:620px}
.span7{width:540px}
.span6{width:460px}
.span5{width:380px}
.span4{width:300px}
.span3{width:220px}
.span2{width:140px}
.span1{width:60px}
.offset12{margin-left:980px}
.offset11{margin-left:900px}
.offset10{margin-left:820px}
.offset9{margin-left:740px}
.offset8{margin-left:660px}
.offset7{margin-left:580px}
.offset6{margin-left:500px}
.offset5{margin-left:420px}
.offset4{margin-left:340px}
.offset3{margin-left:260px}
.offset2{margin-left:180px}
.offset1{margin-left:100px}
.row-fluid{width:100%;*zoom:1}.row-fluid:before,.row-fluid:after{display:table;content:"";line-height:0}
.row-fluid:after{clear:both}
.row-fluid [class*="span"]{display:block;width:100%;min-height:30px;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;float:left;margin-left:2.127659574468085%;*margin-left:2.074468085106383%}
.row-fluid [class*="span"]:first-child{margin-left:0}
.row-fluid .controls-row [class*="span"]+[class*="span"]{margin-left:2.127659574468085%}
.row-fluid .span12{width:100%;*width:99.94680851063829%}
.row-fluid .span11{width:91.48936170212765%;*width:91.43617021276594%}
.row-fluid .span10{width:82.97872340425532%;*width:82.92553191489361%}
.row-fluid .span9{width:74.46808510638297%;*width:74.41489361702126%}
.row-fluid .span8{width:65.95744680851064%;*width:65.90425531914893%}
.row-fluid .span7{width:57.44680851063829%;*width:57.39361702127659%}
.row-fluid .span6{width:48.93617021276595%;*width:48.88297872340425%}
.row-fluid .span5{width:40.42553191489362%;*width:40.37234042553192%}
.row-fluid .span4{width:31.914893617021278%;*width:31.861702127659576%}
.row-fluid .span3{width:23.404255319148934%;*width:23.351063829787233%}
.row-fluid .span2{width:14.893617021276595%;*width:14.840425531914894%}
.row-fluid .span1{width:6.382978723404255%;*width:6.329787234042553%}
.row-fluid .offset12{margin-left:104.25531914893617%;*margin-left:104.14893617021275%}
.row-fluid .offset12:first-child{margin-left:102.12765957446808%;*margin-left:102.02127659574467%}
.row-fluid .offset11{margin-left:95.74468085106382%;*margin-left:95.6382978723404%}
.row-fluid .offset11:first-child{margin-left:93.61702127659574%;*margin-left:93.51063829787232%}
.row-fluid .offset10{margin-left:87.23404255319149%;*margin-left:87.12765957446807%}
.row-fluid .offset10:first-child{margin-left:85.1063829787234%;*margin-left:84.99999999999999%}
.row-fluid .offset9{margin-left:78.72340425531914%;*margin-left:78.61702127659572%}
.row-fluid .offset9:first-child{margin-left:76.59574468085106%;*margin-left:76.48936170212764%}
.row-fluid .offset8{margin-left:70.2127659574468%;*margin-left:70.10638297872339%}
.row-fluid .offset8:first-child{margin-left:68.08510638297872%;*margin-left:67.9787234042553%}
.row-fluid .offset7{margin-left:61.70212765957446%;*margin-left:61.59574468085106%}
.row-fluid .offset7:first-child{margin-left:59.574468085106375%;*margin-left:59.46808510638297%}
.row-fluid .offset6{margin-left:53.191489361702125%;*margin-left:53.085106382978715%}
.row-fluid .offset6:first-child{margin-left:51.063829787234035%;*margin-left:50.95744680851063%}
.row-fluid .offset5{margin-left:44.68085106382979%;*margin-left:44.57446808510638%}
.row-fluid .offset5:first-child{margin-left:42.5531914893617%;*margin-left:42.4468085106383%}
.row-fluid .offset4{margin-left:36.170212765957444%;*margin-left:36.06382978723405%}
.row-fluid .offset4:first-child{margin-left:34.04255319148936%;*margin-left:33.93617021276596%}
.row-fluid .offset3{margin-left:27.659574468085104%;*margin-left:27.5531914893617%}
.row-fluid .offset3:first-child{margin-left:25.53191489361702%;*margin-left:25.425531914893618%}
.row-fluid .offset2{margin-left:19.148936170212764%;*margin-left:19.04255319148936%}
.row-fluid .offset2:first-child{margin-left:17.02127659574468%;*margin-left:16.914893617021278%}
.row-fluid .offset1{margin-left:10.638297872340425%;*margin-left:10.53191489361702%}
.row-fluid .offset1:first-child{margin-left:8.51063829787234%;*margin-left:8.404255319148938%}
[class*="span"].hide,.row-fluid [class*="span"].hide{display:none}
[class*="span"].pull-right,.row-fluid [class*="span"].pull-right{float:right}
.container{margin-right:auto;margin-left:auto;*zoom:1}.container:before,.container:after{display:table;content:"";line-height:0}
.container:after{clear:both}
.container-fluid{padding-right:20px;padding-left:20px;*zoom:1}.container-fluid:before,.container-fluid:after{display:table;content:"";line-height:0}
.container-fluid:after{clear:both}
p{margin:0 0 10px}
.lead{margin-bottom:20px;font-size:19.5px;font-weight:200;line-height:30px}
small{font-size:85%}
strong{font-weight:bold}
em{font-style:italic}
cite{font-style:normal}
.muted{color:#999}
a.muted:hover,a.muted:focus{color:#808080}
.text-warning{color:#c09853}
a.text-warning:hover,a.text-warning:focus{color:#a47e3c}
.text-error{color:#b94a48}
a.text-error:hover,a.text-error:focus{color:#953b39}
.text-info{color:#3a87ad}
a.text-info:hover,a.text-info:focus{color:#2d6987}
.text-success{color:#468847}
a.text-success:hover,a.text-success:focus{color:#356635}
.text-left{text-align:left}
.text-right{text-align:right}
.text-center{text-align:center}
h1,h2,h3,h4,h5,h6{margin:10px 0;font-family:inherit;font-weight:bold;line-height:20px;color:inherit;text-rendering:optimizelegibility}h1 small,h2 small,h3 small,h4 small,h5 small,h6 small{font-weight:normal;line-height:1;color:#999}
h1,h2,h3{line-height:40px}
h1{font-size:35.75px}
h2{font-size:29.25px}
h3{font-size:22.75px}
h4{font-size:16.25px}
h5{font-size:13px}
h6{font-size:11.049999999999999px}
h1 small{font-size:22.75px}
h2 small{font-size:16.25px}
h3 small{font-size:13px}
h4 small{font-size:13px}
.page-header{padding-bottom:9px;margin:20px 0 30px;border-bottom:1px solid #eee}
ul,ol{padding:0;margin:0 0 10px 25px}
ul ul,ul ol,ol ol,ol ul{margin-bottom:0}
li{line-height:20px}
ul.unstyled,ol.unstyled{margin-left:0;list-style:none}
ul.inline,ol.inline{margin-left:0;list-style:none}ul.inline>li,ol.inline>li{display:inline-block;*display:inline;*zoom:1;padding-left:5px;padding-right:5px}
dl{margin-bottom:20px}
dt,dd{line-height:20px}
dt{font-weight:bold}
dd{margin-left:10px}
.dl-horizontal{*zoom:1}.dl-horizontal:before,.dl-horizontal:after{display:table;content:"";line-height:0}
.dl-horizontal:after{clear:both}
.dl-horizontal dt{float:left;width:160px;clear:left;text-align:right;overflow:hidden;text-overflow:ellipsis;white-space:nowrap}
.dl-horizontal dd{margin-left:180px}
hr{margin:20px 0;border:0;border-top:1px solid #eee;border-bottom:1px solid #fff}
abbr[title],abbr[data-original-title]{cursor:help;border-bottom:1px dotted #999}
abbr.initialism{font-size:90%;text-transform:uppercase}
blockquote{padding:0 0 0 15px;margin:0 0 20px;border-left:5px solid #eee}blockquote p{margin-bottom:0;font-size:16.25px;font-weight:300;line-height:1.25}
blockquote small{display:block;line-height:20px;color:#999}blockquote small:before{content:'\2014 \00A0'}
blockquote.pull-right{float:right;padding-right:15px;padding-left:0;border-right:5px solid #eee;border-left:0}blockquote.pull-right p,blockquote.pull-right small{text-align:right}
blockquote.pull-right small:before{content:''}
blockquote.pull-right small:after{content:'\00A0 \2014'}
q:before,q:after,blockquote:before,blockquote:after{content:""}
address{display:block;margin-bottom:20px;font-style:normal;line-height:20px}
code,pre{padding:0 3px 2px;font-family:monospace;font-size:11px;color:#333;border-radius:3px;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}
code{padding:2px 4px;color:#d14;background-color:#f7f7f9;border:1px solid #e1e1e8;white-space:nowrap}
pre{display:block;padding:9.5px;margin:0 0 10px;font-size:12px;line-height:20px;word-break:break-all;word-wrap:break-word;white-space:pre;white-space:pre-wrap;background-color:#f5f5f5;border:1px solid #ccc;border:1px solid rgba(0,0,0,0.15);border-radius:4px;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}pre.prettyprint{margin-bottom:20px}
pre code{padding:0;color:inherit;white-space:pre;white-space:pre-wrap;background-color:transparent;border:0}
.pre-scrollable{max-height:340px;overflow-y:scroll}
form{margin:0 0 20px}
fieldset{padding:0;margin:0;border:0}
legend{display:block;width:100%;padding:0;margin-bottom:20px;font-size:19.5px;line-height:40px;color:#333;border:0;border-bottom:1px solid #e5e5e5}legend small{font-size:15px;color:#999}
label,input,button,select,textarea{font-size:13px;font-weight:normal;line-height:20px}
input,button,select,textarea{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif}
label{display:block;margin-bottom:5px}
select,textarea,input[type="text"],input[type="password"],input[type="datetime"],input[type="datetime-local"],input[type="date"],input[type="month"],input[type="time"],input[type="week"],input[type="number"],input[type="email"],input[type="url"],input[type="search"],input[type="tel"],input[type="color"],.uneditable-input{display:inline-block;height:20px;padding:4px 6px;margin-bottom:10px;font-size:13px;line-height:20px;color:#555;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;vertical-align:middle}
input,textarea,.uneditable-input{width:206px}
textarea{height:auto}
textarea,input[type="text"],input[type="password"],input[type="datetime"],input[type="datetime-local"],input[type="date"],input[type="month"],input[type="time"],input[type="week"],input[type="number"],input[type="email"],input[type="url"],input[type="search"],input[type="tel"],input[type="color"],.uneditable-input{background-color:#fff;border:1px solid #ccc;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-webkit-transition:border linear .2s, box-shadow linear .2s;-moz-transition:border linear .2s, box-shadow linear .2s;-o-transition:border linear .2s, box-shadow linear .2s;transition:border linear .2s, box-shadow linear .2s}textarea:focus,input[type="text"]:focus,input[type="password"]:focus,input[type="datetime"]:focus,input[type="datetime-local"]:focus,input[type="date"]:focus,input[type="month"]:focus,input[type="time"]:focus,input[type="week"]:focus,input[type="number"]:focus,input[type="email"]:focus,input[type="url"]:focus,input[type="search"]:focus,input[type="tel"]:focus,input[type="color"]:focus,.uneditable-input:focus{border-color:rgba(82,168,236,0.8);outline:0;outline:thin dotted \9;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(82,168,236,.6);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(82,168,236,.6);box-shadow:inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(82,168,236,.6)}
input[type="radio"],input[type="checkbox"]{margin:4px 0 0;*margin-top:0;margin-top:1px \9;line-height:normal}
input[type="file"],input[type="image"],input[type="submit"],input[type="reset"],input[type="button"],input[type="radio"],input[type="checkbox"]{width:auto}
select,input[type="file"]{height:30px;*margin-top:4px;line-height:30px}
select{width:220px;border:1px solid #ccc;background-color:#fff}
select[multiple],select[size]{height:auto}
select:focus,input[type="file"]:focus,input[type="radio"]:focus,input[type="checkbox"]:focus{outline:thin dotted #333;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}
.uneditable-input,.uneditable-textarea{color:#999;background-color:#fcfcfc;border-color:#ccc;-webkit-box-shadow:inset 0 1px 2px rgba(0,0,0,0.025);-moz-box-shadow:inset 0 1px 2px rgba(0,0,0,0.025);box-shadow:inset 0 1px 2px rgba(0,0,0,0.025);cursor:not-allowed}
.uneditable-input{overflow:hidden;white-space:nowrap}
.uneditable-textarea{width:auto;height:auto}
input:-moz-placeholder,textarea:-moz-placeholder{color:#999}
input:-ms-input-placeholder,textarea:-ms-input-placeholder{color:#999}
input::-webkit-input-placeholder,textarea::-webkit-input-placeholder{color:#999}
.radio,.checkbox{min-height:20px;padding-left:20px}
.radio input[type="radio"],.checkbox input[type="checkbox"]{float:left;margin-left:-20px}
.controls>.radio:first-child,.controls>.checkbox:first-child{padding-top:5px}
.radio.inline,.checkbox.inline{display:inline-block;padding-top:5px;margin-bottom:0;vertical-align:middle}
.radio.inline+.radio.inline,.checkbox.inline+.checkbox.inline{margin-left:10px}
.input-mini{width:60px}
.input-small{width:90px}
.input-medium{width:150px}
.input-large{width:210px}
.input-xlarge{width:270px}
.input-xxlarge{width:530px}
input[class*="span"],select[class*="span"],textarea[class*="span"],.uneditable-input[class*="span"],.row-fluid input[class*="span"],.row-fluid select[class*="span"],.row-fluid textarea[class*="span"],.row-fluid .uneditable-input[class*="span"]{float:none;margin-left:0}
.input-append input[class*="span"],.input-append .uneditable-input[class*="span"],.input-prepend input[class*="span"],.input-prepend .uneditable-input[class*="span"],.row-fluid input[class*="span"],.row-fluid select[class*="span"],.row-fluid textarea[class*="span"],.row-fluid .uneditable-input[class*="span"],.row-fluid .input-prepend [class*="span"],.row-fluid .input-append [class*="span"]{display:inline-block}
input,textarea,.uneditable-input{margin-left:0}
.controls-row [class*="span"]+[class*="span"]{margin-left:20px}
input.span12,textarea.span12,.uneditable-input.span12{width:926px}
input.span11,textarea.span11,.uneditable-input.span11{width:846px}
input.span10,textarea.span10,.uneditable-input.span10{width:766px}
input.span9,textarea.span9,.uneditable-input.span9{width:686px}
input.span8,textarea.span8,.uneditable-input.span8{width:606px}
input.span7,textarea.span7,.uneditable-input.span7{width:526px}
input.span6,textarea.span6,.uneditable-input.span6{width:446px}
input.span5,textarea.span5,.uneditable-input.span5{width:366px}
input.span4,textarea.span4,.uneditable-input.span4{width:286px}
input.span3,textarea.span3,.uneditable-input.span3{width:206px}
input.span2,textarea.span2,.uneditable-input.span2{width:126px}
input.span1,textarea.span1,.uneditable-input.span1{width:46px}
.controls-row{*zoom:1}.controls-row:before,.controls-row:after{display:table;content:"";line-height:0}
.controls-row:after{clear:both}
.controls-row [class*="span"],.row-fluid .controls-row [class*="span"]{float:left}
.controls-row .checkbox[class*="span"],.controls-row .radio[class*="span"]{padding-top:5px}
input[disabled],select[disabled],textarea[disabled],input[readonly],select[readonly],textarea[readonly]{cursor:not-allowed;background-color:#eee}
input[type="radio"][disabled],input[type="checkbox"][disabled],input[type="radio"][readonly],input[type="checkbox"][readonly]{background-color:transparent}
.control-group.warning .control-label,.control-group.warning .help-block,.control-group.warning .help-inline{color:#c09853}
.control-group.warning .checkbox,.control-group.warning .radio,.control-group.warning input,.control-group.warning select,.control-group.warning textarea{color:#c09853}
.control-group.warning input,.control-group.warning select,.control-group.warning textarea{border-color:#c09853;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.control-group.warning input:focus,.control-group.warning select:focus,.control-group.warning textarea:focus{border-color:#a47e3c;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #dbc59e;-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #dbc59e;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #dbc59e}
.control-group.warning .input-prepend .add-on,.control-group.warning .input-append .add-on{color:#c09853;background-color:#fcf8e3;border-color:#c09853}
.control-group.error .control-label,.control-group.error .help-block,.control-group.error .help-inline{color:#b94a48}
.control-group.error .checkbox,.control-group.error .radio,.control-group.error input,.control-group.error select,.control-group.error textarea{color:#b94a48}
.control-group.error input,.control-group.error select,.control-group.error textarea{border-color:#b94a48;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.control-group.error input:focus,.control-group.error select:focus,.control-group.error textarea:focus{border-color:#953b39;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #d59392;-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #d59392;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #d59392}
.control-group.error .input-prepend .add-on,.control-group.error .input-append .add-on{color:#b94a48;background-color:#f2dede;border-color:#b94a48}
.control-group.success .control-label,.control-group.success .help-block,.control-group.success .help-inline{color:#468847}
.control-group.success .checkbox,.control-group.success .radio,.control-group.success input,.control-group.success select,.control-group.success textarea{color:#468847}
.control-group.success input,.control-group.success select,.control-group.success textarea{border-color:#468847;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.control-group.success input:focus,.control-group.success select:focus,.control-group.success textarea:focus{border-color:#356635;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7aba7b;-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7aba7b;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7aba7b}
.control-group.success .input-prepend .add-on,.control-group.success .input-append .add-on{color:#468847;background-color:#dff0d8;border-color:#468847}
.control-group.info .control-label,.control-group.info .help-block,.control-group.info .help-inline{color:#3a87ad}
.control-group.info .checkbox,.control-group.info .radio,.control-group.info input,.control-group.info select,.control-group.info textarea{color:#3a87ad}
.control-group.info input,.control-group.info select,.control-group.info textarea{border-color:#3a87ad;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.control-group.info input:focus,.control-group.info select:focus,.control-group.info textarea:focus{border-color:#2d6987;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7ab5d3;-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7ab5d3;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7ab5d3}
.control-group.info .input-prepend .add-on,.control-group.info .input-append .add-on{color:#3a87ad;background-color:#d9edf7;border-color:#3a87ad}
input:focus:invalid,textarea:focus:invalid,select:focus:invalid{color:#b94a48;border-color:#ee5f5b}input:focus:invalid:focus,textarea:focus:invalid:focus,select:focus:invalid:focus{border-color:#e9322d;-webkit-box-shadow:0 0 6px #f8b9b7;-moz-box-shadow:0 0 6px #f8b9b7;box-shadow:0 0 6px #f8b9b7}
.form-actions{padding:19px 20px 20px;margin-top:20px;margin-bottom:20px;background-color:#f5f5f5;border-top:1px solid #e5e5e5;*zoom:1}.form-actions:before,.form-actions:after{display:table;content:"";line-height:0}
.form-actions:after{clear:both}
.help-block,.help-inline{color:#262626}
.help-block{display:block;margin-bottom:10px}
.help-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle;padding-left:5px}
.input-append,.input-prepend{display:inline-block;margin-bottom:10px;vertical-align:middle;font-size:0;white-space:nowrap}.input-append input,.input-prepend input,.input-append select,.input-prepend select,.input-append .uneditable-input,.input-prepend .uneditable-input,.input-append .dropdown-menu,.input-prepend .dropdown-menu,.input-append .popover,.input-prepend .popover{font-size:13px}
.input-append input,.input-prepend input,.input-append select,.input-prepend select,.input-append .uneditable-input,.input-prepend .uneditable-input{position:relative;margin-bottom:0;*margin-left:0;vertical-align:top;border-radius:0 4px 4px 0;-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}.input-append input:focus,.input-prepend input:focus,.input-append select:focus,.input-prepend select:focus,.input-append .uneditable-input:focus,.input-prepend .uneditable-input:focus{z-index:2}
.input-append .add-on,.input-prepend .add-on{display:inline-block;width:auto;height:20px;min-width:16px;padding:4px 5px;font-size:13px;font-weight:normal;line-height:20px;text-align:center;text-shadow:0 1px 0 #fff;background-color:#eee;border:1px solid #ccc}
.input-append .add-on,.input-prepend .add-on,.input-append .btn,.input-prepend .btn,.input-append .btn-group>.dropdown-toggle,.input-prepend .btn-group>.dropdown-toggle{vertical-align:top;border-radius:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}
.input-append .active,.input-prepend .active{background-color:#a9dba9;border-color:#46a546}
.input-prepend .add-on,.input-prepend .btn{margin-right:-1px}
.input-prepend .add-on:first-child,.input-prepend .btn:first-child{border-radius:4px 0 0 4px;-webkit-border-radius:4px 0 0 4px;-moz-border-radius:4px 0 0 4px;border-radius:4px 0 0 4px}
.input-append input,.input-append select,.input-append .uneditable-input{border-radius:4px 0 0 4px;-webkit-border-radius:4px 0 0 4px;-moz-border-radius:4px 0 0 4px;border-radius:4px 0 0 4px}.input-append input+.btn-group .btn:last-child,.input-append select+.btn-group .btn:last-child,.input-append .uneditable-input+.btn-group .btn:last-child{border-radius:0 4px 4px 0;-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}
.input-append .add-on,.input-append .btn,.input-append .btn-group{margin-left:-1px}
.input-append .add-on:last-child,.input-append .btn:last-child,.input-append .btn-group:last-child>.dropdown-toggle{border-radius:0 4px 4px 0;-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}
.input-prepend.input-append input,.input-prepend.input-append select,.input-prepend.input-append .uneditable-input{border-radius:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.input-prepend.input-append input+.btn-group .btn,.input-prepend.input-append select+.btn-group .btn,.input-prepend.input-append .uneditable-input+.btn-group .btn{border-radius:0 4px 4px 0;-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}
.input-prepend.input-append .add-on:first-child,.input-prepend.input-append .btn:first-child{margin-right:-1px;border-radius:4px 0 0 4px;-webkit-border-radius:4px 0 0 4px;-moz-border-radius:4px 0 0 4px;border-radius:4px 0 0 4px}
.input-prepend.input-append .add-on:last-child,.input-prepend.input-append .btn:last-child{margin-left:-1px;border-radius:0 4px 4px 0;-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}
.input-prepend.input-append .btn-group:first-child{margin-left:0}
input.search-query{padding-right:14px;padding-right:4px \9;padding-left:14px;padding-left:4px \9;margin-bottom:0;border-radius:15px;-webkit-border-radius:15px;-moz-border-radius:15px;border-radius:15px}
.form-search .input-append .search-query,.form-search .input-prepend .search-query{border-radius:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}
.form-search .input-append .search-query{border-radius:14px 0 0 14px;-webkit-border-radius:14px 0 0 14px;-moz-border-radius:14px 0 0 14px;border-radius:14px 0 0 14px}
.form-search .input-append .btn{border-radius:0 14px 14px 0;-webkit-border-radius:0 14px 14px 0;-moz-border-radius:0 14px 14px 0;border-radius:0 14px 14px 0}
.form-search .input-prepend .search-query{border-radius:0 14px 14px 0;-webkit-border-radius:0 14px 14px 0;-moz-border-radius:0 14px 14px 0;border-radius:0 14px 14px 0}
.form-search .input-prepend .btn{border-radius:14px 0 0 14px;-webkit-border-radius:14px 0 0 14px;-moz-border-radius:14px 0 0 14px;border-radius:14px 0 0 14px}
.form-search input,.form-inline input,.form-horizontal input,.form-search textarea,.form-inline textarea,.form-horizontal textarea,.form-search select,.form-inline select,.form-horizontal select,.form-search .help-inline,.form-inline .help-inline,.form-horizontal .help-inline,.form-search .uneditable-input,.form-inline .uneditable-input,.form-horizontal .uneditable-input,.form-search .input-prepend,.form-inline .input-prepend,.form-horizontal .input-prepend,.form-search .input-append,.form-inline .input-append,.form-horizontal .input-append{display:inline-block;*display:inline;*zoom:1;margin-bottom:0;vertical-align:middle}
.form-search .hide,.form-inline .hide,.form-horizontal .hide{display:none}
.form-search label,.form-inline label,.form-search .btn-group,.form-inline .btn-group{display:inline-block}
.form-search .input-append,.form-inline .input-append,.form-search .input-prepend,.form-inline .input-prepend{margin-bottom:0}
.form-search .radio,.form-search .checkbox,.form-inline .radio,.form-inline .checkbox{padding-left:0;margin-bottom:0;vertical-align:middle}
.form-search .radio input[type="radio"],.form-search .checkbox input[type="checkbox"],.form-inline .radio input[type="radio"],.form-inline .checkbox input[type="checkbox"]{float:left;margin-right:3px;margin-left:0}
.control-group{margin-bottom:10px}
legend+.control-group{margin-top:20px;-webkit-margin-top-collapse:separate}
.form-horizontal .control-group{margin-bottom:20px;*zoom:1}.form-horizontal .control-group:before,.form-horizontal .control-group:after{display:table;content:"";line-height:0}
.form-horizontal .control-group:after{clear:both}
.form-horizontal .control-label{float:left;width:160px;padding-top:5px;text-align:right}
.form-horizontal .controls{*display:inline-block;*padding-left:20px;margin-left:180px;*margin-left:0}.form-horizontal .controls:first-child{*padding-left:180px}
.form-horizontal .help-block{margin-bottom:0}
.form-horizontal input+.help-block,.form-horizontal select+.help-block,.form-horizontal textarea+.help-block,.form-horizontal .uneditable-input+.help-block,.form-horizontal .input-prepend+.help-block,.form-horizontal .input-append+.help-block{margin-top:10px}
.form-horizontal .form-actions{padding-left:180px}
table{max-width:100%;background-color:transparent;border-collapse:collapse;border-spacing:0}
.table{width:100%;margin-bottom:20px}.table th,.table td{padding:8px;line-height:20px;text-align:left;vertical-align:top;border-top:1px solid #ddd}
.table th{font-weight:bold}
.table thead th{vertical-align:bottom}
.table caption+thead tr:first-child th,.table caption+thead tr:first-child td,.table colgroup+thead tr:first-child th,.table colgroup+thead tr:first-child td,.table thead:first-child tr:first-child th,.table thead:first-child tr:first-child td{border-top:0}
.table tbody+tbody{border-top:2px solid #ddd}
.table .table{background-color:#fff}
.table-condensed th,.table-condensed td{padding:4px 5px}
.table-bordered{border:1px solid #ddd;border-collapse:separate;*border-collapse:collapse;border-left:0;border-radius:4px;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.table-bordered th,.table-bordered td{border-left:1px solid #ddd}
.table-bordered caption+thead tr:first-child th,.table-bordered caption+tbody tr:first-child th,.table-bordered caption+tbody tr:first-child td,.table-bordered colgroup+thead tr:first-child th,.table-bordered colgroup+tbody tr:first-child th,.table-bordered colgroup+tbody tr:first-child td,.table-bordered thead:first-child tr:first-child th,.table-bordered tbody:first-child tr:first-child th,.table-bordered tbody:first-child tr:first-child td{border-top:0}
.table-bordered thead:first-child tr:first-child>th:first-child,.table-bordered tbody:first-child tr:first-child>td:first-child,.table-bordered tbody:first-child tr:first-child>th:first-child{-webkit-border-top-left-radius:4px;-moz-border-radius-topleft:4px;border-top-left-radius:4px}
.table-bordered thead:first-child tr:first-child>th:last-child,.table-bordered tbody:first-child tr:first-child>td:last-child,.table-bordered tbody:first-child tr:first-child>th:last-child{-webkit-border-top-right-radius:4px;-moz-border-radius-topright:4px;border-top-right-radius:4px}
.table-bordered thead:last-child tr:last-child>th:first-child,.table-bordered tbody:last-child tr:last-child>td:first-child,.table-bordered tbody:last-child tr:last-child>th:first-child,.table-bordered tfoot:last-child tr:last-child>td:first-child,.table-bordered tfoot:last-child tr:last-child>th:first-child{-webkit-border-bottom-left-radius:4px;-moz-border-radius-bottomleft:4px;border-bottom-left-radius:4px}
.table-bordered thead:last-child tr:last-child>th:last-child,.table-bordered tbody:last-child tr:last-child>td:last-child,.table-bordered tbody:last-child tr:last-child>th:last-child,.table-bordered tfoot:last-child tr:last-child>td:last-child,.table-bordered tfoot:last-child tr:last-child>th:last-child{-webkit-border-bottom-right-radius:4px;-moz-border-radius-bottomright:4px;border-bottom-right-radius:4px}
.table-bordered tfoot+tbody:last-child tr:last-child td:first-child{-webkit-border-bottom-left-radius:0;-moz-border-radius-bottomleft:0;border-bottom-left-radius:0}
.table-bordered tfoot+tbody:last-child tr:last-child td:last-child{-webkit-border-bottom-right-radius:0;-moz-border-radius-bottomright:0;border-bottom-right-radius:0}
.table-bordered caption+thead tr:first-child th:first-child,.table-bordered caption+tbody tr:first-child td:first-child,.table-bordered colgroup+thead tr:first-child th:first-child,.table-bordered colgroup+tbody tr:first-child td:first-child{-webkit-border-top-left-radius:4px;-moz-border-radius-topleft:4px;border-top-left-radius:4px}
.table-bordered caption+thead tr:first-child th:last-child,.table-bordered caption+tbody tr:first-child td:last-child,.table-bordered colgroup+thead tr:first-child th:last-child,.table-bordered colgroup+tbody tr:first-child td:last-child{-webkit-border-top-right-radius:4px;-moz-border-radius-topright:4px;border-top-right-radius:4px}
.table-striped tbody>tr:nth-child(odd)>td,.table-striped tbody>tr:nth-child(odd)>th{background-color:#f9f9f9}
.table-hover tbody tr:hover>td,.table-hover tbody tr:hover>th{background-color:#f5f5f5}
table td[class*="span"],table th[class*="span"],.row-fluid table td[class*="span"],.row-fluid table th[class*="span"]{display:table-cell;float:none;margin-left:0}
.table td.span1,.table th.span1{float:none;width:44px;margin-left:0}
.table td.span2,.table th.span2{float:none;width:124px;margin-left:0}
.table td.span3,.table th.span3{float:none;width:204px;margin-left:0}
.table td.span4,.table th.span4{float:none;width:284px;margin-left:0}
.table td.span5,.table th.span5{float:none;width:364px;margin-left:0}
.table td.span6,.table th.span6{float:none;width:444px;margin-left:0}
.table td.span7,.table th.span7{float:none;width:524px;margin-left:0}
.table td.span8,.table th.span8{float:none;width:604px;margin-left:0}
.table td.span9,.table th.span9{float:none;width:684px;margin-left:0}
.table td.span10,.table th.span10{float:none;width:764px;margin-left:0}
.table td.span11,.table th.span11{float:none;width:844px;margin-left:0}
.table td.span12,.table th.span12{float:none;width:924px;margin-left:0}
.table tbody tr.success>td{background-color:#dff0d8}
.table tbody tr.error>td{background-color:#f2dede}
.table tbody tr.warning>td{background-color:#fcf8e3}
.table tbody tr.info>td{background-color:#d9edf7}
.table-hover tbody tr.success:hover>td{background-color:#d0e9c6}
.table-hover tbody tr.error:hover>td{background-color:#ebcccc}
.table-hover tbody tr.warning:hover>td{background-color:#faf2cc}
.table-hover tbody tr.info:hover>td{background-color:#c4e3f3}
[class^="icon-"],[class*=" icon-"]{display:inline-block;width:14px;height:14px;*margin-right:.3em;line-height:14px;vertical-align:text-top;background-image:url("../img/glyphicons-halflings.png");background-position:14px 14px;background-repeat:no-repeat;margin-top:1px}
.icon-white,.nav-pills>.active>a>[class^="icon-"],.nav-pills>.active>a>[class*=" icon-"],.nav-list>.active>a>[class^="icon-"],.nav-list>.active>a>[class*=" icon-"],.navbar-inverse .nav>.active>a>[class^="icon-"],.navbar-inverse .nav>.active>a>[class*=" icon-"],.dropdown-menu>li>a:hover>[class^="icon-"],.dropdown-menu>li>a:focus>[class^="icon-"],.dropdown-menu>li>a:hover>[class*=" icon-"],.dropdown-menu>li>a:focus>[class*=" icon-"],.dropdown-menu>.active>a>[class^="icon-"],.dropdown-menu>.active>a>[class*=" icon-"],.dropdown-submenu:hover>a>[class^="icon-"],.dropdown-submenu:focus>a>[class^="icon-"],.dropdown-submenu:hover>a>[class*=" icon-"],.dropdown-submenu:focus>a>[class*=" icon-"]{background-image:url("../img/glyphicons-halflings-white.png")}
.icon-glass{background-position:0 0}
.icon-music{background-position:-24px 0}
.icon-search{background-position:-48px 0}
.icon-envelope{background-position:-72px 0}
.icon-heart{background-position:-96px 0}
.icon-star{background-position:-120px 0}
.icon-star-empty{background-position:-144px 0}
.icon-user{background-position:-168px 0}
.icon-film{background-position:-192px 0}
.icon-th-large{background-position:-216px 0}
.icon-th{background-position:-240px 0}
.icon-th-list{background-position:-264px 0}
.icon-ok{background-position:-288px 0}
.icon-remove{background-position:-312px 0}
.icon-zoom-in{background-position:-336px 0}
.icon-zoom-out{background-position:-360px 0}
.icon-off{background-position:-384px 0}
.icon-signal{background-position:-408px 0}
.icon-cog{background-position:-432px 0}
.icon-trash{background-position:-456px 0}
.icon-home{background-position:0 -24px}
.icon-file{background-position:-24px -24px}
.icon-time{background-position:-48px -24px}
.icon-road{background-position:-72px -24px}
.icon-download-alt{background-position:-96px -24px}
.icon-download{background-position:-120px -24px}
.icon-upload{background-position:-144px -24px}
.icon-inbox{background-position:-168px -24px}
.icon-play-circle{background-position:-192px -24px}
.icon-repeat{background-position:-216px -24px}
.icon-refresh{background-position:-240px -24px}
.icon-list-alt{background-position:-264px -24px}
.icon-lock{background-position:-287px -24px}
.icon-flag{background-position:-312px -24px}
.icon-headphones{background-position:-336px -24px}
.icon-volume-off{background-position:-360px -24px}
.icon-volume-down{background-position:-384px -24px}
.icon-volume-up{background-position:-408px -24px}
.icon-qrcode{background-position:-432px -24px}
.icon-barcode{background-position:-456px -24px}
.icon-tag{background-position:0 -48px}
.icon-tags{background-position:-25px -48px}
.icon-book{background-position:-48px -48px}
.icon-bookmark{background-position:-72px -48px}
.icon-print{background-position:-96px -48px}
.icon-camera{background-position:-120px -48px}
.icon-font{background-position:-144px -48px}
.icon-bold{background-position:-167px -48px}
.icon-italic{background-position:-192px -48px}
.icon-text-height{background-position:-216px -48px}
.icon-text-width{background-position:-240px -48px}
.icon-align-left{background-position:-264px -48px}
.icon-align-center{background-position:-288px -48px}
.icon-align-right{background-position:-312px -48px}
.icon-align-justify{background-position:-336px -48px}
.icon-list{background-position:-360px -48px}
.icon-indent-left{background-position:-384px -48px}
.icon-indent-right{background-position:-408px -48px}
.icon-facetime-video{background-position:-432px -48px}
.icon-picture{background-position:-456px -48px}
.icon-pencil{background-position:0 -72px}
.icon-map-marker{background-position:-24px -72px}
.icon-adjust{background-position:-48px -72px}
.icon-tint{background-position:-72px -72px}
.icon-edit{background-position:-96px -72px}
.icon-share{background-position:-120px -72px}
.icon-check{background-position:-144px -72px}
.icon-move{background-position:-168px -72px}
.icon-step-backward{background-position:-192px -72px}
.icon-fast-backward{background-position:-216px -72px}
.icon-backward{background-position:-240px -72px}
.icon-play{background-position:-264px -72px}
.icon-pause{background-position:-288px -72px}
.icon-stop{background-position:-312px -72px}
.icon-forward{background-position:-336px -72px}
.icon-fast-forward{background-position:-360px -72px}
.icon-step-forward{background-position:-384px -72px}
.icon-eject{background-position:-408px -72px}
.icon-chevron-left{background-position:-432px -72px}
.icon-chevron-right{background-position:-456px -72px}
.icon-plus-sign{background-position:0 -96px}
.icon-minus-sign{background-position:-24px -96px}
.icon-remove-sign{background-position:-48px -96px}
.icon-ok-sign{background-position:-72px -96px}
.icon-question-sign{background-position:-96px -96px}
.icon-info-sign{background-position:-120px -96px}
.icon-screenshot{background-position:-144px -96px}
.icon-remove-circle{background-position:-168px -96px}
.icon-ok-circle{background-position:-192px -96px}
.icon-ban-circle{background-position:-216px -96px}
.icon-arrow-left{background-position:-240px -96px}
.icon-arrow-right{background-position:-264px -96px}
.icon-arrow-up{background-position:-289px -96px}
.icon-arrow-down{background-position:-312px -96px}
.icon-share-alt{background-position:-336px -96px}
.icon-resize-full{background-position:-360px -96px}
.icon-resize-small{background-position:-384px -96px}
.icon-plus{background-position:-408px -96px}
.icon-minus{background-position:-433px -96px}
.icon-asterisk{background-position:-456px -96px}
.icon-exclamation-sign{background-position:0 -120px}
.icon-gift{background-position:-24px -120px}
.icon-leaf{background-position:-48px -120px}
.icon-fire{background-position:-72px -120px}
.icon-eye-open{background-position:-96px -120px}
.icon-eye-close{background-position:-120px -120px}
.icon-warning-sign{background-position:-144px -120px}
.icon-plane{background-position:-168px -120px}
.icon-calendar{background-position:-192px -120px}
.icon-random{background-position:-216px -120px;width:16px}
.icon-comment{background-position:-240px -120px}
.icon-magnet{background-position:-264px -120px}
.icon-chevron-up{background-position:-288px -120px}
.icon-chevron-down{background-position:-313px -119px}
.icon-retweet{background-position:-336px -120px}
.icon-shopping-cart{background-position:-360px -120px}
.icon-folder-close{background-position:-384px -120px;width:16px}
.icon-folder-open{background-position:-408px -120px;width:16px}
.icon-resize-vertical{background-position:-432px -119px}
.icon-resize-horizontal{background-position:-456px -118px}
.icon-hdd{background-position:0 -144px}
.icon-bullhorn{background-position:-24px -144px}
.icon-bell{background-position:-48px -144px}
.icon-certificate{background-position:-72px -144px}
.icon-thumbs-up{background-position:-96px -144px}
.icon-thumbs-down{background-position:-120px -144px}
.icon-hand-right{background-position:-144px -144px}
.icon-hand-left{background-position:-168px -144px}
.icon-hand-up{background-position:-192px -144px}
.icon-hand-down{background-position:-216px -144px}
.icon-circle-arrow-right{background-position:-240px -144px}
.icon-circle-arrow-left{background-position:-264px -144px}
.icon-circle-arrow-up{background-position:-288px -144px}
.icon-circle-arrow-down{background-position:-312px -144px}
.icon-globe{background-position:-336px -144px}
.icon-wrench{background-position:-360px -144px}
.icon-tasks{background-position:-384px -144px}
.icon-filter{background-position:-408px -144px}
.icon-briefcase{background-position:-432px -144px}
.icon-fullscreen{background-position:-456px -144px}
.dropup,.dropdown{position:relative}
.dropdown-toggle{*margin-bottom:-3px}
.dropdown-toggle:active,.open .dropdown-toggle{outline:0}
.caret{display:inline-block;width:0;height:0;vertical-align:top;border-top:4px solid #000;border-right:4px solid transparent;border-left:4px solid transparent;content:""}
.dropdown .caret{margin-top:8px;margin-left:2px}
.dropdown-menu{position:absolute;top:100%;left:0;z-index:1000;display:none;float:left;min-width:160px;padding:5px 0;margin:2px 0 0;list-style:none;background-color:#fff;border:1px solid #ccc;border:1px solid rgba(0,0,0,0.2);*border-right-width:2px;*border-bottom-width:2px;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px;-webkit-box-shadow:0 5px 10px rgba(0,0,0,0.2);-moz-box-shadow:0 5px 10px rgba(0,0,0,0.2);box-shadow:0 5px 10px rgba(0,0,0,0.2);-webkit-background-clip:padding-box;-moz-background-clip:padding;background-clip:padding-box}.dropdown-menu.pull-right{right:0;left:auto}
.dropdown-menu .divider{*width:100%;height:1px;margin:9px 1px;*margin:-5px 0 5px;overflow:hidden;background-color:#e5e5e5;border-bottom:1px solid #fff}
.dropdown-menu>li>a{display:block;padding:3px 20px;clear:both;font-weight:normal;line-height:20px;color:#333;white-space:nowrap}
.dropdown-menu>li>a:hover,.dropdown-menu>li>a:focus,.dropdown-submenu:hover>a,.dropdown-submenu:focus>a{text-decoration:none;color:#fff;background-color:#0081c2;background-image:-moz-linear-gradient(top, #08c, #0077b3);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#08c), to(#0077b3));background-image:-webkit-linear-gradient(top, #08c, #0077b3);background-image:-o-linear-gradient(top, #08c, #0077b3);background-image:linear-gradient(to bottom, #08c, #0077b3);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc', endColorstr='#ff0077b3', GradientType=0)}
.dropdown-menu>.active>a,.dropdown-menu>.active>a:hover,.dropdown-menu>.active>a:focus{color:#fff;text-decoration:none;outline:0;background-color:#0081c2;background-image:-moz-linear-gradient(top, #08c, #0077b3);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#08c), to(#0077b3));background-image:-webkit-linear-gradient(top, #08c, #0077b3);background-image:-o-linear-gradient(top, #08c, #0077b3);background-image:linear-gradient(to bottom, #08c, #0077b3);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc', endColorstr='#ff0077b3', GradientType=0)}
.dropdown-menu>.disabled>a,.dropdown-menu>.disabled>a:hover,.dropdown-menu>.disabled>a:focus{color:#999}
.dropdown-menu>.disabled>a:hover,.dropdown-menu>.disabled>a:focus{text-decoration:none;background-color:transparent;background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);cursor:default}
.open{*z-index:1000}.open>.dropdown-menu{display:block}
.dropdown-backdrop{position:fixed;left:0;right:0;bottom:0;top:0;z-index:990}
.pull-right>.dropdown-menu{right:0;left:auto}
.dropup .caret,.navbar-fixed-bottom .dropdown .caret{border-top:0;border-bottom:4px solid #000;content:""}
.dropup .dropdown-menu,.navbar-fixed-bottom .dropdown .dropdown-menu{top:auto;bottom:100%;margin-bottom:1px}
.dropdown-submenu{position:relative}
.dropdown-submenu>.dropdown-menu{top:0;left:100%;margin-top:-6px;margin-left:-1px;border-radius:0 6px 6px 6px;-webkit-border-radius:0 6px 6px 6px;-moz-border-radius:0 6px 6px 6px;border-radius:0 6px 6px 6px}
.dropdown-submenu:hover>.dropdown-menu{display:block}
.dropup .dropdown-submenu>.dropdown-menu{top:auto;bottom:0;margin-top:0;margin-bottom:-2px;border-radius:5px 5px 5px 0;-webkit-border-radius:5px 5px 5px 0;-moz-border-radius:5px 5px 5px 0;border-radius:5px 5px 5px 0}
.dropdown-submenu>a:after{display:block;content:" ";float:right;width:0;height:0;border-color:transparent;border-style:solid;border-width:5px 0 5px 5px;border-left-color:#ccc;margin-top:5px;margin-right:-10px}
.dropdown-submenu:hover>a:after{border-left-color:#fff}
.dropdown-submenu.pull-left{float:none}.dropdown-submenu.pull-left>.dropdown-menu{left:-100%;margin-left:10px;border-radius:6px 0 6px 6px;-webkit-border-radius:6px 0 6px 6px;-moz-border-radius:6px 0 6px 6px;border-radius:6px 0 6px 6px}
.dropdown .dropdown-menu .nav-header{padding-left:20px;padding-right:20px}
.typeahead{z-index:1051;margin-top:2px;border-radius:4px;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}
.well{min-height:20px;padding:19px;margin-bottom:20px;background-color:#f5f5f5;border:1px solid #e3e3e3;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.05);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.05);box-shadow:inset 0 1px 1px rgba(0,0,0,0.05)}.well blockquote{border-color:#ddd;border-color:rgba(0,0,0,0.15)}
.well-large{padding:24px;border-radius:6px;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}
.well-small{padding:9px;border-radius:3px;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}
.fade{opacity:0;-webkit-transition:opacity .15s linear;-moz-transition:opacity .15s linear;-o-transition:opacity .15s linear;transition:opacity .15s linear}.fade.in{opacity:1}
.collapse{position:relative;height:0;overflow:hidden;-webkit-transition:height .35s ease;-moz-transition:height .35s ease;-o-transition:height .35s ease;transition:height .35s ease}.collapse.in{height:auto}
.close{float:right;font-size:20px;font-weight:bold;line-height:20px;color:#000;text-shadow:0 1px 0 #fff;opacity:.2;filter:alpha(opacity=20)}.close:hover,.close:focus{color:#000;text-decoration:none;cursor:pointer;opacity:.4;filter:alpha(opacity=40)}
button.close{padding:0;cursor:pointer;background:transparent;border:0;-webkit-appearance:none}
.btn{display:inline-block;*display:inline;*zoom:1;padding:4px 12px;margin-bottom:0;font-size:13px;line-height:20px;text-align:center;vertical-align:middle;cursor:pointer;color:#333;text-shadow:0 1px 1px rgba(255,255,255,0.75);background-color:#f5f5f5;background-image:-moz-linear-gradient(top, #fff, #e6e6e6);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#fff), to(#e6e6e6));background-image:-webkit-linear-gradient(top, #fff, #e6e6e6);background-image:-o-linear-gradient(top, #fff, #e6e6e6);background-image:linear-gradient(to bottom, #fff, #e6e6e6);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffffffff', endColorstr='#ffe6e6e6', GradientType=0);border-color:#e6e6e6 #e6e6e6 #bfbfbf;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);*background-color:#e6e6e6;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);border:1px solid #ccc;*border:0;border-bottom-color:#b3b3b3;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;*margin-left:.3em;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.2), 0 1px 2px rgba(0,0,0,.05);-moz-box-shadow:inset 0 1px 0 rgba(255,255,255,.2), 0 1px 2px rgba(0,0,0,.05);box-shadow:inset 0 1px 0 rgba(255,255,255,.2), 0 1px 2px rgba(0,0,0,.05)}.btn:hover,.btn:focus,.btn:active,.btn.active,.btn.disabled,.btn[disabled]{color:#333;background-color:#e6e6e6;*background-color:#d9d9d9}
.btn:active,.btn.active{background-color:#ccc \9}
.btn:first-child{*margin-left:0}
.btn:hover,.btn:focus{color:#333;text-decoration:none;background-position:0 -15px;-webkit-transition:background-position .1s linear;-moz-transition:background-position .1s linear;-o-transition:background-position .1s linear;transition:background-position .1s linear}
.btn:focus{outline:thin dotted #333;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}
.btn.active,.btn:active{background-image:none;outline:0;-webkit-box-shadow:inset 0 2px 4px rgba(0,0,0,.15), 0 1px 2px rgba(0,0,0,.05);-moz-box-shadow:inset 0 2px 4px rgba(0,0,0,.15), 0 1px 2px rgba(0,0,0,.05);box-shadow:inset 0 2px 4px rgba(0,0,0,.15), 0 1px 2px rgba(0,0,0,.05)}
.btn.disabled,.btn[disabled]{cursor:default;background-image:none;opacity:.65;filter:alpha(opacity=65);-webkit-box-shadow:none;-moz-box-shadow:none;box-shadow:none}
.btn-large{padding:11px 19px;font-size:16.25px;border-radius:6px;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}
.btn-large [class^="icon-"],.btn-large [class*=" icon-"]{margin-top:4px}
.btn-small{padding:2px 10px;font-size:11.049999999999999px;border-radius:3px;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}
.btn-small [class^="icon-"],.btn-small [class*=" icon-"]{margin-top:0}
.btn-mini [class^="icon-"],.btn-mini [class*=" icon-"]{margin-top:-1px}
.btn-mini{padding:0 6px;font-size:9.75px;border-radius:3px;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}
.btn-block{display:block;width:100%;padding-left:0;padding-right:0;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}
.btn-block+.btn-block{margin-top:5px}
input[type="submit"].btn-block,input[type="reset"].btn-block,input[type="button"].btn-block{width:100%}
.btn-primary.active,.btn-warning.active,.btn-danger.active,.btn-success.active,.btn-info.active,.btn-inverse.active{color:rgba(255,255,255,0.75)}
.btn-primary{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#006dcc;background-image:-moz-linear-gradient(top, #08c, #04c);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#08c), to(#04c));background-image:-webkit-linear-gradient(top, #08c, #04c);background-image:-o-linear-gradient(top, #08c, #04c);background-image:linear-gradient(to bottom, #08c, #04c);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc', endColorstr='#ff0044cc', GradientType=0);border-color:#04c #04c #002a80;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);*background-color:#04c;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false)}.btn-primary:hover,.btn-primary:focus,.btn-primary:active,.btn-primary.active,.btn-primary.disabled,.btn-primary[disabled]{color:#fff;background-color:#04c;*background-color:#003bb3}
.btn-primary:active,.btn-primary.active{background-color:#039 \9}
.btn-warning{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#faa732;background-image:-moz-linear-gradient(top, #fbb450, #f89406);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#fbb450), to(#f89406));background-image:-webkit-linear-gradient(top, #fbb450, #f89406);background-image:-o-linear-gradient(top, #fbb450, #f89406);background-image:linear-gradient(to bottom, #fbb450, #f89406);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#fffbb450', endColorstr='#fff89406', GradientType=0);border-color:#f89406 #f89406 #ad6704;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);*background-color:#f89406;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false)}.btn-warning:hover,.btn-warning:focus,.btn-warning:active,.btn-warning.active,.btn-warning.disabled,.btn-warning[disabled]{color:#fff;background-color:#f89406;*background-color:#df8505}
.btn-warning:active,.btn-warning.active{background-color:#c67605 \9}
.btn-danger{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#da4f49;background-image:-moz-linear-gradient(top, #ee5f5b, #bd362f);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#ee5f5b), to(#bd362f));background-image:-webkit-linear-gradient(top, #ee5f5b, #bd362f);background-image:-o-linear-gradient(top, #ee5f5b, #bd362f);background-image:linear-gradient(to bottom, #ee5f5b, #bd362f);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffee5f5b', endColorstr='#ffbd362f', GradientType=0);border-color:#bd362f #bd362f #802420;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);*background-color:#bd362f;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false)}.btn-danger:hover,.btn-danger:focus,.btn-danger:active,.btn-danger.active,.btn-danger.disabled,.btn-danger[disabled]{color:#fff;background-color:#bd362f;*background-color:#a9302a}
.btn-danger:active,.btn-danger.active{background-color:#942a25 \9}
.btn-success{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#5bb75b;background-image:-moz-linear-gradient(top, #62c462, #51a351);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#62c462), to(#51a351));background-image:-webkit-linear-gradient(top, #62c462, #51a351);background-image:-o-linear-gradient(top, #62c462, #51a351);background-image:linear-gradient(to bottom, #62c462, #51a351);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff62c462', endColorstr='#ff51a351', GradientType=0);border-color:#51a351 #51a351 #387038;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);*background-color:#51a351;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false)}.btn-success:hover,.btn-success:focus,.btn-success:active,.btn-success.active,.btn-success.disabled,.btn-success[disabled]{color:#fff;background-color:#51a351;*background-color:#499249}
.btn-success:active,.btn-success.active{background-color:#408140 \9}
.btn-info{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#49afcd;background-image:-moz-linear-gradient(top, #5bc0de, #2f96b4);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#5bc0de), to(#2f96b4));background-image:-webkit-linear-gradient(top, #5bc0de, #2f96b4);background-image:-o-linear-gradient(top, #5bc0de, #2f96b4);background-image:linear-gradient(to bottom, #5bc0de, #2f96b4);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff5bc0de', endColorstr='#ff2f96b4', GradientType=0);border-color:#2f96b4 #2f96b4 #1f6377;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);*background-color:#2f96b4;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false)}.btn-info:hover,.btn-info:focus,.btn-info:active,.btn-info.active,.btn-info.disabled,.btn-info[disabled]{color:#fff;background-color:#2f96b4;*background-color:#2a85a0}
.btn-info:active,.btn-info.active{background-color:#24748c \9}
.btn-inverse{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#363636;background-image:-moz-linear-gradient(top, #444, #222);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#444), to(#222));background-image:-webkit-linear-gradient(top, #444, #222);background-image:-o-linear-gradient(top, #444, #222);background-image:linear-gradient(to bottom, #444, #222);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff444444', endColorstr='#ff222222', GradientType=0);border-color:#222 #222 #000;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);*background-color:#222;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false)}.btn-inverse:hover,.btn-inverse:focus,.btn-inverse:active,.btn-inverse.active,.btn-inverse.disabled,.btn-inverse[disabled]{color:#fff;background-color:#222;*background-color:#151515}
.btn-inverse:active,.btn-inverse.active{background-color:#080808 \9}
button.btn,input[type="submit"].btn{*padding-top:3px;*padding-bottom:3px}button.btn::-moz-focus-inner,input[type="submit"].btn::-moz-focus-inner{padding:0;border:0}
button.btn.btn-large,input[type="submit"].btn.btn-large{*padding-top:7px;*padding-bottom:7px}
button.btn.btn-small,input[type="submit"].btn.btn-small{*padding-top:3px;*padding-bottom:3px}
button.btn.btn-mini,input[type="submit"].btn.btn-mini{*padding-top:1px;*padding-bottom:1px}
.btn-link,.btn-link:active,.btn-link[disabled]{background-color:transparent;background-image:none;-webkit-box-shadow:none;-moz-box-shadow:none;box-shadow:none}
.btn-link{border-color:transparent;cursor:pointer;color:#08c;border-radius:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}
.btn-link:hover,.btn-link:focus{color:#005580;text-decoration:underline;background-color:transparent}
.btn-link[disabled]:hover,.btn-link[disabled]:focus{color:#333;text-decoration:none}
.btn-group{position:relative;display:inline-block;*display:inline;*zoom:1;font-size:0;vertical-align:middle;white-space:nowrap;*margin-left:.3em}.btn-group:first-child{*margin-left:0}
.btn-group+.btn-group{margin-left:5px}
.btn-toolbar{font-size:0;margin-top:10px;margin-bottom:10px}.btn-toolbar>.btn+.btn,.btn-toolbar>.btn-group+.btn,.btn-toolbar>.btn+.btn-group{margin-left:5px}
.btn-group>.btn{position:relative;border-radius:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}
.btn-group>.btn+.btn{margin-left:-1px}
.btn-group>.btn,.btn-group>.dropdown-menu,.btn-group>.popover{font-size:13px}
.btn-group>.btn-mini{font-size:9.75px}
.btn-group>.btn-small{font-size:11.049999999999999px}
.btn-group>.btn-large{font-size:16.25px}
.btn-group>.btn:first-child{margin-left:0;-webkit-border-top-left-radius:4px;-moz-border-radius-topleft:4px;border-top-left-radius:4px;-webkit-border-bottom-left-radius:4px;-moz-border-radius-bottomleft:4px;border-bottom-left-radius:4px}
.btn-group>.btn:last-child,.btn-group>.dropdown-toggle{-webkit-border-top-right-radius:4px;-moz-border-radius-topright:4px;border-top-right-radius:4px;-webkit-border-bottom-right-radius:4px;-moz-border-radius-bottomright:4px;border-bottom-right-radius:4px}
.btn-group>.btn.large:first-child{margin-left:0;-webkit-border-top-left-radius:6px;-moz-border-radius-topleft:6px;border-top-left-radius:6px;-webkit-border-bottom-left-radius:6px;-moz-border-radius-bottomleft:6px;border-bottom-left-radius:6px}
.btn-group>.btn.large:last-child,.btn-group>.large.dropdown-toggle{-webkit-border-top-right-radius:6px;-moz-border-radius-topright:6px;border-top-right-radius:6px;-webkit-border-bottom-right-radius:6px;-moz-border-radius-bottomright:6px;border-bottom-right-radius:6px}
.btn-group>.btn:hover,.btn-group>.btn:focus,.btn-group>.btn:active,.btn-group>.btn.active{z-index:2}
.btn-group .dropdown-toggle:active,.btn-group.open .dropdown-toggle{outline:0}
.btn-group>.btn+.dropdown-toggle{padding-left:8px;padding-right:8px;-webkit-box-shadow:inset 1px 0 0 rgba(255,255,255,.125), inset 0 1px 0 rgba(255,255,255,.2), 0 1px 2px rgba(0,0,0,.05);-moz-box-shadow:inset 1px 0 0 rgba(255,255,255,.125), inset 0 1px 0 rgba(255,255,255,.2), 0 1px 2px rgba(0,0,0,.05);box-shadow:inset 1px 0 0 rgba(255,255,255,.125), inset 0 1px 0 rgba(255,255,255,.2), 0 1px 2px rgba(0,0,0,.05);*padding-top:5px;*padding-bottom:5px}
.btn-group>.btn-mini+.dropdown-toggle{padding-left:5px;padding-right:5px;*padding-top:2px;*padding-bottom:2px}
.btn-group>.btn-small+.dropdown-toggle{*padding-top:5px;*padding-bottom:4px}
.btn-group>.btn-large+.dropdown-toggle{padding-left:12px;padding-right:12px;*padding-top:7px;*padding-bottom:7px}
.btn-group.open .dropdown-toggle{background-image:none;-webkit-box-shadow:inset 0 2px 4px rgba(0,0,0,.15), 0 1px 2px rgba(0,0,0,.05);-moz-box-shadow:inset 0 2px 4px rgba(0,0,0,.15), 0 1px 2px rgba(0,0,0,.05);box-shadow:inset 0 2px 4px rgba(0,0,0,.15), 0 1px 2px rgba(0,0,0,.05)}
.btn-group.open .btn.dropdown-toggle{background-color:#e6e6e6}
.btn-group.open .btn-primary.dropdown-toggle{background-color:#04c}
.btn-group.open .btn-warning.dropdown-toggle{background-color:#f89406}
.btn-group.open .btn-danger.dropdown-toggle{background-color:#bd362f}
.btn-group.open .btn-success.dropdown-toggle{background-color:#51a351}
.btn-group.open .btn-info.dropdown-toggle{background-color:#2f96b4}
.btn-group.open .btn-inverse.dropdown-toggle{background-color:#222}
.btn .caret{margin-top:8px;margin-left:0}
.btn-large .caret{margin-top:6px}
.btn-large .caret{border-left-width:5px;border-right-width:5px;border-top-width:5px}
.btn-mini .caret,.btn-small .caret{margin-top:8px}
.dropup .btn-large .caret{border-bottom-width:5px}
.btn-primary .caret,.btn-warning .caret,.btn-danger .caret,.btn-info .caret,.btn-success .caret,.btn-inverse .caret{border-top-color:#fff;border-bottom-color:#fff}
.btn-group-vertical{display:inline-block;*display:inline;*zoom:1}
.btn-group-vertical>.btn{display:block;float:none;max-width:100%;border-radius:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}
.btn-group-vertical>.btn+.btn{margin-left:0;margin-top:-1px}
.btn-group-vertical>.btn:first-child{border-radius:4px 4px 0 0;-webkit-border-radius:4px 4px 0 0;-moz-border-radius:4px 4px 0 0;border-radius:4px 4px 0 0}
.btn-group-vertical>.btn:last-child{border-radius:0 0 4px 4px;-webkit-border-radius:0 0 4px 4px;-moz-border-radius:0 0 4px 4px;border-radius:0 0 4px 4px}
.btn-group-vertical>.btn-large:first-child{border-radius:6px 6px 0 0;-webkit-border-radius:6px 6px 0 0;-moz-border-radius:6px 6px 0 0;border-radius:6px 6px 0 0}
.btn-group-vertical>.btn-large:last-child{border-radius:0 0 6px 6px;-webkit-border-radius:0 0 6px 6px;-moz-border-radius:0 0 6px 6px;border-radius:0 0 6px 6px}
.alert{padding:8px 35px 8px 14px;margin-bottom:20px;text-shadow:0 1px 0 rgba(255,255,255,0.5);background-color:#fcf8e3;border:1px solid #fbeed5;border-radius:4px;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}
.alert,.alert h4{color:#c09853}
.alert h4{margin:0}
.alert .close{position:relative;top:-2px;right:-21px;line-height:20px}
.alert-success{background-color:#dff0d8;border-color:#d6e9c6;color:#468847}
.alert-success h4{color:#468847}
.alert-danger,.alert-error{background-color:#f2dede;border-color:#eed3d7;color:#b94a48}
.alert-danger h4,.alert-error h4{color:#b94a48}
.alert-info{background-color:#d9edf7;border-color:#bce8f1;color:#3a87ad}
.alert-info h4{color:#3a87ad}
.alert-block{padding-top:14px;padding-bottom:14px}
.alert-block>p,.alert-block>ul{margin-bottom:0}
.alert-block p+p{margin-top:5px}
.nav{margin-left:0;margin-bottom:20px;list-style:none}
.nav>li>a{display:block}
.nav>li>a:hover,.nav>li>a:focus{text-decoration:none;background-color:#eee}
.nav>li>a>img{max-width:none}
.nav>.pull-right{float:right}
.nav-header{display:block;padding:3px 15px;font-size:11px;font-weight:bold;line-height:20px;color:#999;text-shadow:0 1px 0 rgba(255,255,255,0.5);text-transform:uppercase}
.nav li+.nav-header{margin-top:9px}
.nav-list{padding-left:15px;padding-right:15px;margin-bottom:0}
.nav-list>li>a,.nav-list .nav-header{margin-left:-15px;margin-right:-15px;text-shadow:0 1px 0 rgba(255,255,255,0.5)}
.nav-list>li>a{padding:3px 15px}
.nav-list>.active>a,.nav-list>.active>a:hover,.nav-list>.active>a:focus{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.2);background-color:#08c}
.nav-list [class^="icon-"],.nav-list [class*=" icon-"]{margin-right:2px}
.nav-list .divider{*width:100%;height:1px;margin:9px 1px;*margin:-5px 0 5px;overflow:hidden;background-color:#e5e5e5;border-bottom:1px solid #fff}
.nav-tabs,.nav-pills{*zoom:1}.nav-tabs:before,.nav-pills:before,.nav-tabs:after,.nav-pills:after{display:table;content:"";line-height:0}
.nav-tabs:after,.nav-pills:after{clear:both}
.nav-tabs>li,.nav-pills>li{float:left}
.nav-tabs>li>a,.nav-pills>li>a{padding-right:12px;padding-left:12px;margin-right:2px;line-height:14px}
.nav-tabs{border-bottom:1px solid #ddd}
.nav-tabs>li{margin-bottom:-1px}
.nav-tabs>li>a{padding-top:8px;padding-bottom:8px;line-height:20px;border:1px solid transparent;border-radius:4px 4px 0 0;-webkit-border-radius:4px 4px 0 0;-moz-border-radius:4px 4px 0 0;border-radius:4px 4px 0 0}.nav-tabs>li>a:hover,.nav-tabs>li>a:focus{border-color:#eee #eee #ddd}
.nav-tabs>.active>a,.nav-tabs>.active>a:hover,.nav-tabs>.active>a:focus{color:#555;background-color:#fff;border:1px solid #ddd;border-bottom-color:transparent;cursor:default}
.nav-pills>li>a{padding-top:8px;padding-bottom:8px;margin-top:2px;margin-bottom:2px;border-radius:5px;-webkit-border-radius:5px;-moz-border-radius:5px;border-radius:5px}
.nav-pills>.active>a,.nav-pills>.active>a:hover,.nav-pills>.active>a:focus{color:#fff;background-color:#08c}
.nav-stacked>li{float:none}
.nav-stacked>li>a{margin-right:0}
.nav-tabs.nav-stacked{border-bottom:0}
.nav-tabs.nav-stacked>li>a{border:1px solid #ddd;border-radius:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}
.nav-tabs.nav-stacked>li:first-child>a{-webkit-border-top-right-radius:4px;-moz-border-radius-topright:4px;border-top-right-radius:4px;-webkit-border-top-left-radius:4px;-moz-border-radius-topleft:4px;border-top-left-radius:4px}
.nav-tabs.nav-stacked>li:last-child>a{-webkit-border-bottom-right-radius:4px;-moz-border-radius-bottomright:4px;border-bottom-right-radius:4px;-webkit-border-bottom-left-radius:4px;-moz-border-radius-bottomleft:4px;border-bottom-left-radius:4px}
.nav-tabs.nav-stacked>li>a:hover,.nav-tabs.nav-stacked>li>a:focus{border-color:#ddd;z-index:2}
.nav-pills.nav-stacked>li>a{margin-bottom:3px}
.nav-pills.nav-stacked>li:last-child>a{margin-bottom:1px}
.nav-tabs .dropdown-menu{border-radius:0 0 6px 6px;-webkit-border-radius:0 0 6px 6px;-moz-border-radius:0 0 6px 6px;border-radius:0 0 6px 6px}
.nav-pills .dropdown-menu{border-radius:6px;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}
.nav .dropdown-toggle .caret{border-top-color:#08c;border-bottom-color:#08c;margin-top:6px}
.nav .dropdown-toggle:hover .caret,.nav .dropdown-toggle:focus .caret{border-top-color:#005580;border-bottom-color:#005580}
.nav-tabs .dropdown-toggle .caret{margin-top:8px}
.nav .active .dropdown-toggle .caret{border-top-color:#fff;border-bottom-color:#fff}
.nav-tabs .active .dropdown-toggle .caret{border-top-color:#555;border-bottom-color:#555}
.nav>.dropdown.active>a:hover,.nav>.dropdown.active>a:focus{cursor:pointer}
.nav-tabs .open .dropdown-toggle,.nav-pills .open .dropdown-toggle,.nav>li.dropdown.open.active>a:hover,.nav>li.dropdown.open.active>a:focus{color:#fff;background-color:#999;border-color:#999}
.nav li.dropdown.open .caret,.nav li.dropdown.open.active .caret,.nav li.dropdown.open a:hover .caret,.nav li.dropdown.open a:focus .caret{border-top-color:#fff;border-bottom-color:#fff;opacity:1;filter:alpha(opacity=100)}
.tabs-stacked .open>a:hover,.tabs-stacked .open>a:focus{border-color:#999}
.tabbable{*zoom:1}.tabbable:before,.tabbable:after{display:table;content:"";line-height:0}
.tabbable:after{clear:both}
.tab-content{overflow:auto}
.tabs-below>.nav-tabs,.tabs-right>.nav-tabs,.tabs-left>.nav-tabs{border-bottom:0}
.tab-content>.tab-pane,.pill-content>.pill-pane{display:none}
.tab-content>.active,.pill-content>.active{display:block}
.tabs-below>.nav-tabs{border-top:1px solid #ddd}
.tabs-below>.nav-tabs>li{margin-top:-1px;margin-bottom:0}
.tabs-below>.nav-tabs>li>a{border-radius:0 0 4px 4px;-webkit-border-radius:0 0 4px 4px;-moz-border-radius:0 0 4px 4px;border-radius:0 0 4px 4px}.tabs-below>.nav-tabs>li>a:hover,.tabs-below>.nav-tabs>li>a:focus{border-bottom-color:transparent;border-top-color:#ddd}
.tabs-below>.nav-tabs>.active>a,.tabs-below>.nav-tabs>.active>a:hover,.tabs-below>.nav-tabs>.active>a:focus{border-color:transparent #ddd #ddd #ddd}
.tabs-left>.nav-tabs>li,.tabs-right>.nav-tabs>li{float:none}
.tabs-left>.nav-tabs>li>a,.tabs-right>.nav-tabs>li>a{min-width:74px;margin-right:0;margin-bottom:3px}
.tabs-left>.nav-tabs{float:left;margin-right:19px;border-right:1px solid #ddd}
.tabs-left>.nav-tabs>li>a{margin-right:-1px;border-radius:4px 0 0 4px;-webkit-border-radius:4px 0 0 4px;-moz-border-radius:4px 0 0 4px;border-radius:4px 0 0 4px}
.tabs-left>.nav-tabs>li>a:hover,.tabs-left>.nav-tabs>li>a:focus{border-color:#eee #ddd #eee #eee}
.tabs-left>.nav-tabs .active>a,.tabs-left>.nav-tabs .active>a:hover,.tabs-left>.nav-tabs .active>a:focus{border-color:#ddd transparent #ddd #ddd;*border-right-color:#fff}
.tabs-right>.nav-tabs{float:right;margin-left:19px;border-left:1px solid #ddd}
.tabs-right>.nav-tabs>li>a{margin-left:-1px;border-radius:0 4px 4px 0;-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}
.tabs-right>.nav-tabs>li>a:hover,.tabs-right>.nav-tabs>li>a:focus{border-color:#eee #eee #eee #ddd}
.tabs-right>.nav-tabs .active>a,.tabs-right>.nav-tabs .active>a:hover,.tabs-right>.nav-tabs .active>a:focus{border-color:#ddd #ddd #ddd transparent;*border-left-color:#fff}
.nav>.disabled>a{color:#999}
.nav>.disabled>a:hover,.nav>.disabled>a:focus{text-decoration:none;background-color:transparent;cursor:default}
.navbar{overflow:visible;margin-bottom:20px;*position:relative;*z-index:2}
.navbar-inner{min-height:36px;padding-left:20px;padding-right:20px;background-color:#fafafa;background-image:-moz-linear-gradient(top, #fff, #f2f2f2);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#fff), to(#f2f2f2));background-image:-webkit-linear-gradient(top, #fff, #f2f2f2);background-image:-o-linear-gradient(top, #fff, #f2f2f2);background-image:linear-gradient(to bottom, #fff, #f2f2f2);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffffffff', endColorstr='#fff2f2f2', GradientType=0);border:1px solid #d4d4d4;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;-webkit-box-shadow:0 1px 4px rgba(0,0,0,0.065);-moz-box-shadow:0 1px 4px rgba(0,0,0,0.065);box-shadow:0 1px 4px rgba(0,0,0,0.065);*zoom:1}.navbar-inner:before,.navbar-inner:after{display:table;content:"";line-height:0}
.navbar-inner:after{clear:both}
.navbar .container{width:auto}
.nav-collapse.collapse{height:auto;overflow:visible}
.navbar .brand{float:left;display:block;padding:8px 20px 8px;margin-left:-20px;font-size:20px;font-weight:200;color:#777;text-shadow:0 1px 0 #fff}.navbar .brand:hover,.navbar .brand:focus{text-decoration:none}
.navbar-text{margin-bottom:0;line-height:36px;color:#777}
.navbar-link{color:#777}.navbar-link:hover,.navbar-link:focus{color:#333}
.navbar .divider-vertical{height:36px;margin:0 9px;border-left:1px solid #f2f2f2;border-right:1px solid #fff}
.navbar .btn,.navbar .btn-group{margin-top:3px}
.navbar .btn-group .btn,.navbar .input-prepend .btn,.navbar .input-append .btn,.navbar .input-prepend .btn-group,.navbar .input-append .btn-group{margin-top:0}
.navbar-form{margin-bottom:0;*zoom:1}.navbar-form:before,.navbar-form:after{display:table;content:"";line-height:0}
.navbar-form:after{clear:both}
.navbar-form input,.navbar-form select,.navbar-form .radio,.navbar-form .checkbox{margin-top:3px}
.navbar-form input,.navbar-form select,.navbar-form .btn{display:inline-block;margin-bottom:0}
.navbar-form input[type="image"],.navbar-form input[type="checkbox"],.navbar-form input[type="radio"]{margin-top:3px}
.navbar-form .input-append,.navbar-form .input-prepend{margin-top:5px;white-space:nowrap}.navbar-form .input-append input,.navbar-form .input-prepend input{margin-top:0}
.navbar-search{position:relative;float:left;margin-top:3px;margin-bottom:0}.navbar-search .search-query{margin-bottom:0;padding:4px 14px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:13px;font-weight:normal;line-height:1;border-radius:15px;-webkit-border-radius:15px;-moz-border-radius:15px;border-radius:15px}
.navbar-static-top{position:static;margin-bottom:0}.navbar-static-top .navbar-inner{border-radius:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}
.navbar-fixed-top,.navbar-fixed-bottom{position:fixed;right:0;left:0;z-index:1030;margin-bottom:0}
.navbar-fixed-top .navbar-inner,.navbar-static-top .navbar-inner{border-width:0 0 1px}
.navbar-fixed-bottom .navbar-inner{border-width:1px 0 0}
.navbar-fixed-top .navbar-inner,.navbar-fixed-bottom .navbar-inner{padding-left:0;padding-right:0;border-radius:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}
.navbar-static-top .container,.navbar-fixed-top .container,.navbar-fixed-bottom .container{width:940px}
.navbar-fixed-top{top:0}
.navbar-fixed-top .navbar-inner,.navbar-static-top .navbar-inner{-webkit-box-shadow:0 1px 10px rgba(0,0,0,.1);-moz-box-shadow:0 1px 10px rgba(0,0,0,.1);box-shadow:0 1px 10px rgba(0,0,0,.1)}
.navbar-fixed-bottom{bottom:0}.navbar-fixed-bottom .navbar-inner{-webkit-box-shadow:0 -1px 10px rgba(0,0,0,.1);-moz-box-shadow:0 -1px 10px rgba(0,0,0,.1);box-shadow:0 -1px 10px rgba(0,0,0,.1)}
.navbar .nav{position:relative;left:0;display:block;float:left;margin:0 10px 0 0}
.navbar .nav.pull-right{float:right;margin-right:0}
.navbar .nav>li{float:left}
.navbar .nav>li>a{float:none;padding:8px 15px 8px;color:#777;text-decoration:none;text-shadow:0 1px 0 #fff}
.navbar .nav .dropdown-toggle .caret{margin-top:8px}
.navbar .nav>li>a:focus,.navbar .nav>li>a:hover{background-color:transparent;color:#333;text-decoration:none}
.navbar .nav>.active>a,.navbar .nav>.active>a:hover,.navbar .nav>.active>a:focus{color:#555;text-decoration:none;background-color:#e5e5e5;-webkit-box-shadow:inset 0 3px 8px rgba(0,0,0,0.125);-moz-box-shadow:inset 0 3px 8px rgba(0,0,0,0.125);box-shadow:inset 0 3px 8px rgba(0,0,0,0.125)}
.navbar .btn-navbar{display:none;float:right;padding:7px 10px;margin-left:5px;margin-right:5px;color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#ededed;background-image:-moz-linear-gradient(top, #f2f2f2, #e5e5e5);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#f2f2f2), to(#e5e5e5));background-image:-webkit-linear-gradient(top, #f2f2f2, #e5e5e5);background-image:-o-linear-gradient(top, #f2f2f2, #e5e5e5);background-image:linear-gradient(to bottom, #f2f2f2, #e5e5e5);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#fff2f2f2', endColorstr='#ffe5e5e5', GradientType=0);border-color:#e5e5e5 #e5e5e5 #bfbfbf;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);*background-color:#e5e5e5;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1), 0 1px 0 rgba(255,255,255,.075);-moz-box-shadow:inset 0 1px 0 rgba(255,255,255,.1), 0 1px 0 rgba(255,255,255,.075);box-shadow:inset 0 1px 0 rgba(255,255,255,.1), 0 1px 0 rgba(255,255,255,.075)}.navbar .btn-navbar:hover,.navbar .btn-navbar:focus,.navbar .btn-navbar:active,.navbar .btn-navbar.active,.navbar .btn-navbar.disabled,.navbar .btn-navbar[disabled]{color:#fff;background-color:#e5e5e5;*background-color:#d9d9d9}
.navbar .btn-navbar:active,.navbar .btn-navbar.active{background-color:#ccc \9}
.navbar .btn-navbar .icon-bar{display:block;width:18px;height:2px;background-color:#f5f5f5;-webkit-border-radius:1px;-moz-border-radius:1px;border-radius:1px;-webkit-box-shadow:0 1px 0 rgba(0,0,0,0.25);-moz-box-shadow:0 1px 0 rgba(0,0,0,0.25);box-shadow:0 1px 0 rgba(0,0,0,0.25)}
.btn-navbar .icon-bar+.icon-bar{margin-top:3px}
.navbar .nav>li>.dropdown-menu:before{content:'';display:inline-block;border-left:7px solid transparent;border-right:7px solid transparent;border-bottom:7px solid #ccc;border-bottom-color:rgba(0,0,0,0.2);position:absolute;top:-7px;left:9px}
.navbar .nav>li>.dropdown-menu:after{content:'';display:inline-block;border-left:6px solid transparent;border-right:6px solid transparent;border-bottom:6px solid #fff;position:absolute;top:-6px;left:10px}
.navbar-fixed-bottom .nav>li>.dropdown-menu:before{border-top:7px solid #ccc;border-top-color:rgba(0,0,0,0.2);border-bottom:0;bottom:-7px;top:auto}
.navbar-fixed-bottom .nav>li>.dropdown-menu:after{border-top:6px solid #fff;border-bottom:0;bottom:-6px;top:auto}
.navbar .nav li.dropdown>a:hover .caret,.navbar .nav li.dropdown>a:focus .caret{border-top-color:#333;border-bottom-color:#333}
.navbar .nav li.dropdown.open>.dropdown-toggle,.navbar .nav li.dropdown.active>.dropdown-toggle,.navbar .nav li.dropdown.open.active>.dropdown-toggle{background-color:#e5e5e5;color:#555}
.navbar .nav li.dropdown>.dropdown-toggle .caret{border-top-color:#777;border-bottom-color:#777}
.navbar .nav li.dropdown.open>.dropdown-toggle .caret,.navbar .nav li.dropdown.active>.dropdown-toggle .caret,.navbar .nav li.dropdown.open.active>.dropdown-toggle .caret{border-top-color:#555;border-bottom-color:#555}
.navbar .pull-right>li>.dropdown-menu,.navbar .nav>li>.dropdown-menu.pull-right{left:auto;right:0}.navbar .pull-right>li>.dropdown-menu:before,.navbar .nav>li>.dropdown-menu.pull-right:before{left:auto;right:12px}
.navbar .pull-right>li>.dropdown-menu:after,.navbar .nav>li>.dropdown-menu.pull-right:after{left:auto;right:13px}
.navbar .pull-right>li>.dropdown-menu .dropdown-menu,.navbar .nav>li>.dropdown-menu.pull-right .dropdown-menu{left:auto;right:100%;margin-left:0;margin-right:-1px;border-radius:6px 0 6px 6px;-webkit-border-radius:6px 0 6px 6px;-moz-border-radius:6px 0 6px 6px;border-radius:6px 0 6px 6px}
.navbar-inverse .navbar-inner{background-color:#1b1b1b;background-image:-moz-linear-gradient(top, #222, #111);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#222), to(#111));background-image:-webkit-linear-gradient(top, #222, #111);background-image:-o-linear-gradient(top, #222, #111);background-image:linear-gradient(to bottom, #222, #111);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff222222', endColorstr='#ff111111', GradientType=0);border-color:#252525}
.navbar-inverse .brand,.navbar-inverse .nav>li>a{color:#999;text-shadow:0 -1px 0 rgba(0,0,0,0.25)}.navbar-inverse .brand:hover,.navbar-inverse .nav>li>a:hover,.navbar-inverse .brand:focus,.navbar-inverse .nav>li>a:focus{color:#fff}
.navbar-inverse .brand{color:#999}
.navbar-inverse .navbar-text{color:#999}
.navbar-inverse .nav>li>a:focus,.navbar-inverse .nav>li>a:hover{background-color:transparent;color:#fff}
.navbar-inverse .nav .active>a,.navbar-inverse .nav .active>a:hover,.navbar-inverse .nav .active>a:focus{color:#fff;background-color:#111}
.navbar-inverse .navbar-link{color:#999}.navbar-inverse .navbar-link:hover,.navbar-inverse .navbar-link:focus{color:#fff}
.navbar-inverse .divider-vertical{border-left-color:#111;border-right-color:#222}
.navbar-inverse .nav li.dropdown.open>.dropdown-toggle,.navbar-inverse .nav li.dropdown.active>.dropdown-toggle,.navbar-inverse .nav li.dropdown.open.active>.dropdown-toggle{background-color:#111;color:#fff}
.navbar-inverse .nav li.dropdown>a:hover .caret,.navbar-inverse .nav li.dropdown>a:focus .caret{border-top-color:#fff;border-bottom-color:#fff}
.navbar-inverse .nav li.dropdown>.dropdown-toggle .caret{border-top-color:#999;border-bottom-color:#999}
.navbar-inverse .nav li.dropdown.open>.dropdown-toggle .caret,.navbar-inverse .nav li.dropdown.active>.dropdown-toggle .caret,.navbar-inverse .nav li.dropdown.open.active>.dropdown-toggle .caret{border-top-color:#fff;border-bottom-color:#fff}
.navbar-inverse .navbar-search .search-query{color:#fff;background-color:#515151;border-color:#111;-webkit-box-shadow:inset 0 1px 2px rgba(0,0,0,.1), 0 1px 0 rgba(255,255,255,.15);-moz-box-shadow:inset 0 1px 2px rgba(0,0,0,.1), 0 1px 0 rgba(255,255,255,.15);box-shadow:inset 0 1px 2px rgba(0,0,0,.1), 0 1px 0 rgba(255,255,255,.15);-webkit-transition:none;-moz-transition:none;-o-transition:none;transition:none}.navbar-inverse .navbar-search .search-query:-moz-placeholder{color:#ccc}
.navbar-inverse .navbar-search .search-query:-ms-input-placeholder{color:#ccc}
.navbar-inverse .navbar-search .search-query::-webkit-input-placeholder{color:#ccc}
.navbar-inverse .navbar-search .search-query:focus,.navbar-inverse .navbar-search .search-query.focused{padding:5px 15px;color:#333;text-shadow:0 1px 0 #fff;background-color:#fff;border:0;-webkit-box-shadow:0 0 3px rgba(0,0,0,0.15);-moz-box-shadow:0 0 3px rgba(0,0,0,0.15);box-shadow:0 0 3px rgba(0,0,0,0.15);outline:0}
.navbar-inverse .btn-navbar{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#0e0e0e;background-image:-moz-linear-gradient(top, #151515, #040404);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#151515), to(#040404));background-image:-webkit-linear-gradient(top, #151515, #040404);background-image:-o-linear-gradient(top, #151515, #040404);background-image:linear-gradient(to bottom, #151515, #040404);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff151515', endColorstr='#ff040404', GradientType=0);border-color:#040404 #040404 #000;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);*background-color:#040404;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false)}.navbar-inverse .btn-navbar:hover,.navbar-inverse .btn-navbar:focus,.navbar-inverse .btn-navbar:active,.navbar-inverse .btn-navbar.active,.navbar-inverse .btn-navbar.disabled,.navbar-inverse .btn-navbar[disabled]{color:#fff;background-color:#040404;*background-color:#000}
.navbar-inverse .btn-navbar:active,.navbar-inverse .btn-navbar.active{background-color:#000 \9}
.breadcrumb{padding:8px 15px;margin:0 0 20px;list-style:none;background-color:#f5f5f5;border-radius:4px;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.breadcrumb>li{display:inline-block;*display:inline;*zoom:1;text-shadow:0 1px 0 #fff}.breadcrumb>li>.divider{padding:0 5px;color:#ccc}
.breadcrumb>.active{color:#999}
.pagination{margin:20px 0}
.pagination ul{display:inline-block;*display:inline;*zoom:1;margin-left:0;margin-bottom:0;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;-webkit-box-shadow:0 1px 2px rgba(0,0,0,0.05);-moz-box-shadow:0 1px 2px rgba(0,0,0,0.05);box-shadow:0 1px 2px rgba(0,0,0,0.05)}
.pagination ul>li{display:inline}
.pagination ul>li>a,.pagination ul>li>span{float:left;padding:4px 12px;line-height:20px;text-decoration:none;background-color:#fff;border:1px solid #ddd;border-left-width:0}
.pagination ul>li>a:hover,.pagination ul>li>a:focus,.pagination ul>.active>a,.pagination ul>.active>span{background-color:#f5f5f5}
.pagination ul>.active>a,.pagination ul>.active>span{color:#999;cursor:default}
.pagination ul>.disabled>span,.pagination ul>.disabled>a,.pagination ul>.disabled>a:hover,.pagination ul>.disabled>a:focus{color:#999;background-color:transparent;cursor:default}
.pagination ul>li:first-child>a,.pagination ul>li:first-child>span{border-left-width:1px;-webkit-border-top-left-radius:4px;-moz-border-radius-topleft:4px;border-top-left-radius:4px;-webkit-border-bottom-left-radius:4px;-moz-border-radius-bottomleft:4px;border-bottom-left-radius:4px}
.pagination ul>li:last-child>a,.pagination ul>li:last-child>span{-webkit-border-top-right-radius:4px;-moz-border-radius-topright:4px;border-top-right-radius:4px;-webkit-border-bottom-right-radius:4px;-moz-border-radius-bottomright:4px;border-bottom-right-radius:4px}
.pagination-centered{text-align:center}
.pagination-right{text-align:right}
.pagination-large ul>li>a,.pagination-large ul>li>span{padding:11px 19px;font-size:16.25px}
.pagination-large ul>li:first-child>a,.pagination-large ul>li:first-child>span{-webkit-border-top-left-radius:6px;-moz-border-radius-topleft:6px;border-top-left-radius:6px;-webkit-border-bottom-left-radius:6px;-moz-border-radius-bottomleft:6px;border-bottom-left-radius:6px}
.pagination-large ul>li:last-child>a,.pagination-large ul>li:last-child>span{-webkit-border-top-right-radius:6px;-moz-border-radius-topright:6px;border-top-right-radius:6px;-webkit-border-bottom-right-radius:6px;-moz-border-radius-bottomright:6px;border-bottom-right-radius:6px}
.pagination-mini ul>li:first-child>a,.pagination-small ul>li:first-child>a,.pagination-mini ul>li:first-child>span,.pagination-small ul>li:first-child>span{-webkit-border-top-left-radius:3px;-moz-border-radius-topleft:3px;border-top-left-radius:3px;-webkit-border-bottom-left-radius:3px;-moz-border-radius-bottomleft:3px;border-bottom-left-radius:3px}
.pagination-mini ul>li:last-child>a,.pagination-small ul>li:last-child>a,.pagination-mini ul>li:last-child>span,.pagination-small ul>li:last-child>span{-webkit-border-top-right-radius:3px;-moz-border-radius-topright:3px;border-top-right-radius:3px;-webkit-border-bottom-right-radius:3px;-moz-border-radius-bottomright:3px;border-bottom-right-radius:3px}
.pagination-small ul>li>a,.pagination-small ul>li>span{padding:2px 10px;font-size:11.049999999999999px}
.pagination-mini ul>li>a,.pagination-mini ul>li>span{padding:0 6px;font-size:9.75px}
.pager{margin:20px 0;list-style:none;text-align:center;*zoom:1}.pager:before,.pager:after{display:table;content:"";line-height:0}
.pager:after{clear:both}
.pager li{display:inline}
.pager li>a,.pager li>span{display:inline-block;padding:5px 14px;background-color:#fff;border:1px solid #ddd;border-radius:15px;-webkit-border-radius:15px;-moz-border-radius:15px;border-radius:15px}
.pager li>a:hover,.pager li>a:focus{text-decoration:none;background-color:#f5f5f5}
.pager .next>a,.pager .next>span{float:right}
.pager .previous>a,.pager .previous>span{float:left}
.pager .disabled>a,.pager .disabled>a:hover,.pager .disabled>a:focus,.pager .disabled>span{color:#999;background-color:#fff;cursor:default}
.modal-backdrop{position:fixed;top:0;right:0;bottom:0;left:0;z-index:1040;background-color:#000}.modal-backdrop.fade{opacity:0}
.modal-backdrop,.modal-backdrop.fade.in{opacity:.8;filter:alpha(opacity=80)}
.modal{position:fixed;top:10%;left:50%;z-index:1050;width:560px;margin-left:-280px;background-color:#fff;border:1px solid #999;border:1px solid rgba(0,0,0,0.3);*border:1px solid #999;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px;-webkit-box-shadow:0 3px 7px rgba(0,0,0,0.3);-moz-box-shadow:0 3px 7px rgba(0,0,0,0.3);box-shadow:0 3px 7px rgba(0,0,0,0.3);-webkit-background-clip:padding-box;-moz-background-clip:padding-box;background-clip:padding-box;outline:none}.modal.fade{-webkit-transition:opacity .3s linear, top .3s ease-out;-moz-transition:opacity .3s linear, top .3s ease-out;-o-transition:opacity .3s linear, top .3s ease-out;transition:opacity .3s linear, top .3s ease-out;top:-25%}
.modal.fade.in{top:10%}
.modal-header{padding:9px 15px;border-bottom:1px solid #eee}.modal-header .close{margin-top:2px}
.modal-header h3{margin:0;line-height:30px}
.modal-body{position:relative;overflow-y:auto;max-height:400px;padding:15px}
.modal-form{margin-bottom:0}
.modal-footer{padding:14px 15px 15px;margin-bottom:0;text-align:right;background-color:#f5f5f5;border-top:1px solid #ddd;-webkit-border-radius:0 0 6px 6px;-moz-border-radius:0 0 6px 6px;border-radius:0 0 6px 6px;-webkit-box-shadow:inset 0 1px 0 #fff;-moz-box-shadow:inset 0 1px 0 #fff;box-shadow:inset 0 1px 0 #fff;*zoom:1}.modal-footer:before,.modal-footer:after{display:table;content:"";line-height:0}
.modal-footer:after{clear:both}
.modal-footer .btn+.btn{margin-left:5px;margin-bottom:0}
.modal-footer .btn-group .btn+.btn{margin-left:-1px}
.modal-footer .btn-block+.btn-block{margin-left:0}
.tooltip{position:absolute;z-index:1030;display:block;visibility:visible;font-size:11px;line-height:1.4;opacity:0;filter:alpha(opacity=0)}.tooltip.in{opacity:.8;filter:alpha(opacity=80)}
.tooltip.top{margin-top:-3px;padding:5px 0}
.tooltip.right{margin-left:3px;padding:0 5px}
.tooltip.bottom{margin-top:3px;padding:5px 0}
.tooltip.left{margin-left:-3px;padding:0 5px}
.tooltip-inner{max-width:200px;padding:8px;color:#fff;text-align:center;text-decoration:none;background-color:#000;border-radius:4px;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}
.tooltip-arrow{position:absolute;width:0;height:0;border-color:transparent;border-style:solid}
.tooltip.top .tooltip-arrow{bottom:0;left:50%;margin-left:-5px;border-width:5px 5px 0;border-top-color:#000}
.tooltip.right .tooltip-arrow{top:50%;left:0;margin-top:-5px;border-width:5px 5px 5px 0;border-right-color:#000}
.tooltip.left .tooltip-arrow{top:50%;right:0;margin-top:-5px;border-width:5px 0 5px 5px;border-left-color:#000}
.tooltip.bottom .tooltip-arrow{top:0;left:50%;margin-left:-5px;border-width:0 5px 5px;border-bottom-color:#000}
.popover{position:absolute;top:0;left:0;z-index:1010;display:none;max-width:276px;padding:1px;text-align:left;background-color:#fff;-webkit-background-clip:padding-box;-moz-background-clip:padding;background-clip:padding-box;border:1px solid #ccc;border:1px solid rgba(0,0,0,0.2);-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px;-webkit-box-shadow:0 5px 10px rgba(0,0,0,0.2);-moz-box-shadow:0 5px 10px rgba(0,0,0,0.2);box-shadow:0 5px 10px rgba(0,0,0,0.2);white-space:normal}.popover.top{margin-top:-10px}
.popover.right{margin-left:10px}
.popover.bottom{margin-top:10px}
.popover.left{margin-left:-10px}
.popover-title{margin:0;padding:8px 14px;font-size:14px;font-weight:normal;line-height:18px;background-color:#f7f7f7;border-bottom:1px solid #ebebeb;border-radius:5px 5px 0 0;-webkit-border-radius:5px 5px 0 0;-moz-border-radius:5px 5px 0 0;border-radius:5px 5px 0 0}.popover-title:empty{display:none}
.popover-content{padding:9px 14px}
.popover .arrow,.popover .arrow:after{position:absolute;display:block;width:0;height:0;border-color:transparent;border-style:solid}
.popover .arrow{border-width:11px}
.popover .arrow:after{border-width:10px;content:""}
.popover.top .arrow{left:50%;margin-left:-11px;border-bottom-width:0;border-top-color:#999;border-top-color:rgba(0,0,0,0.25);bottom:-11px}.popover.top .arrow:after{bottom:1px;margin-left:-10px;border-bottom-width:0;border-top-color:#fff}
.popover.right .arrow{top:50%;left:-11px;margin-top:-11px;border-left-width:0;border-right-color:#999;border-right-color:rgba(0,0,0,0.25)}.popover.right .arrow:after{left:1px;bottom:-10px;border-left-width:0;border-right-color:#fff}
.popover.bottom .arrow{left:50%;margin-left:-11px;border-top-width:0;border-bottom-color:#999;border-bottom-color:rgba(0,0,0,0.25);top:-11px}.popover.bottom .arrow:after{top:1px;margin-left:-10px;border-top-width:0;border-bottom-color:#fff}
.popover.left .arrow{top:50%;right:-11px;margin-top:-11px;border-right-width:0;border-left-color:#999;border-left-color:rgba(0,0,0,0.25)}.popover.left .arrow:after{right:1px;border-right-width:0;border-left-color:#fff;bottom:-10px}
.thumbnails{margin-left:-20px;list-style:none;*zoom:1}.thumbnails:before,.thumbnails:after{display:table;content:"";line-height:0}
.thumbnails:after{clear:both}
.row-fluid .thumbnails{margin-left:0}
.thumbnails>li{float:left;margin-bottom:20px;margin-left:20px}
.thumbnail{display:block;padding:4px;line-height:20px;border:1px solid #ddd;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;-webkit-box-shadow:0 1px 3px rgba(0,0,0,0.055);-moz-box-shadow:0 1px 3px rgba(0,0,0,0.055);box-shadow:0 1px 3px rgba(0,0,0,0.055);-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;-o-transition:all .2s ease-in-out;transition:all .2s ease-in-out}
a.thumbnail:hover,a.thumbnail:focus{border-color:#08c;-webkit-box-shadow:0 1px 4px rgba(0,105,214,0.25);-moz-box-shadow:0 1px 4px rgba(0,105,214,0.25);box-shadow:0 1px 4px rgba(0,105,214,0.25)}
.thumbnail>img{display:block;max-width:100%;margin-left:auto;margin-right:auto}
.thumbnail .caption{padding:9px;color:#555}
.media,.media-body{overflow:hidden;*overflow:visible;zoom:1}
.media,.media .media{margin-top:15px}
.media:first-child{margin-top:0}
.media-object{display:block}
.media-heading{margin:0 0 5px}
.media>.pull-left{margin-right:10px}
.media>.pull-right{margin-left:10px}
.media-list{margin-left:0;list-style:none}
.label,.badge{display:inline-block;padding:2px 4px;font-size:10.998px;font-weight:bold;line-height:14px;color:#fff;vertical-align:baseline;white-space:nowrap;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#999}
.label{border-radius:3px;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}
.badge{padding-left:9px;padding-right:9px;border-radius:9px;-webkit-border-radius:9px;-moz-border-radius:9px;border-radius:9px}
.label:empty,.badge:empty{display:none}
a.label:hover,a.label:focus,a.badge:hover,a.badge:focus{color:#fff;text-decoration:none;cursor:pointer}
.label-important,.badge-important{background-color:#b94a48}
.label-important[href],.badge-important[href]{background-color:#953b39}
.label-warning,.badge-warning{background-color:#f89406}
.label-warning[href],.badge-warning[href]{background-color:#c67605}
.label-success,.badge-success{background-color:#468847}
.label-success[href],.badge-success[href]{background-color:#356635}
.label-info,.badge-info{background-color:#3a87ad}
.label-info[href],.badge-info[href]{background-color:#2d6987}
.label-inverse,.badge-inverse{background-color:#333}
.label-inverse[href],.badge-inverse[href]{background-color:#1a1a1a}
.btn .label,.btn .badge{position:relative;top:-1px}
.btn-mini .label,.btn-mini .badge{top:0}
@-webkit-keyframes progress-bar-stripes{from{background-position:40px 0} to{background-position:0 0}}@-moz-keyframes progress-bar-stripes{from{background-position:40px 0} to{background-position:0 0}}@-ms-keyframes progress-bar-stripes{from{background-position:40px 0} to{background-position:0 0}}@-o-keyframes progress-bar-stripes{from{background-position:0 0} to{background-position:40px 0}}@keyframes progress-bar-stripes{from{background-position:40px 0} to{background-position:0 0}}.progress{overflow:hidden;height:20px;margin-bottom:20px;background-color:#f7f7f7;background-image:-moz-linear-gradient(top, #f5f5f5, #f9f9f9);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#f5f5f5), to(#f9f9f9));background-image:-webkit-linear-gradient(top, #f5f5f5, #f9f9f9);background-image:-o-linear-gradient(top, #f5f5f5, #f9f9f9);background-image:linear-gradient(to bottom, #f5f5f5, #f9f9f9);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#fff5f5f5', endColorstr='#fff9f9f9', GradientType=0);-webkit-box-shadow:inset 0 1px 2px rgba(0,0,0,0.1);-moz-box-shadow:inset 0 1px 2px rgba(0,0,0,0.1);box-shadow:inset 0 1px 2px rgba(0,0,0,0.1);border-radius:4px;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}
.progress .bar{width:0;height:100%;color:#fff;float:left;font-size:12px;text-align:center;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#0e90d2;background-image:-moz-linear-gradient(top, #149bdf, #0480be);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#149bdf), to(#0480be));background-image:-webkit-linear-gradient(top, #149bdf, #0480be);background-image:-o-linear-gradient(top, #149bdf, #0480be);background-image:linear-gradient(to bottom, #149bdf, #0480be);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff149bdf', endColorstr='#ff0480be', GradientType=0);-webkit-box-shadow:inset 0 -1px 0 rgba(0,0,0,0.15);-moz-box-shadow:inset 0 -1px 0 rgba(0,0,0,0.15);box-shadow:inset 0 -1px 0 rgba(0,0,0,0.15);-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;-webkit-transition:width .6s ease;-moz-transition:width .6s ease;-o-transition:width .6s ease;transition:width .6s ease}
.progress .bar+.bar{-webkit-box-shadow:inset 1px 0 0 rgba(0,0,0,.15), inset 0 -1px 0 rgba(0,0,0,.15);-moz-box-shadow:inset 1px 0 0 rgba(0,0,0,.15), inset 0 -1px 0 rgba(0,0,0,.15);box-shadow:inset 1px 0 0 rgba(0,0,0,.15), inset 0 -1px 0 rgba(0,0,0,.15)}
.progress-striped .bar{background-color:#149bdf;background-image:-webkit-gradient(linear, 0 100%, 100% 0, color-stop(.25, rgba(255,255,255,0.15)), color-stop(.25, transparent), color-stop(.5, transparent), color-stop(.5, rgba(255,255,255,0.15)), color-stop(.75, rgba(255,255,255,0.15)), color-stop(.75, transparent), to(transparent));background-image:-webkit-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:-moz-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:-o-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);-webkit-background-size:40px 40px;-moz-background-size:40px 40px;-o-background-size:40px 40px;background-size:40px 40px}
.progress.active .bar{-webkit-animation:progress-bar-stripes 2s linear infinite;-moz-animation:progress-bar-stripes 2s linear infinite;-ms-animation:progress-bar-stripes 2s linear infinite;-o-animation:progress-bar-stripes 2s linear infinite;animation:progress-bar-stripes 2s linear infinite}
.progress-danger .bar,.progress .bar-danger{background-color:#dd514c;background-image:-moz-linear-gradient(top, #ee5f5b, #c43c35);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#ee5f5b), to(#c43c35));background-image:-webkit-linear-gradient(top, #ee5f5b, #c43c35);background-image:-o-linear-gradient(top, #ee5f5b, #c43c35);background-image:linear-gradient(to bottom, #ee5f5b, #c43c35);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffee5f5b', endColorstr='#ffc43c35', GradientType=0)}
.progress-danger.progress-striped .bar,.progress-striped .bar-danger{background-color:#ee5f5b;background-image:-webkit-gradient(linear, 0 100%, 100% 0, color-stop(.25, rgba(255,255,255,0.15)), color-stop(.25, transparent), color-stop(.5, transparent), color-stop(.5, rgba(255,255,255,0.15)), color-stop(.75, rgba(255,255,255,0.15)), color-stop(.75, transparent), to(transparent));background-image:-webkit-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:-moz-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:-o-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent)}
.progress-success .bar,.progress .bar-success{background-color:#5eb95e;background-image:-moz-linear-gradient(top, #62c462, #57a957);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#62c462), to(#57a957));background-image:-webkit-linear-gradient(top, #62c462, #57a957);background-image:-o-linear-gradient(top, #62c462, #57a957);background-image:linear-gradient(to bottom, #62c462, #57a957);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff62c462', endColorstr='#ff57a957', GradientType=0)}
.progress-success.progress-striped .bar,.progress-striped .bar-success{background-color:#62c462;background-image:-webkit-gradient(linear, 0 100%, 100% 0, color-stop(.25, rgba(255,255,255,0.15)), color-stop(.25, transparent), color-stop(.5, transparent), color-stop(.5, rgba(255,255,255,0.15)), color-stop(.75, rgba(255,255,255,0.15)), color-stop(.75, transparent), to(transparent));background-image:-webkit-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:-moz-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:-o-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent)}
.progress-info .bar,.progress .bar-info{background-color:#4bb1cf;background-image:-moz-linear-gradient(top, #5bc0de, #339bb9);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#5bc0de), to(#339bb9));background-image:-webkit-linear-gradient(top, #5bc0de, #339bb9);background-image:-o-linear-gradient(top, #5bc0de, #339bb9);background-image:linear-gradient(to bottom, #5bc0de, #339bb9);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff5bc0de', endColorstr='#ff339bb9', GradientType=0)}
.progress-info.progress-striped .bar,.progress-striped .bar-info{background-color:#5bc0de;background-image:-webkit-gradient(linear, 0 100%, 100% 0, color-stop(.25, rgba(255,255,255,0.15)), color-stop(.25, transparent), color-stop(.5, transparent), color-stop(.5, rgba(255,255,255,0.15)), color-stop(.75, rgba(255,255,255,0.15)), color-stop(.75, transparent), to(transparent));background-image:-webkit-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:-moz-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:-o-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent)}
.progress-warning .bar,.progress .bar-warning{background-color:#faa732;background-image:-moz-linear-gradient(top, #fbb450, #f89406);background-image:-webkit-gradient(linear, 0 0, 0 100%, from(#fbb450), to(#f89406));background-image:-webkit-linear-gradient(top, #fbb450, #f89406);background-image:-o-linear-gradient(top, #fbb450, #f89406);background-image:linear-gradient(to bottom, #fbb450, #f89406);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#fffbb450', endColorstr='#fff89406', GradientType=0)}
.progress-warning.progress-striped .bar,.progress-striped .bar-warning{background-color:#fbb450;background-image:-webkit-gradient(linear, 0 100%, 100% 0, color-stop(.25, rgba(255,255,255,0.15)), color-stop(.25, transparent), color-stop(.5, transparent), color-stop(.5, rgba(255,255,255,0.15)), color-stop(.75, rgba(255,255,255,0.15)), color-stop(.75, transparent), to(transparent));background-image:-webkit-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:-moz-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:-o-linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-image:linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent)}
.accordion{margin-bottom:20px}
.accordion-group{margin-bottom:2px;border:1px solid #e5e5e5;border-radius:4px;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}
.accordion-heading{border-bottom:0}
.accordion-heading .accordion-toggle{display:block;padding:8px 15px}
.accordion-toggle{cursor:pointer}
.accordion-inner{padding:9px 15px;border-top:1px solid #e5e5e5}
.carousel{position:relative;margin-bottom:20px;line-height:1}
.carousel-inner{overflow:hidden;width:100%;position:relative}
.carousel-inner>.item{display:none;position:relative;-webkit-transition:.6s ease-in-out left;-moz-transition:.6s ease-in-out left;-o-transition:.6s ease-in-out left;transition:.6s ease-in-out left}.carousel-inner>.item>img,.carousel-inner>.item>a>img{display:block;line-height:1}
.carousel-inner>.active,.carousel-inner>.next,.carousel-inner>.prev{display:block}
.carousel-inner>.active{left:0}
.carousel-inner>.next,.carousel-inner>.prev{position:absolute;top:0;width:100%}
.carousel-inner>.next{left:100%}
.carousel-inner>.prev{left:-100%}
.carousel-inner>.next.left,.carousel-inner>.prev.right{left:0}
.carousel-inner>.active.left{left:-100%}
.carousel-inner>.active.right{left:100%}
.carousel-control{position:absolute;top:40%;left:15px;width:40px;height:40px;margin-top:-20px;font-size:60px;font-weight:100;line-height:30px;color:#fff;text-align:center;background:#222;border:3px solid #fff;-webkit-border-radius:23px;-moz-border-radius:23px;border-radius:23px;opacity:.5;filter:alpha(opacity=50)}.carousel-control.right{left:auto;right:15px}
.carousel-control:hover,.carousel-control:focus{color:#fff;text-decoration:none;opacity:.9;filter:alpha(opacity=90)}
.carousel-indicators{position:absolute;top:15px;right:15px;z-index:5;margin:0;list-style:none}.carousel-indicators li{display:block;float:left;width:10px;height:10px;margin-left:5px;text-indent:-999px;background-color:#ccc;background-color:rgba(255,255,255,0.25);border-radius:5px}
.carousel-indicators .active{background-color:#fff}
.carousel-caption{position:absolute;left:0;right:0;bottom:0;padding:15px;background:#333;background:rgba(0,0,0,0.75)}
.carousel-caption h4,.carousel-caption p{color:#fff;line-height:20px}
.carousel-caption h4{margin:0 0 5px}
.carousel-caption p{margin-bottom:0}
.hero-unit{padding:60px;margin-bottom:30px;font-size:18px;font-weight:200;line-height:30px;color:inherit;background-color:#eee;border-radius:6px;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}.hero-unit h1{margin-bottom:0;font-size:60px;line-height:1;color:inherit;letter-spacing:-1px}
.hero-unit li{line-height:30px}
.pull-right{float:right}
.pull-left{float:left}
.hide{display:none}
.show{display:block}
.invisible{visibility:hidden}
.affix{position:fixed}
@-ms-viewport{width:device-width}.hidden{display:none;visibility:hidden}
.visible-phone{display:none !important}
.visible-tablet{display:none !important}
.hidden-desktop{display:none !important}
.visible-desktop{display:inherit !important}
@media (min-width:768px) and (max-width:979px){.hidden-desktop{display:inherit !important} .visible-desktop{display:none !important} .visible-tablet{display:inherit !important} .hidden-tablet{display:none !important}}@media (max-width:767px){.hidden-desktop{display:inherit !important} .visible-desktop{display:none !important} .visible-phone{display:inherit !important} .hidden-phone{display:none !important}}.visible-print{display:none !important}
@media print{.visible-print{display:inherit !important} .hidden-print{display:none !important}}@media (min-width:1200px){.row{margin-left:-30px;*zoom:1}.row:before,.row:after{display:table;content:"";line-height:0} .row:after{clear:both} [class*="span"]{float:left;min-height:1px;margin-left:30px} .container,.navbar-static-top .container,.navbar-fixed-top .container,.navbar-fixed-bottom .container{width:1170px} .span12{width:1170px} .span11{width:1070px} .span10{width:970px} .span9{width:870px} .span8{width:770px} .span7{width:670px} .span6{width:570px} .span5{width:470px} .span4{width:370px} .span3{width:270px} .span2{width:170px} .span1{width:70px} .offset12{margin-left:1230px} .offset11{margin-left:1130px} .offset10{margin-left:1030px} .offset9{margin-left:930px} .offset8{margin-left:830px} .offset7{margin-left:730px} .offset6{margin-left:630px} .offset5{margin-left:530px} .offset4{margin-left:430px} .offset3{margin-left:330px} .offset2{margin-left:230px} .offset1{margin-left:130px} .row-fluid{width:100%;*zoom:1}.row-fluid:before,.row-fluid:after{display:table;content:"";line-height:0} .row-fluid:after{clear:both} .row-fluid [class*="span"]{display:block;width:100%;min-height:30px;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;float:left;margin-left:2.564102564102564%;*margin-left:2.5109110747408616%} .row-fluid [class*="span"]:first-child{margin-left:0} .row-fluid .controls-row [class*="span"]+[class*="span"]{margin-left:2.564102564102564%} .row-fluid .span12{width:100%;*width:99.94680851063829%} .row-fluid .span11{width:91.45299145299145%;*width:91.39979996362975%} .row-fluid .span10{width:82.90598290598291%;*width:82.8527914166212%} .row-fluid .span9{width:74.35897435897436%;*width:74.30578286961266%} .row-fluid .span8{width:65.81196581196582%;*width:65.75877432260411%} .row-fluid .span7{width:57.26495726495726%;*width:57.21176577559556%} .row-fluid .span6{width:48.717948717948715%;*width:48.664757228587014%} .row-fluid .span5{width:40.17094017094017%;*width:40.11774868157847%} .row-fluid .span4{width:31.623931623931625%;*width:31.570740134569924%} .row-fluid .span3{width:23.076923076923077%;*width:23.023731587561375%} .row-fluid .span2{width:14.52991452991453%;*width:14.476723040552828%} .row-fluid .span1{width:5.982905982905983%;*width:5.929714493544281%} .row-fluid .offset12{margin-left:105.12820512820512%;*margin-left:105.02182214948171%} .row-fluid .offset12:first-child{margin-left:102.56410256410257%;*margin-left:102.45771958537915%} .row-fluid .offset11{margin-left:96.58119658119658%;*margin-left:96.47481360247316%} .row-fluid .offset11:first-child{margin-left:94.01709401709402%;*margin-left:93.91071103837061%} .row-fluid .offset10{margin-left:88.03418803418803%;*margin-left:87.92780505546462%} .row-fluid .offset10:first-child{margin-left:85.47008547008548%;*margin-left:85.36370249136206%} .row-fluid .offset9{margin-left:79.48717948717949%;*margin-left:79.38079650845607%} .row-fluid .offset9:first-child{margin-left:76.92307692307693%;*margin-left:76.81669394435352%} .row-fluid .offset8{margin-left:70.94017094017094%;*margin-left:70.83378796144753%} .row-fluid .offset8:first-child{margin-left:68.37606837606839%;*margin-left:68.26968539734497%} .row-fluid .offset7{margin-left:62.393162393162385%;*margin-left:62.28677941443899%} .row-fluid .offset7:first-child{margin-left:59.82905982905982%;*margin-left:59.72267685033642%} .row-fluid .offset6{margin-left:53.84615384615384%;*margin-left:53.739770867430444%} .row-fluid .offset6:first-child{margin-left:51.28205128205128%;*margin-left:51.175668303327875%} .row-fluid .offset5{margin-left:45.299145299145295%;*margin-left:45.1927623204219%} .row-fluid .offset5:first-child{margin-left:42.73504273504273%;*margin-left:42.62865975631933%} .row-fluid .offset4{margin-left:36.75213675213675%;*margin-left:36.645753773413354%} .row-fluid .offset4:first-child{margin-left:34.18803418803419%;*margin-left:34.081651209310785%} .row-fluid .offset3{margin-left:28.205128205128204%;*margin-left:28.0987452264048%} .row-fluid .offset3:first-child{margin-left:25.641025641025642%;*margin-left:25.53464266230224%} .row-fluid .offset2{margin-left:19.65811965811966%;*margin-left:19.551736679396257%} .row-fluid .offset2:first-child{margin-left:17.094017094017094%;*margin-left:16.98763411529369%} .row-fluid .offset1{margin-left:11.11111111111111%;*margin-left:11.004728132387708%} .row-fluid .offset1:first-child{margin-left:8.547008547008547%;*margin-left:8.440625568285142%} input,textarea,.uneditable-input{margin-left:0} .controls-row [class*="span"]+[class*="span"]{margin-left:30px} input.span12,textarea.span12,.uneditable-input.span12{width:1156px} input.span11,textarea.span11,.uneditable-input.span11{width:1056px} input.span10,textarea.span10,.uneditable-input.span10{width:956px} input.span9,textarea.span9,.uneditable-input.span9{width:856px} input.span8,textarea.span8,.uneditable-input.span8{width:756px} input.span7,textarea.span7,.uneditable-input.span7{width:656px} input.span6,textarea.span6,.uneditable-input.span6{width:556px} input.span5,textarea.span5,.uneditable-input.span5{width:456px} input.span4,textarea.span4,.uneditable-input.span4{width:356px} input.span3,textarea.span3,.uneditable-input.span3{width:256px} input.span2,textarea.span2,.uneditable-input.span2{width:156px} input.span1,textarea.span1,.uneditable-input.span1{width:56px} .thumbnails{margin-left:-30px} .thumbnails>li{margin-left:30px} .row-fluid .thumbnails{margin-left:0}}@media (min-width:768px) and (max-width:979px){.row{margin-left:-20px;*zoom:1}.row:before,.row:after{display:table;content:"";line-height:0} .row:after{clear:both} [class*="span"]{float:left;min-height:1px;margin-left:20px} .container,.navbar-static-top .container,.navbar-fixed-top .container,.navbar-fixed-bottom .container{width:724px} .span12{width:724px} .span11{width:662px} .span10{width:600px} .span9{width:538px} .span8{width:476px} .span7{width:414px} .span6{width:352px} .span5{width:290px} .span4{width:228px} .span3{width:166px} .span2{width:104px} .span1{width:42px} .offset12{margin-left:764px} .offset11{margin-left:702px} .offset10{margin-left:640px} .offset9{margin-left:578px} .offset8{margin-left:516px} .offset7{margin-left:454px} .offset6{margin-left:392px} .offset5{margin-left:330px} .offset4{margin-left:268px} .offset3{margin-left:206px} .offset2{margin-left:144px} .offset1{margin-left:82px} .row-fluid{width:100%;*zoom:1}.row-fluid:before,.row-fluid:after{display:table;content:"";line-height:0} .row-fluid:after{clear:both} .row-fluid [class*="span"]{display:block;width:100%;min-height:30px;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;float:left;margin-left:2.7624309392265194%;*margin-left:2.709239449864817%} .row-fluid [class*="span"]:first-child{margin-left:0} .row-fluid .controls-row [class*="span"]+[class*="span"]{margin-left:2.7624309392265194%} .row-fluid .span12{width:100%;*width:99.94680851063829%} .row-fluid .span11{width:91.43646408839778%;*width:91.38327259903608%} .row-fluid .span10{width:82.87292817679558%;*width:82.81973668743387%} .row-fluid .span9{width:74.30939226519337%;*width:74.25620077583166%} .row-fluid .span8{width:65.74585635359117%;*width:65.69266486422946%} .row-fluid .span7{width:57.18232044198895%;*width:57.12912895262725%} .row-fluid .span6{width:48.61878453038674%;*width:48.56559304102504%} .row-fluid .span5{width:40.05524861878453%;*width:40.00205712942283%} .row-fluid .span4{width:31.491712707182323%;*width:31.43852121782062%} .row-fluid .span3{width:22.92817679558011%;*width:22.87498530621841%} .row-fluid .span2{width:14.3646408839779%;*width:14.311449394616199%} .row-fluid .span1{width:5.801104972375691%;*width:5.747913483013988%} .row-fluid .offset12{margin-left:105.52486187845304%;*margin-left:105.41847889972962%} .row-fluid .offset12:first-child{margin-left:102.76243093922652%;*margin-left:102.6560479605031%} .row-fluid .offset11{margin-left:96.96132596685082%;*margin-left:96.8549429881274%} .row-fluid .offset11:first-child{margin-left:94.1988950276243%;*margin-left:94.09251204890089%} .row-fluid .offset10{margin-left:88.39779005524862%;*margin-left:88.2914070765252%} .row-fluid .offset10:first-child{margin-left:85.6353591160221%;*margin-left:85.52897613729868%} .row-fluid .offset9{margin-left:79.8342541436464%;*margin-left:79.72787116492299%} .row-fluid .offset9:first-child{margin-left:77.07182320441989%;*margin-left:76.96544022569647%} .row-fluid .offset8{margin-left:71.2707182320442%;*margin-left:71.16433525332079%} .row-fluid .offset8:first-child{margin-left:68.50828729281768%;*margin-left:68.40190431409427%} .row-fluid .offset7{margin-left:62.70718232044199%;*margin-left:62.600799341718584%} .row-fluid .offset7:first-child{margin-left:59.94475138121547%;*margin-left:59.838368402492065%} .row-fluid .offset6{margin-left:54.14364640883978%;*margin-left:54.037263430116376%} .row-fluid .offset6:first-child{margin-left:51.38121546961326%;*margin-left:51.27483249088986%} .row-fluid .offset5{margin-left:45.58011049723757%;*margin-left:45.47372751851417%} .row-fluid .offset5:first-child{margin-left:42.81767955801105%;*margin-left:42.71129657928765%} .row-fluid .offset4{margin-left:37.01657458563536%;*margin-left:36.91019160691196%} .row-fluid .offset4:first-child{margin-left:34.25414364640884%;*margin-left:34.14776066768544%} .row-fluid .offset3{margin-left:28.45303867403315%;*margin-left:28.346655695309746%} .row-fluid .offset3:first-child{margin-left:25.69060773480663%;*margin-left:25.584224756083227%} .row-fluid .offset2{margin-left:19.88950276243094%;*margin-left:19.783119783707537%} .row-fluid .offset2:first-child{margin-left:17.12707182320442%;*margin-left:17.02068884448102%} .row-fluid .offset1{margin-left:11.32596685082873%;*margin-left:11.219583872105325%} .row-fluid .offset1:first-child{margin-left:8.56353591160221%;*margin-left:8.457152932878806%} input,textarea,.uneditable-input{margin-left:0} .controls-row [class*="span"]+[class*="span"]{margin-left:20px} input.span12,textarea.span12,.uneditable-input.span12{width:710px} input.span11,textarea.span11,.uneditable-input.span11{width:648px} input.span10,textarea.span10,.uneditable-input.span10{width:586px} input.span9,textarea.span9,.uneditable-input.span9{width:524px} input.span8,textarea.span8,.uneditable-input.span8{width:462px} input.span7,textarea.span7,.uneditable-input.span7{width:400px} input.span6,textarea.span6,.uneditable-input.span6{width:338px} input.span5,textarea.span5,.uneditable-input.span5{width:276px} input.span4,textarea.span4,.uneditable-input.span4{width:214px} input.span3,textarea.span3,.uneditable-input.span3{width:152px} input.span2,textarea.span2,.uneditable-input.span2{width:90px} input.span1,textarea.span1,.uneditable-input.span1{width:28px}}@media (max-width:767px){body{padding-left:20px;padding-right:20px} .navbar-fixed-top,.navbar-fixed-bottom,.navbar-static-top{margin-left:-20px;margin-right:-20px} .container-fluid{padding:0} .dl-horizontal dt{float:none;clear:none;width:auto;text-align:left} .dl-horizontal dd{margin-left:0} .container{width:auto} .row-fluid{width:100%} .row,.thumbnails{margin-left:0} .thumbnails>li{float:none;margin-left:0} [class*="span"],.uneditable-input[class*="span"],.row-fluid [class*="span"]{float:none;display:block;width:100%;margin-left:0;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box} .span12,.row-fluid .span12{width:100%;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box} .row-fluid [class*="offset"]:first-child{margin-left:0} .input-large,.input-xlarge,.input-xxlarge,input[class*="span"],select[class*="span"],textarea[class*="span"],.uneditable-input{display:block;width:100%;min-height:30px;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box} .input-prepend input,.input-append input,.input-prepend input[class*="span"],.input-append input[class*="span"]{display:inline-block;width:auto} .controls-row [class*="span"]+[class*="span"]{margin-left:0} .modal{position:fixed;top:20px;left:20px;right:20px;width:auto;margin:0}.modal.fade{top:-100px} .modal.fade.in{top:20px}}@media (max-width:480px){.nav-collapse{-webkit-transform:translate3d(0, 0, 0)} .page-header h1 small{display:block;line-height:20px} input[type="checkbox"],input[type="radio"]{border:1px solid #ccc} .form-horizontal .control-label{float:none;width:auto;padding-top:0;text-align:left} .form-horizontal .controls{margin-left:0} .form-horizontal .control-list{padding-top:0} .form-horizontal .form-actions{padding-left:10px;padding-right:10px} .media .pull-left,.media .pull-right{float:none;display:block;margin-bottom:10px} .media-object{margin-right:0;margin-left:0} .modal{top:10px;left:10px;right:10px} .modal-header .close{padding:10px;margin:-10px} .carousel-caption{position:static}}@media (max-width:979px){body{padding-top:0} .navbar-fixed-top,.navbar-fixed-bottom{position:static} .navbar-fixed-top{margin-bottom:20px} .navbar-fixed-bottom{margin-top:20px} .navbar-fixed-top .navbar-inner,.navbar-fixed-bottom .navbar-inner{padding:5px} .navbar .container{width:auto;padding:0} .navbar .brand{padding-left:10px;padding-right:10px;margin:0 0 0 -5px} .nav-collapse{clear:both} .nav-collapse .nav{float:none;margin:0 0 10px} .nav-collapse .nav>li{float:none} .nav-collapse .nav>li>a{margin-bottom:2px} .nav-collapse .nav>.divider-vertical{display:none} .nav-collapse .nav .nav-header{color:#777;text-shadow:none} .nav-collapse .nav>li>a,.nav-collapse .dropdown-menu a{padding:9px 15px;font-weight:bold;color:#777;border-radius:3px;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px} .nav-collapse .btn{padding:4px 10px 4px;font-weight:normal;border-radius:4px;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px} .nav-collapse .dropdown-menu li+li a{margin-bottom:2px} .nav-collapse .nav>li>a:hover,.nav-collapse .nav>li>a:focus,.nav-collapse .dropdown-menu a:hover,.nav-collapse .dropdown-menu a:focus{background-color:#f2f2f2} .navbar-inverse .nav-collapse .nav>li>a,.navbar-inverse .nav-collapse .dropdown-menu a{color:#999} .navbar-inverse .nav-collapse .nav>li>a:hover,.navbar-inverse .nav-collapse .nav>li>a:focus,.navbar-inverse .nav-collapse .dropdown-menu a:hover,.navbar-inverse .nav-collapse .dropdown-menu a:focus{background-color:#111} .nav-collapse.in .btn-group{margin-top:5px;padding:0} .nav-collapse .dropdown-menu{position:static;top:auto;left:auto;float:none;display:none;max-width:none;margin:0 15px;padding:0;background-color:transparent;border:none;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0;-webkit-box-shadow:none;-moz-box-shadow:none;box-shadow:none} .nav-collapse .open>.dropdown-menu{display:block} .nav-collapse .dropdown-menu:before,.nav-collapse .dropdown-menu:after{display:none} .nav-collapse .dropdown-menu .divider{display:none} .nav-collapse .nav>li>.dropdown-menu:before,.nav-collapse .nav>li>.dropdown-menu:after{display:none} .nav-collapse .navbar-form,.nav-collapse .navbar-search{float:none;padding:10px 15px;margin:10px 0;border-top:1px solid #f2f2f2;border-bottom:1px solid #f2f2f2;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1), 0 1px 0 rgba(255,255,255,.1);-moz-box-shadow:inset 0 1px 0 rgba(255,255,255,.1), 0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1), 0 1px 0 rgba(255,255,255,.1)} .navbar-inverse .nav-collapse .navbar-form,.navbar-inverse .nav-collapse .navbar-search{border-top-color:#111;border-bottom-color:#111} .navbar .nav-collapse .nav.pull-right{float:none;margin-left:0} .nav-collapse,.nav-collapse.collapse{overflow:hidden;height:0} .navbar .btn-navbar{display:block} .navbar-static .navbar-inner{padding-left:10px;padding-right:10px}}@media (min-width:979px + 1){.nav-collapse.collapse{height:auto !important;overflow:visible !important}}@font-face{font-family:'FontAwesome';src:url('../components/font-awesome/font/fontawesome-webfont.eot?v=3.2.1');src:url('../components/font-awesome/font/fontawesome-webfont.eot?#iefix&v=3.2.1') format('embedded-opentype'),url('../components/font-awesome/font/fontawesome-webfont.woff?v=3.2.1') format('woff'),url('../components/font-awesome/font/fontawesome-webfont.ttf?v=3.2.1') format('truetype'),url('../components/font-awesome/font/fontawesome-webfont.svg#fontawesomeregular?v=3.2.1') format('svg');font-weight:normal;font-style:normal}[class^="icon-"],[class*=" icon-"]{font-family:FontAwesome;font-weight:normal;font-style:normal;text-decoration:inherit;-webkit-font-smoothing:antialiased;*margin-right:.3em}
[class^="icon-"]:before,[class*=" icon-"]:before{text-decoration:inherit;display:inline-block;speak:none}
.icon-large:before{vertical-align:-10%;font-size:1.3333333333333333em}
a [class^="icon-"],a [class*=" icon-"]{display:inline}
[class^="icon-"].icon-fixed-width,[class*=" icon-"].icon-fixed-width{display:inline-block;width:1.1428571428571428em;text-align:right;padding-right:.2857142857142857em}[class^="icon-"].icon-fixed-width.icon-large,[class*=" icon-"].icon-fixed-width.icon-large{width:1.4285714285714286em}
.icons-ul{margin-left:2.142857142857143em;list-style-type:none}.icons-ul>li{position:relative}
.icons-ul .icon-li{position:absolute;left:-2.142857142857143em;width:2.142857142857143em;text-align:center;line-height:inherit}
[class^="icon-"].hide,[class*=" icon-"].hide{display:none}
.icon-muted{color:#eee}
.icon-light{color:#fff}
.icon-dark{color:#333}
.icon-border{border:solid 1px #eee;padding:.2em .25em .15em;border-radius:3px;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}
.icon-2x{font-size:2em}.icon-2x.icon-border{border-width:2px;border-radius:4px;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}
.icon-3x{font-size:3em}.icon-3x.icon-border{border-width:3px;border-radius:5px;-webkit-border-radius:5px;-moz-border-radius:5px;border-radius:5px}
.icon-4x{font-size:4em}.icon-4x.icon-border{border-width:4px;border-radius:6px;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}
.icon-5x{font-size:5em}.icon-5x.icon-border{border-width:5px;border-radius:7px;-webkit-border-radius:7px;-moz-border-radius:7px;border-radius:7px}
.pull-right{float:right}
.pull-left{float:left}
[class^="icon-"].pull-left,[class*=" icon-"].pull-left{margin-right:.3em}
[class^="icon-"].pull-right,[class*=" icon-"].pull-right{margin-left:.3em}
[class^="icon-"],[class*=" icon-"]{display:inline;width:auto;height:auto;line-height:normal;vertical-align:baseline;background-image:none;background-position:0 0;background-repeat:repeat;margin-top:0}
.icon-white,.nav-pills>.active>a>[class^="icon-"],.nav-pills>.active>a>[class*=" icon-"],.nav-list>.active>a>[class^="icon-"],.nav-list>.active>a>[class*=" icon-"],.navbar-inverse .nav>.active>a>[class^="icon-"],.navbar-inverse .nav>.active>a>[class*=" icon-"],.dropdown-menu>li>a:hover>[class^="icon-"],.dropdown-menu>li>a:hover>[class*=" icon-"],.dropdown-menu>.active>a>[class^="icon-"],.dropdown-menu>.active>a>[class*=" icon-"],.dropdown-submenu:hover>a>[class^="icon-"],.dropdown-submenu:hover>a>[class*=" icon-"]{background-image:none}
.btn [class^="icon-"].icon-large,.nav [class^="icon-"].icon-large,.btn [class*=" icon-"].icon-large,.nav [class*=" icon-"].icon-large{line-height:.9em}
.btn [class^="icon-"].icon-spin,.nav [class^="icon-"].icon-spin,.btn [class*=" icon-"].icon-spin,.nav [class*=" icon-"].icon-spin{display:inline-block}
.nav-tabs [class^="icon-"],.nav-pills [class^="icon-"],.nav-tabs [class*=" icon-"],.nav-pills [class*=" icon-"],.nav-tabs [class^="icon-"].icon-large,.nav-pills [class^="icon-"].icon-large,.nav-tabs [class*=" icon-"].icon-large,.nav-pills [class*=" icon-"].icon-large{line-height:.9em}
.btn [class^="icon-"].pull-left.icon-2x,.btn [class*=" icon-"].pull-left.icon-2x,.btn [class^="icon-"].pull-right.icon-2x,.btn [class*=" icon-"].pull-right.icon-2x{margin-top:.18em}
.btn [class^="icon-"].icon-spin.icon-large,.btn [class*=" icon-"].icon-spin.icon-large{line-height:.8em}
.btn.btn-small [class^="icon-"].pull-left.icon-2x,.btn.btn-small [class*=" icon-"].pull-left.icon-2x,.btn.btn-small [class^="icon-"].pull-right.icon-2x,.btn.btn-small [class*=" icon-"].pull-right.icon-2x{margin-top:.25em}
.btn.btn-large [class^="icon-"],.btn.btn-large [class*=" icon-"]{margin-top:0}.btn.btn-large [class^="icon-"].pull-left.icon-2x,.btn.btn-large [class*=" icon-"].pull-left.icon-2x,.btn.btn-large [class^="icon-"].pull-right.icon-2x,.btn.btn-large [class*=" icon-"].pull-right.icon-2x{margin-top:.05em}
.btn.btn-large [class^="icon-"].pull-left.icon-2x,.btn.btn-large [class*=" icon-"].pull-left.icon-2x{margin-right:.2em}
.btn.btn-large [class^="icon-"].pull-right.icon-2x,.btn.btn-large [class*=" icon-"].pull-right.icon-2x{margin-left:.2em}
.nav-list [class^="icon-"],.nav-list [class*=" icon-"]{line-height:inherit}
.icon-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:-35%}.icon-stack [class^="icon-"],.icon-stack [class*=" icon-"]{display:block;text-align:center;position:absolute;width:100%;height:100%;font-size:1em;line-height:inherit;*line-height:2em}
.icon-stack .icon-stack-base{font-size:2em;*line-height:1em}
.icon-spin{display:inline-block;-moz-animation:spin 2s infinite linear;-o-animation:spin 2s infinite linear;-webkit-animation:spin 2s infinite linear;animation:spin 2s infinite linear}
a .icon-stack,a .icon-spin{display:inline-block;text-decoration:none}
@-moz-keyframes spin{0%{-moz-transform:rotate(0deg)} 100%{-moz-transform:rotate(359deg)}}@-webkit-keyframes spin{0%{-webkit-transform:rotate(0deg)} 100%{-webkit-transform:rotate(359deg)}}@-o-keyframes spin{0%{-o-transform:rotate(0deg)} 100%{-o-transform:rotate(359deg)}}@-ms-keyframes spin{0%{-ms-transform:rotate(0deg)} 100%{-ms-transform:rotate(359deg)}}@keyframes spin{0%{transform:rotate(0deg)} 100%{transform:rotate(359deg)}}.icon-rotate-90:before{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg);filter:progid:DXImageTransform.Microsoft.BasicImage(rotation=1)}
.icon-rotate-180:before{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg);filter:progid:DXImageTransform.Microsoft.BasicImage(rotation=2)}
.icon-rotate-270:before{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg);filter:progid:DXImageTransform.Microsoft.BasicImage(rotation=3)}
.icon-flip-horizontal:before{-webkit-transform:scale(-1, 1);-moz-transform:scale(-1, 1);-ms-transform:scale(-1, 1);-o-transform:scale(-1, 1);transform:scale(-1, 1)}
.icon-flip-vertical:before{-webkit-transform:scale(1, -1);-moz-transform:scale(1, -1);-ms-transform:scale(1, -1);-o-transform:scale(1, -1);transform:scale(1, -1)}
a .icon-rotate-90:before,a .icon-rotate-180:before,a .icon-rotate-270:before,a .icon-flip-horizontal:before,a .icon-flip-vertical:before{display:inline-block}
.icon-glass:before{content:"\f000"}
.icon-music:before{content:"\f001"}
.icon-search:before{content:"\f002"}
.icon-envelope-alt:before{content:"\f003"}
.icon-heart:before{content:"\f004"}
.icon-star:before{content:"\f005"}
.icon-star-empty:before{content:"\f006"}
.icon-user:before{content:"\f007"}
.icon-film:before{content:"\f008"}
.icon-th-large:before{content:"\f009"}
.icon-th:before{content:"\f00a"}
.icon-th-list:before{content:"\f00b"}
.icon-ok:before{content:"\f00c"}
.icon-remove:before{content:"\f00d"}
.icon-zoom-in:before{content:"\f00e"}
.icon-zoom-out:before{content:"\f010"}
.icon-power-off:before,.icon-off:before{content:"\f011"}
.icon-signal:before{content:"\f012"}
.icon-gear:before,.icon-cog:before{content:"\f013"}
.icon-trash:before{content:"\f014"}
.icon-home:before{content:"\f015"}
.icon-file-alt:before{content:"\f016"}
.icon-time:before{content:"\f017"}
.icon-road:before{content:"\f018"}
.icon-download-alt:before{content:"\f019"}
.icon-download:before{content:"\f01a"}
.icon-upload:before{content:"\f01b"}
.icon-inbox:before{content:"\f01c"}
.icon-play-circle:before{content:"\f01d"}
.icon-rotate-right:before,.icon-repeat:before{content:"\f01e"}
.icon-refresh:before{content:"\f021"}
.icon-list-alt:before{content:"\f022"}
.icon-lock:before{content:"\f023"}
.icon-flag:before{content:"\f024"}
.icon-headphones:before{content:"\f025"}
.icon-volume-off:before{content:"\f026"}
.icon-volume-down:before{content:"\f027"}
.icon-volume-up:before{content:"\f028"}
.icon-qrcode:before{content:"\f029"}
.icon-barcode:before{content:"\f02a"}
.icon-tag:before{content:"\f02b"}
.icon-tags:before{content:"\f02c"}
.icon-book:before{content:"\f02d"}
.icon-bookmark:before{content:"\f02e"}
.icon-print:before{content:"\f02f"}
.icon-camera:before{content:"\f030"}
.icon-font:before{content:"\f031"}
.icon-bold:before{content:"\f032"}
.icon-italic:before{content:"\f033"}
.icon-text-height:before{content:"\f034"}
.icon-text-width:before{content:"\f035"}
.icon-align-left:before{content:"\f036"}
.icon-align-center:before{content:"\f037"}
.icon-align-right:before{content:"\f038"}
.icon-align-justify:before{content:"\f039"}
.icon-list:before{content:"\f03a"}
.icon-indent-left:before{content:"\f03b"}
.icon-indent-right:before{content:"\f03c"}
.icon-facetime-video:before{content:"\f03d"}
.icon-picture:before{content:"\f03e"}
.icon-pencil:before{content:"\f040"}
.icon-map-marker:before{content:"\f041"}
.icon-adjust:before{content:"\f042"}
.icon-tint:before{content:"\f043"}
.icon-edit:before{content:"\f044"}
.icon-share:before{content:"\f045"}
.icon-check:before{content:"\f046"}
.icon-move:before{content:"\f047"}
.icon-step-backward:before{content:"\f048"}
.icon-fast-backward:before{content:"\f049"}
.icon-backward:before{content:"\f04a"}
.icon-play:before{content:"\f04b"}
.icon-pause:before{content:"\f04c"}
.icon-stop:before{content:"\f04d"}
.icon-forward:before{content:"\f04e"}
.icon-fast-forward:before{content:"\f050"}
.icon-step-forward:before{content:"\f051"}
.icon-eject:before{content:"\f052"}
.icon-chevron-left:before{content:"\f053"}
.icon-chevron-right:before{content:"\f054"}
.icon-plus-sign:before{content:"\f055"}
.icon-minus-sign:before{content:"\f056"}
.icon-remove-sign:before{content:"\f057"}
.icon-ok-sign:before{content:"\f058"}
.icon-question-sign:before{content:"\f059"}
.icon-info-sign:before{content:"\f05a"}
.icon-screenshot:before{content:"\f05b"}
.icon-remove-circle:before{content:"\f05c"}
.icon-ok-circle:before{content:"\f05d"}
.icon-ban-circle:before{content:"\f05e"}
.icon-arrow-left:before{content:"\f060"}
.icon-arrow-right:before{content:"\f061"}
.icon-arrow-up:before{content:"\f062"}
.icon-arrow-down:before{content:"\f063"}
.icon-mail-forward:before,.icon-share-alt:before{content:"\f064"}
.icon-resize-full:before{content:"\f065"}
.icon-resize-small:before{content:"\f066"}
.icon-plus:before{content:"\f067"}
.icon-minus:before{content:"\f068"}
.icon-asterisk:before{content:"\f069"}
.icon-exclamation-sign:before{content:"\f06a"}
.icon-gift:before{content:"\f06b"}
.icon-leaf:before{content:"\f06c"}
.icon-fire:before{content:"\f06d"}
.icon-eye-open:before{content:"\f06e"}
.icon-eye-close:before{content:"\f070"}
.icon-warning-sign:before{content:"\f071"}
.icon-plane:before{content:"\f072"}
.icon-calendar:before{content:"\f073"}
.icon-random:before{content:"\f074"}
.icon-comment:before{content:"\f075"}
.icon-magnet:before{content:"\f076"}
.icon-chevron-up:before{content:"\f077"}
.icon-chevron-down:before{content:"\f078"}
.icon-retweet:before{content:"\f079"}
.icon-shopping-cart:before{content:"\f07a"}
.icon-folder-close:before{content:"\f07b"}
.icon-folder-open:before{content:"\f07c"}
.icon-resize-vertical:before{content:"\f07d"}
.icon-resize-horizontal:before{content:"\f07e"}
.icon-bar-chart:before{content:"\f080"}
.icon-twitter-sign:before{content:"\f081"}
.icon-facebook-sign:before{content:"\f082"}
.icon-camera-retro:before{content:"\f083"}
.icon-key:before{content:"\f084"}
.icon-gears:before,.icon-cogs:before{content:"\f085"}
.icon-comments:before{content:"\f086"}
.icon-thumbs-up-alt:before{content:"\f087"}
.icon-thumbs-down-alt:before{content:"\f088"}
.icon-star-half:before{content:"\f089"}
.icon-heart-empty:before{content:"\f08a"}
.icon-signout:before{content:"\f08b"}
.icon-linkedin-sign:before{content:"\f08c"}
.icon-pushpin:before{content:"\f08d"}
.icon-external-link:before{content:"\f08e"}
.icon-signin:before{content:"\f090"}
.icon-trophy:before{content:"\f091"}
.icon-github-sign:before{content:"\f092"}
.icon-upload-alt:before{content:"\f093"}
.icon-lemon:before{content:"\f094"}
.icon-phone:before{content:"\f095"}
.icon-unchecked:before,.icon-check-empty:before{content:"\f096"}
.icon-bookmark-empty:before{content:"\f097"}
.icon-phone-sign:before{content:"\f098"}
.icon-twitter:before{content:"\f099"}
.icon-facebook:before{content:"\f09a"}
.icon-github:before{content:"\f09b"}
.icon-unlock:before{content:"\f09c"}
.icon-credit-card:before{content:"\f09d"}
.icon-rss:before{content:"\f09e"}
.icon-hdd:before{content:"\f0a0"}
.icon-bullhorn:before{content:"\f0a1"}
.icon-bell:before{content:"\f0a2"}
.icon-certificate:before{content:"\f0a3"}
.icon-hand-right:before{content:"\f0a4"}
.icon-hand-left:before{content:"\f0a5"}
.icon-hand-up:before{content:"\f0a6"}
.icon-hand-down:before{content:"\f0a7"}
.icon-circle-arrow-left:before{content:"\f0a8"}
.icon-circle-arrow-right:before{content:"\f0a9"}
.icon-circle-arrow-up:before{content:"\f0aa"}
.icon-circle-arrow-down:before{content:"\f0ab"}
.icon-globe:before{content:"\f0ac"}
.icon-wrench:before{content:"\f0ad"}
.icon-tasks:before{content:"\f0ae"}
.icon-filter:before{content:"\f0b0"}
.icon-briefcase:before{content:"\f0b1"}
.icon-fullscreen:before{content:"\f0b2"}
.icon-group:before{content:"\f0c0"}
.icon-link:before{content:"\f0c1"}
.icon-cloud:before{content:"\f0c2"}
.icon-beaker:before{content:"\f0c3"}
.icon-cut:before{content:"\f0c4"}
.icon-copy:before{content:"\f0c5"}
.icon-paperclip:before,.icon-paper-clip:before{content:"\f0c6"}
.icon-save:before{content:"\f0c7"}
.icon-sign-blank:before{content:"\f0c8"}
.icon-reorder:before{content:"\f0c9"}
.icon-list-ul:before{content:"\f0ca"}
.icon-list-ol:before{content:"\f0cb"}
.icon-strikethrough:before{content:"\f0cc"}
.icon-underline:before{content:"\f0cd"}
.icon-table:before{content:"\f0ce"}
.icon-magic:before{content:"\f0d0"}
.icon-truck:before{content:"\f0d1"}
.icon-pinterest:before{content:"\f0d2"}
.icon-pinterest-sign:before{content:"\f0d3"}
.icon-google-plus-sign:before{content:"\f0d4"}
.icon-google-plus:before{content:"\f0d5"}
.icon-money:before{content:"\f0d6"}
.icon-caret-down:before{content:"\f0d7"}
.icon-caret-up:before{content:"\f0d8"}
.icon-caret-left:before{content:"\f0d9"}
.icon-caret-right:before{content:"\f0da"}
.icon-columns:before{content:"\f0db"}
.icon-sort:before{content:"\f0dc"}
.icon-sort-down:before{content:"\f0dd"}
.icon-sort-up:before{content:"\f0de"}
.icon-envelope:before{content:"\f0e0"}
.icon-linkedin:before{content:"\f0e1"}
.icon-rotate-left:before,.icon-undo:before{content:"\f0e2"}
.icon-legal:before{content:"\f0e3"}
.icon-dashboard:before{content:"\f0e4"}
.icon-comment-alt:before{content:"\f0e5"}
.icon-comments-alt:before{content:"\f0e6"}
.icon-bolt:before{content:"\f0e7"}
.icon-sitemap:before{content:"\f0e8"}
.icon-umbrella:before{content:"\f0e9"}
.icon-paste:before{content:"\f0ea"}
.icon-lightbulb:before{content:"\f0eb"}
.icon-exchange:before{content:"\f0ec"}
.icon-cloud-download:before{content:"\f0ed"}
.icon-cloud-upload:before{content:"\f0ee"}
.icon-user-md:before{content:"\f0f0"}
.icon-stethoscope:before{content:"\f0f1"}
.icon-suitcase:before{content:"\f0f2"}
.icon-bell-alt:before{content:"\f0f3"}
.icon-coffee:before{content:"\f0f4"}
.icon-food:before{content:"\f0f5"}
.icon-file-text-alt:before{content:"\f0f6"}
.icon-building:before{content:"\f0f7"}
.icon-hospital:before{content:"\f0f8"}
.icon-ambulance:before{content:"\f0f9"}
.icon-medkit:before{content:"\f0fa"}
.icon-fighter-jet:before{content:"\f0fb"}
.icon-beer:before{content:"\f0fc"}
.icon-h-sign:before{content:"\f0fd"}
.icon-plus-sign-alt:before{content:"\f0fe"}
.icon-double-angle-left:before{content:"\f100"}
.icon-double-angle-right:before{content:"\f101"}
.icon-double-angle-up:before{content:"\f102"}
.icon-double-angle-down:before{content:"\f103"}
.icon-angle-left:before{content:"\f104"}
.icon-angle-right:before{content:"\f105"}
.icon-angle-up:before{content:"\f106"}
.icon-angle-down:before{content:"\f107"}
.icon-desktop:before{content:"\f108"}
.icon-laptop:before{content:"\f109"}
.icon-tablet:before{content:"\f10a"}
.icon-mobile-phone:before{content:"\f10b"}
.icon-circle-blank:before{content:"\f10c"}
.icon-quote-left:before{content:"\f10d"}
.icon-quote-right:before{content:"\f10e"}
.icon-spinner:before{content:"\f110"}
.icon-circle:before{content:"\f111"}
.icon-mail-reply:before,.icon-reply:before{content:"\f112"}
.icon-github-alt:before{content:"\f113"}
.icon-folder-close-alt:before{content:"\f114"}
.icon-folder-open-alt:before{content:"\f115"}
.icon-expand-alt:before{content:"\f116"}
.icon-collapse-alt:before{content:"\f117"}
.icon-smile:before{content:"\f118"}
.icon-frown:before{content:"\f119"}
.icon-meh:before{content:"\f11a"}
.icon-gamepad:before{content:"\f11b"}
.icon-keyboard:before{content:"\f11c"}
.icon-flag-alt:before{content:"\f11d"}
.icon-flag-checkered:before{content:"\f11e"}
.icon-terminal:before{content:"\f120"}
.icon-code:before{content:"\f121"}
.icon-reply-all:before{content:"\f122"}
.icon-mail-reply-all:before{content:"\f122"}
.icon-star-half-full:before,.icon-star-half-empty:before{content:"\f123"}
.icon-location-arrow:before{content:"\f124"}
.icon-crop:before{content:"\f125"}
.icon-code-fork:before{content:"\f126"}
.icon-unlink:before{content:"\f127"}
.icon-question:before{content:"\f128"}
.icon-info:before{content:"\f129"}
.icon-exclamation:before{content:"\f12a"}
.icon-superscript:before{content:"\f12b"}
.icon-subscript:before{content:"\f12c"}
.icon-eraser:before{content:"\f12d"}
.icon-puzzle-piece:before{content:"\f12e"}
.icon-microphone:before{content:"\f130"}
.icon-microphone-off:before{content:"\f131"}
.icon-shield:before{content:"\f132"}
.icon-calendar-empty:before{content:"\f133"}
.icon-fire-extinguisher:before{content:"\f134"}
.icon-rocket:before{content:"\f135"}
.icon-maxcdn:before{content:"\f136"}
.icon-chevron-sign-left:before{content:"\f137"}
.icon-chevron-sign-right:before{content:"\f138"}
.icon-chevron-sign-up:before{content:"\f139"}
.icon-chevron-sign-down:before{content:"\f13a"}
.icon-html5:before{content:"\f13b"}
.icon-css3:before{content:"\f13c"}
.icon-anchor:before{content:"\f13d"}
.icon-unlock-alt:before{content:"\f13e"}
.icon-bullseye:before{content:"\f140"}
.icon-ellipsis-horizontal:before{content:"\f141"}
.icon-ellipsis-vertical:before{content:"\f142"}
.icon-rss-sign:before{content:"\f143"}
.icon-play-sign:before{content:"\f144"}
.icon-ticket:before{content:"\f145"}
.icon-minus-sign-alt:before{content:"\f146"}
.icon-check-minus:before{content:"\f147"}
.icon-level-up:before{content:"\f148"}
.icon-level-down:before{content:"\f149"}
.icon-check-sign:before{content:"\f14a"}
.icon-edit-sign:before{content:"\f14b"}
.icon-external-link-sign:before{content:"\f14c"}
.icon-share-sign:before{content:"\f14d"}
.icon-compass:before{content:"\f14e"}
.icon-collapse:before{content:"\f150"}
.icon-collapse-top:before{content:"\f151"}
.icon-expand:before{content:"\f152"}
.icon-euro:before,.icon-eur:before{content:"\f153"}
.icon-gbp:before{content:"\f154"}
.icon-dollar:before,.icon-usd:before{content:"\f155"}
.icon-rupee:before,.icon-inr:before{content:"\f156"}
.icon-yen:before,.icon-jpy:before{content:"\f157"}
.icon-renminbi:before,.icon-cny:before{content:"\f158"}
.icon-won:before,.icon-krw:before{content:"\f159"}
.icon-bitcoin:before,.icon-btc:before{content:"\f15a"}
.icon-file:before{content:"\f15b"}
.icon-file-text:before{content:"\f15c"}
.icon-sort-by-alphabet:before{content:"\f15d"}
.icon-sort-by-alphabet-alt:before{content:"\f15e"}
.icon-sort-by-attributes:before{content:"\f160"}
.icon-sort-by-attributes-alt:before{content:"\f161"}
.icon-sort-by-order:before{content:"\f162"}
.icon-sort-by-order-alt:before{content:"\f163"}
.icon-thumbs-up:before{content:"\f164"}
.icon-thumbs-down:before{content:"\f165"}
.icon-youtube-sign:before{content:"\f166"}
.icon-youtube:before{content:"\f167"}
.icon-xing:before{content:"\f168"}
.icon-xing-sign:before{content:"\f169"}
.icon-youtube-play:before{content:"\f16a"}
.icon-dropbox:before{content:"\f16b"}
.icon-stackexchange:before{content:"\f16c"}
.icon-instagram:before{content:"\f16d"}
.icon-flickr:before{content:"\f16e"}
.icon-adn:before{content:"\f170"}
.icon-bitbucket:before{content:"\f171"}
.icon-bitbucket-sign:before{content:"\f172"}
.icon-tumblr:before{content:"\f173"}
.icon-tumblr-sign:before{content:"\f174"}
.icon-long-arrow-down:before{content:"\f175"}
.icon-long-arrow-up:before{content:"\f176"}
.icon-long-arrow-left:before{content:"\f177"}
.icon-long-arrow-right:before{content:"\f178"}
.icon-apple:before{content:"\f179"}
.icon-windows:before{content:"\f17a"}
.icon-android:before{content:"\f17b"}
.icon-linux:before{content:"\f17c"}
.icon-dribbble:before{content:"\f17d"}
.icon-skype:before{content:"\f17e"}
.icon-foursquare:before{content:"\f180"}
.icon-trello:before{content:"\f181"}
.icon-female:before{content:"\f182"}
.icon-male:before{content:"\f183"}
.icon-gittip:before{content:"\f184"}
.icon-sun:before{content:"\f185"}
.icon-moon:before{content:"\f186"}
.icon-archive:before{content:"\f187"}
.icon-bug:before{content:"\f188"}
.icon-vk:before{content:"\f189"}
.icon-weibo:before{content:"\f18a"}
.icon-renren:before{content:"\f18b"}
code{color:#000}
pre{font-size:inherit;line-height:inherit}
.border-box-sizing{box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box}
.corner-all{border-radius:4px}
.hbox{display:-webkit-box;-webkit-box-orient:horizontal;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:horizontal;-moz-box-align:stretch;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}
.hbox>*{-webkit-box-flex:0;-moz-box-flex:0;box-flex:0;flex:none}
.vbox{display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}
.vbox>*{-webkit-box-flex:0;-moz-box-flex:0;box-flex:0;flex:none}
.hbox.reverse,.vbox.reverse,.reverse{-webkit-box-direction:reverse;-moz-box-direction:reverse;box-direction:reverse;flex-direction:row-reverse}
.hbox.box-flex0,.vbox.box-flex0,.box-flex0{-webkit-box-flex:0;-moz-box-flex:0;box-flex:0;flex:none;width:auto}
.hbox.box-flex1,.vbox.box-flex1,.box-flex1{-webkit-box-flex:1;-moz-box-flex:1;box-flex:1;flex:1}
.hbox.box-flex,.vbox.box-flex,.box-flex{-webkit-box-flex:1;-moz-box-flex:1;box-flex:1;flex:1}
.hbox.box-flex2,.vbox.box-flex2,.box-flex2{-webkit-box-flex:2;-moz-box-flex:2;box-flex:2;flex:2}
.box-group1{-webkit-box-flex-group:1;-moz-box-flex-group:1;box-flex-group:1}
.box-group2{-webkit-box-flex-group:2;-moz-box-flex-group:2;box-flex-group:2}
.hbox.start,.vbox.start,.start{-webkit-box-pack:start;-moz-box-pack:start;box-pack:start;justify-content:flex-start}
.hbox.end,.vbox.end,.end{-webkit-box-pack:end;-moz-box-pack:end;box-pack:end;justify-content:flex-end}
.hbox.center,.vbox.center,.center{-webkit-box-pack:center;-moz-box-pack:center;box-pack:center;justify-content:center}
.hbox.align-start,.vbox.align-start,.align-start{-webkit-box-align:start;-moz-box-align:start;box-align:start;align-items:flex-start}
.hbox.align-end,.vbox.align-end,.align-end{-webkit-box-align:end;-moz-box-align:end;box-align:end;align-items:flex-end}
.hbox.align-center,.vbox.align-center,.align-center{-webkit-box-align:center;-moz-box-align:center;box-align:center;align-items:center}
div.error{margin:2em;text-align:center}
div.error>h1{font-size:500%;line-height:normal}
div.error>p{font-size:200%;line-height:normal}
div.traceback-wrapper{text-align:left;max-width:800px;margin:auto}
body{background-color:#fff;position:absolute;left:0;right:0;top:0;bottom:0;overflow:visible}
div#header{display:none}
#ipython_notebook{padding-left:16px}
#noscript{width:auto;padding-top:16px;padding-bottom:16px;text-align:center;font-size:22px;color:#f00;font-weight:bold}
#ipython_notebook img{font-family:Verdana,"Helvetica Neue",Arial,Helvetica,Geneva,sans-serif;height:24px;text-decoration:none;color:#000}
#site{width:100%;display:none}
.ui-button .ui-button-text{padding:.2em .8em;font-size:77%}
input.ui-button{padding:.3em .9em}
.navbar span{margin-top:3px}
span#login_widget{float:right}
.nav-header{text-transform:none}
.navbar-nobg{background-color:transparent;background-image:none}
#header>span{margin-top:10px}
.modal_stretch{display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch;height:80%}.modal_stretch .modal-body{max-height:none;flex:1}
@media (min-width:768px){.modal{width:700px;margin-left:-350px}}.center-nav{display:inline-block;margin-bottom:-4px}
.alternate_upload{background-color:none;display:inline}
.alternate_upload.form{padding:0;margin:0}
.alternate_upload input.fileinput{background-color:#f00;position:relative;opacity:0;z-index:2;width:295px;margin-left:163px;cursor:pointer;height:26px}
ul#tabs{margin-bottom:4px}
ul#tabs a{padding-top:4px;padding-bottom:4px}
ul.breadcrumb a:focus,ul.breadcrumb a:hover{text-decoration:none}
ul.breadcrumb i.icon-home{font-size:16px;margin-right:4px}
ul.breadcrumb span{color:#5e5e5e}
.list_toolbar{padding:4px 0 4px 0}
.list_toolbar [class*="span"]{min-height:26px}
.list_header{font-weight:bold}
.list_container{margin-top:4px;margin-bottom:20px;border:1px solid #ababab;border-radius:4px}
.list_container>div{border-bottom:1px solid #ababab}.list_container>div:hover .list-item{background-color:#f00}
.list_container>div:last-child{border:none}
.list_item:hover .list_item{background-color:#ddd}
.list_item a{text-decoration:none}
.list_header>div,.list_item>div{padding-top:4px;padding-bottom:4px;padding-left:7px;padding-right:7px;height:22px;line-height:22px}
.item_name{line-height:22px;height:26px}
.item_icon{font-size:14px;color:#5e5e5e;margin-right:7px}
.item_buttons{line-height:1em}
.toolbar_info{height:26px;line-height:26px}
input.nbname_input,input.engine_num_input{padding-top:3px;padding-bottom:3px;height:14px;line-height:14px;margin:0}
input.engine_num_input{width:60px}
.highlight_text{color:#00f}
#project_name>.breadcrumb{padding:0;margin-bottom:0;background-color:transparent;font-weight:bold}
.folder_icon:before{font-family:FontAwesome;font-weight:normal;font-style:normal;text-decoration:inherit;-webkit-font-smoothing:antialiased;*margin-right:.3em;content:"\f114"}
.notebook_icon:before{font-family:FontAwesome;font-weight:normal;font-style:normal;text-decoration:inherit;-webkit-font-smoothing:antialiased;*margin-right:.3em;content:"\f02d"}
.ansibold{font-weight:bold}
.ansiblack{color:#000}
.ansired{color:#8b0000}
.ansigreen{color:#006400}
.ansiyellow{color:#a52a2a}
.ansiblue{color:#00008b}
.ansipurple{color:#9400d3}
.ansicyan{color:#4682b4}
.ansigray{color:#808080}
.ansibgblack{background-color:#000}
.ansibgred{background-color:#f00}
.ansibggreen{background-color:#008000}
.ansibgyellow{background-color:#ff0}
.ansibgblue{background-color:#00f}
.ansibgpurple{background-color:#f0f}
.ansibgcyan{background-color:#0ff}
.ansibggray{background-color:#808080}
div.cell{border:1px solid transparent;display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}div.cell.selected{border-radius:4px;border:thin #ababab solid}
div.cell.edit_mode{border-radius:4px;border:thin #008000 solid}
div.cell{width:100%;padding:5px 5px 5px 0;margin:0;outline:none}
div.prompt{min-width:11ex;padding:.4em;margin:0;font-family:monospace;text-align:right;line-height:1.21429em}
@media (max-width:480px){div.prompt{text-align:left}}div.inner_cell{display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch;-webkit-box-flex:1;-moz-box-flex:1;box-flex:1;flex:1}
div.input_area{border:1px solid #cfcfcf;border-radius:4px;background:#f7f7f7;line-height:1.21429em}
div.prompt:empty{padding-top:0;padding-bottom:0}
div.input{page-break-inside:avoid;display:-webkit-box;-webkit-box-orient:horizontal;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:horizontal;-moz-box-align:stretch;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}
@media (max-width:480px){div.input{display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}}div.input_prompt{color:#000080;border-top:1px solid transparent}
div.input_area>div.highlight{margin:.4em;border:none;padding:0;background-color:transparent}
div.input_area>div.highlight>pre{margin:0;border:none;padding:0;background-color:transparent}
.CodeMirror{line-height:1.21429em;height:auto;background:none;}
.CodeMirror-scroll{overflow-y:hidden;overflow-x:auto}
.CodeMirror-lines{padding:.4em}
.CodeMirror-linenumber{padding:0 8px 0 4px}
.CodeMirror-gutters{border-bottom-left-radius:4px;border-top-left-radius:4px}
.CodeMirror pre{padding:0;border:0;border-radius:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}
pre code{display:block;padding:.5em}
.highlight-base,pre code,pre .subst,pre .tag .title,pre .lisp .title,pre .clojure .built_in,pre .nginx .title{color:#000}
.highlight-string,pre .string,pre .constant,pre .parent,pre .tag .value,pre .rules .value,pre .rules .value .number,pre .preprocessor,pre .ruby .symbol,pre .ruby .symbol .string,pre .aggregate,pre .template_tag,pre .django .variable,pre .smalltalk .class,pre .addition,pre .flow,pre .stream,pre .bash .variable,pre .apache .tag,pre .apache .cbracket,pre .tex .command,pre .tex .special,pre .erlang_repl .function_or_atom,pre .markdown .header{color:#ba2121}
.highlight-comment,pre .comment,pre .annotation,pre .template_comment,pre .diff .header,pre .chunk,pre .markdown .blockquote{color:#408080;font-style:italic}
.highlight-number,pre .number,pre .date,pre .regexp,pre .literal,pre .smalltalk .symbol,pre .smalltalk .char,pre .go .constant,pre .change,pre .markdown .bullet,pre .markdown .link_url{color:#080}
pre .label,pre .javadoc,pre .ruby .string,pre .decorator,pre .filter .argument,pre .localvars,pre .array,pre .attr_selector,pre .important,pre .pseudo,pre .pi,pre .doctype,pre .deletion,pre .envvar,pre .shebang,pre .apache .sqbracket,pre .nginx .built_in,pre .tex .formula,pre .erlang_repl .reserved,pre .prompt,pre .markdown .link_label,pre .vhdl .attribute,pre .clojure .attribute,pre .coffeescript .property{color:#88f}
.highlight-keyword,pre .keyword,pre .id,pre .phpdoc,pre .aggregate,pre .css .tag,pre .javadoctag,pre .phpdoc,pre .yardoctag,pre .smalltalk .class,pre .winutils,pre .bash .variable,pre .apache .tag,pre .go .typename,pre .tex .command,pre .markdown .strong,pre .request,pre .status{color:#008000;font-weight:bold}
.highlight-builtin,pre .built_in{color:#008000}
pre .markdown .emphasis{font-style:italic}
pre .nginx .built_in{font-weight:normal}
pre .coffeescript .javascript,pre .javascript .xml,pre .tex .formula,pre .xml .javascript,pre .xml .vbscript,pre .xml .css,pre .xml .cdata{opacity:.5}
.cm-s-ipython span.cm-variable{color:#000}
.cm-s-ipython span.cm-keyword{color:#008000;font-weight:bold}
.cm-s-ipython span.cm-number{color:#080}
.cm-s-ipython span.cm-comment{color:#408080;font-style:italic}
.cm-s-ipython span.cm-string{color:#ba2121}
.cm-s-ipython span.cm-builtin{color:#008000}
.cm-s-ipython span.cm-error{color:#f00}
.cm-s-ipython span.cm-operator{color:#a2f;font-weight:bold}
.cm-s-ipython span.cm-meta{color:#a2f}
.cm-s-ipython span.cm-tab{background:url();background-position:right;background-repeat:no-repeat}
div.output_wrapper{position:relative;display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}
div.output_scroll{height:24em;width:100%;overflow:auto;border-radius:4px;-webkit-box-shadow:inset 0 2px 8px rgba(0,0,0,0.8);-moz-box-shadow:inset 0 2px 8px rgba(0,0,0,0.8);box-shadow:inset 0 2px 8px rgba(0,0,0,0.8);display:block}
div.output_collapsed{margin:0;padding:0;display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}
div.out_prompt_overlay{height:100%;padding:0 .4em;position:absolute;border-radius:4px}
div.out_prompt_overlay:hover{-webkit-box-shadow:inset 0 0 1px #000;-moz-box-shadow:inset 0 0 1px #000;box-shadow:inset 0 0 1px #000;background:rgba(240,240,240,0.5)}
div.output_prompt{color:#8b0000}
div.output_area{padding:0;page-break-inside:avoid;display:-webkit-box;-webkit-box-orient:horizontal;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:horizontal;-moz-box-align:stretch;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}div.output_area .MathJax_Display{text-align:left !important}
div.output_area .rendered_html table{margin-left:0;margin-right:0}
div.output_area .rendered_html img{margin-left:0;margin-right:0}
.output{display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}
@media (max-width:480px){div.output_area{display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}}div.output_area pre{margin:0;padding:0;border:0;vertical-align:baseline;color:#000;background-color:transparent;border-radius:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}
div.output_subarea{padding:.4em .4em 0 .4em;-webkit-box-flex:1;-moz-box-flex:1;box-flex:1;flex:1}
div.output_text{text-align:left;color:#000;line-height:1.21429em}
div.output_stderr{background:#fdd;}
div.output_latex{text-align:left}
div.output_javascript:empty{padding:0}
.js-error{color:#8b0000}
div.raw_input_container{font-family:monospace;padding-top:5px}
span.raw_input_prompt{}
input.raw_input{font-family:inherit;font-size:inherit;color:inherit;width:auto;vertical-align:baseline;padding:0 .25em;margin:0 .25em}
input.raw_input:focus{box-shadow:none}
p.p-space{margin-bottom:10px}
.rendered_html{color:#000;}.rendered_html em{font-style:italic}
.rendered_html strong{font-weight:bold}
.rendered_html u{text-decoration:underline}
.rendered_html :link{text-decoration:underline}
.rendered_html :visited{text-decoration:underline}
.rendered_html h1{font-size:185.7%;margin:1.08em 0 0 0;font-weight:bold;line-height:1}
.rendered_html h2{font-size:157.1%;margin:1.27em 0 0 0;font-weight:bold;line-height:1}
.rendered_html h3{font-size:128.6%;margin:1.55em 0 0 0;font-weight:bold;line-height:1}
.rendered_html h4{font-size:100%;margin:2em 0 0 0;font-weight:bold;line-height:1}
.rendered_html h5{font-size:100%;margin:2em 0 0 0;font-weight:bold;line-height:1;font-style:italic}
.rendered_html h6{font-size:100%;margin:2em 0 0 0;font-weight:bold;line-height:1;font-style:italic}
.rendered_html h1:first-child{margin-top:.538em}
.rendered_html h2:first-child{margin-top:.636em}
.rendered_html h3:first-child{margin-top:.777em}
.rendered_html h4:first-child{margin-top:1em}
.rendered_html h5:first-child{margin-top:1em}
.rendered_html h6:first-child{margin-top:1em}
.rendered_html ul{list-style:disc;margin:0 2em}
.rendered_html ul ul{list-style:square;margin:0 2em}
.rendered_html ul ul ul{list-style:circle;margin:0 2em}
.rendered_html ol{list-style:decimal;margin:0 2em}
.rendered_html ol ol{list-style:upper-alpha;margin:0 2em}
.rendered_html ol ol ol{list-style:lower-alpha;margin:0 2em}
.rendered_html ol ol ol ol{list-style:lower-roman;margin:0 2em}
.rendered_html ol ol ol ol ol{list-style:decimal;margin:0 2em}
.rendered_html *+ul{margin-top:1em}
.rendered_html *+ol{margin-top:1em}
.rendered_html hr{color:#000;background-color:#000}
.rendered_html pre{margin:1em 2em}
.rendered_html pre,.rendered_html code{border:0;background-color:#fff;color:#000;font-size:100%;padding:0}
.rendered_html blockquote{margin:1em 2em}
.rendered_html table{margin-left:auto;margin-right:auto;border:1px solid #000;border-collapse:collapse}
.rendered_html tr,.rendered_html th,.rendered_html td{border:1px solid #000;border-collapse:collapse;margin:1em 2em}
.rendered_html td,.rendered_html th{text-align:left;vertical-align:middle;padding:4px}
.rendered_html th{font-weight:bold}
.rendered_html *+table{margin-top:1em}
.rendered_html p{text-align:justify}
.rendered_html *+p{margin-top:1em}
.rendered_html img{display:block;margin-left:auto;margin-right:auto}
.rendered_html *+img{margin-top:1em}
div.text_cell{padding:5px 5px 5px 0;display:-webkit-box;-webkit-box-orient:horizontal;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:horizontal;-moz-box-align:stretch;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}
@media (max-width:480px){div.text_cell>div.prompt{display:none}}div.text_cell_render{outline:none;resize:none;width:inherit;border-style:none;padding:.5em .5em .5em .4em;color:#000}
a.anchor-link:link{text-decoration:none;padding:0 20px;visibility:hidden}
h1:hover .anchor-link,h2:hover .anchor-link,h3:hover .anchor-link,h4:hover .anchor-link,h5:hover .anchor-link,h6:hover .anchor-link{visibility:visible}
div.cell.text_cell.rendered{padding:0}
.widget-area{page-break-inside:avoid;display:-webkit-box;-webkit-box-orient:horizontal;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:horizontal;-moz-box-align:stretch;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}.widget-area .widget-subarea{padding:.44em .4em .4em 1px;margin-left:6px;box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box;display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch;-webkit-box-flex:2;-moz-box-flex:2;box-flex:2;flex:2;-webkit-box-align:start;-moz-box-align:start;box-align:start;align-items:flex-start}
.widget-hlabel{min-width:10ex;padding-right:8px;padding-top:3px;text-align:right;vertical-align:text-top}
.widget-vlabel{padding-bottom:5px;text-align:center;vertical-align:text-bottom}
.widget-hreadout{padding-left:8px;padding-top:3px;text-align:left;vertical-align:text-top}
.widget-vreadout{padding-top:5px;text-align:center;vertical-align:text-top}
.slide-track{border:1px solid #ccc;background:#fff;border-radius:4px;}
.widget-hslider{padding-left:8px;padding-right:5px;overflow:visible;width:348px;height:5px;max-height:5px;margin-top:11px;margin-bottom:10px;border:1px solid #ccc;background:#fff;border-radius:4px;display:-webkit-box;-webkit-box-orient:horizontal;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:horizontal;-moz-box-align:stretch;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}.widget-hslider .ui-slider{border:0 !important;background:none !important;display:-webkit-box;-webkit-box-orient:horizontal;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:horizontal;-moz-box-align:stretch;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch;-webkit-box-flex:1;-moz-box-flex:1;box-flex:1;flex:1}.widget-hslider .ui-slider .ui-slider-handle{width:14px !important;height:28px !important;margin-top:-8px !important}
.widget-vslider{padding-bottom:8px;overflow:visible;width:5px;max-width:5px;height:250px;margin-left:12px;border:1px solid #ccc;background:#fff;border-radius:4px;display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}.widget-vslider .ui-slider{border:0 !important;background:none !important;margin-left:-4px;margin-top:5px;display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch;-webkit-box-flex:1;-moz-box-flex:1;box-flex:1;flex:1}.widget-vslider .ui-slider .ui-slider-handle{width:28px !important;height:14px !important;margin-left:-9px}
.widget-text{width:350px;margin:0 !important}
.widget-listbox{width:364px;margin-bottom:0}
.widget-numeric-text{width:150px;margin:0 !important}
.widget-progress{width:363px}.widget-progress .bar{-webkit-transition:none;-moz-transition:none;-ms-transition:none;-o-transition:none;transition:none}
.widget-combo-btn{min-width:138px;}
.widget-box{margin:5px;-webkit-box-pack:start;-moz-box-pack:start;box-pack:start;justify-content:flex-start;box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box;-webkit-box-align:start;-moz-box-align:start;box-align:start;align-items:flex-start}
.widget-hbox{margin:5px;-webkit-box-pack:start;-moz-box-pack:start;box-pack:start;justify-content:flex-start;box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box;-webkit-box-align:start;-moz-box-align:start;box-align:start;align-items:flex-start;display:-webkit-box;-webkit-box-orient:horizontal;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:horizontal;-moz-box-align:stretch;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}
.widget-hbox-single{margin:5px;-webkit-box-pack:start;-moz-box-pack:start;box-pack:start;justify-content:flex-start;box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box;-webkit-box-align:start;-moz-box-align:start;box-align:start;align-items:flex-start;display:-webkit-box;-webkit-box-orient:horizontal;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:horizontal;-moz-box-align:stretch;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch;height:30px}
.widget-vbox{margin:5px;-webkit-box-pack:start;-moz-box-pack:start;box-pack:start;justify-content:flex-start;box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box;-webkit-box-align:start;-moz-box-align:start;box-align:start;align-items:flex-start;display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}
.widget-vbox-single{margin:5px;-webkit-box-pack:start;-moz-box-pack:start;box-pack:start;justify-content:flex-start;box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box;-webkit-box-align:start;-moz-box-align:start;box-align:start;align-items:flex-start;display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch;width:30px}
.widget-modal{overflow:hidden;position:absolute !important;top:0;left:0;margin-left:0 !important}
.widget-modal-body{max-height:none !important}
.widget-container{box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box;-webkit-box-align:start;-moz-box-align:start;box-align:start;align-items:flex-start}
.widget-radio-box{display:-webkit-box;-webkit-box-orient:vertical;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:vertical;-moz-box-align:stretch;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch;box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box;padding-top:4px}
.docked-widget-modal{overflow:hidden;position:relative !important;top:0 !important;left:0 !important;margin-left:0 !important}
body{background-color:#fff}
body.notebook_app{overflow:hidden}
@media (max-width:767px){body.notebook_app{padding-left:0;padding-right:0}}span#notebook_name{height:1em;line-height:1em;padding:3px;border:none;font-size:146.5%}
div#notebook_panel{margin:0 0 0 0;padding:0;-webkit-box-shadow:0 -1px 10px rgba(0,0,0,0.1);-moz-box-shadow:0 -1px 10px rgba(0,0,0,0.1);box-shadow:0 -1px 10px rgba(0,0,0,0.1)}
div#notebook{font-size:14px;line-height:20px;overflow-y:scroll;overflow-x:auto;width:100%;padding:1em 0 1em 0;margin:0;border-top:1px solid #ababab;outline:none;box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box}
div.ui-widget-content{border:1px solid #ababab;outline:none}
pre.dialog{background-color:#f7f7f7;border:1px solid #ddd;border-radius:4px;padding:.4em;padding-left:2em}
p.dialog{padding:.2em}
pre,code,kbd,samp{white-space:pre-wrap}
#fonttest{font-family:monospace}
p{margin-bottom:0}
.end_space{height:200px}
.celltoolbar{border:thin solid #cfcfcf;border-bottom:none;background:#eee;border-radius:3px 3px 0 0;width:100%;-webkit-box-pack:end;height:22px;display:-webkit-box;-webkit-box-orient:horizontal;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:horizontal;-moz-box-align:stretch;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch;-webkit-box-direction:reverse;-moz-box-direction:reverse;box-direction:reverse;flex-direction:row-reverse}
.ctb_hideshow{display:none;vertical-align:bottom;padding-right:2px}
.celltoolbar>div{padding-top:0}
.ctb_global_show .ctb_show.ctb_hideshow{display:block}
.ctb_global_show .ctb_show+.input_area,.ctb_global_show .ctb_show+div.text_cell_input{border-top-right-radius:0;border-top-left-radius:0}
.celltoolbar .button_container select{margin:10px;margin-top:1px;margin-bottom:0;padding:0;font-size:87%;width:auto;display:inline-block;height:18px;line-height:18px;vertical-align:top}
.celltoolbar label{display:inline-block;height:15px;line-height:15px;vertical-align:top}
.celltoolbar label span{font-size:85%}
.celltoolbar input[type=checkbox]{margin:0;margin-left:4px;margin-right:4px}
.celltoolbar .ui-button{border:none;vertical-align:top;height:20px;min-width:30px}
.completions{position:absolute;z-index:10;overflow:hidden;border:1px solid #ababab;border-radius:4px;-webkit-box-shadow:0 6px 10px -1px #adadad;-moz-box-shadow:0 6px 10px -1px #adadad;box-shadow:0 6px 10px -1px #adadad}
.completions select{background:#fff;outline:none;border:none;padding:0;margin:0;overflow:auto;font-family:monospace;font-size:110%;color:#000;width:auto}
.completions select option.context{color:#0064cd}
#menubar .navbar-inner{min-height:28px;border-top:1px;border-radius:0 0 4px 4px}
#menubar .navbar{margin-bottom:8px}
.nav-wrapper{border-bottom:1px solid #d4d4d4}
#menubar li.dropdown{line-height:12px}
i.menu-icon{padding-top:4px}
ul#help_menu li a{overflow:hidden;padding-right:2.2em}ul#help_menu li a i{margin-right:-1.2em}
#notification_area{z-index:10}
.indicator_area{color:#777;padding:4px 3px;margin:0;width:11px;z-index:10;text-align:center}
#kernel_indicator{margin-right:-16px}
.edit_mode_icon:before{font-family:FontAwesome;font-weight:normal;font-style:normal;text-decoration:inherit;-webkit-font-smoothing:antialiased;*margin-right:.3em;content:"\f040"}
.command_mode_icon:before{font-family:FontAwesome;font-weight:normal;font-style:normal;text-decoration:inherit;-webkit-font-smoothing:antialiased;*margin-right:.3em;content:' '}
.kernel_idle_icon:before{font-family:FontAwesome;font-weight:normal;font-style:normal;text-decoration:inherit;-webkit-font-smoothing:antialiased;*margin-right:.3em;content:"\f10c"}
.kernel_busy_icon:before{font-family:FontAwesome;font-weight:normal;font-style:normal;text-decoration:inherit;-webkit-font-smoothing:antialiased;*margin-right:.3em;content:"\f111"}
.notification_widget{color:#777;padding:1px 12px;margin:2px 4px;z-index:10;border:1px solid #ccc;border-radius:4px;background:rgba(240,240,240,0.5)}.notification_widget.span{padding-right:2px}
div#pager_splitter{height:8px}
#pager-container{position:relative;padding:15px 0}
div#pager{font-size:14px;line-height:20px;overflow:auto;display:none}div#pager pre{line-height:1.21429em;color:#000;background-color:#f7f7f7;padding:.4em}
.quickhelp{display:-webkit-box;-webkit-box-orient:horizontal;-webkit-box-align:stretch;display:-moz-box;-moz-box-orient:horizontal;-moz-box-align:stretch;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}
.shortcut_key{display:inline-block;width:20ex;text-align:right;font-family:monospace}
.shortcut_descr{display:inline-block;-webkit-box-flex:1;-moz-box-flex:1;box-flex:1;flex:1}
span#save_widget{padding:0 5px;margin-top:12px}
span#checkpoint_status,span#autosave_status{font-size:small}
@media (max-width:767px){span#save_widget{font-size:small} span#checkpoint_status,span#autosave_status{font-size:x-small}}@media (max-width:767px){span#checkpoint_status,span#autosave_status{display:none}}@media (min-width:768px) and (max-width:979px){span#checkpoint_status{display:none} span#autosave_status{font-size:x-small}}.toolbar{padding:0 10px;margin-top:-5px}.toolbar select,.toolbar label{width:auto;height:26px;vertical-align:middle;margin-right:2px;margin-bottom:0;display:inline;font-size:92%;margin-left:.3em;margin-right:.3em;padding:0;padding-top:3px}
.toolbar .btn{padding:2px 8px}
.toolbar .btn-group{margin-top:0}
.toolbar-inner{border:none !important;-webkit-box-shadow:none !important;-moz-box-shadow:none !important;box-shadow:none !important}
#maintoolbar{margin-bottom:0}
@-moz-keyframes fadeOut{from{opacity:1} to{opacity:0}}@-webkit-keyframes fadeOut{from{opacity:1} to{opacity:0}}@-moz-keyframes fadeIn{from{opacity:0} to{opacity:1}}@-webkit-keyframes fadeIn{from{opacity:0} to{opacity:1}}.bigtooltip{overflow:auto;height:200px;-webkit-transition-property:height;-webkit-transition-duration:500ms;-moz-transition-property:height;-moz-transition-duration:500ms;transition-property:height;transition-duration:500ms}
.smalltooltip{-webkit-transition-property:height;-webkit-transition-duration:500ms;-moz-transition-property:height;-moz-transition-duration:500ms;transition-property:height;transition-duration:500ms;text-overflow:ellipsis;overflow:hidden;height:80px}
.tooltipbuttons{position:absolute;padding-right:15px;top:0;right:0}
.tooltiptext{padding-right:30px}
.ipython_tooltip{max-width:700px;-webkit-animation:fadeOut 400ms;-moz-animation:fadeOut 400ms;animation:fadeOut 400ms;-webkit-animation:fadeIn 400ms;-moz-animation:fadeIn 400ms;animation:fadeIn 400ms;vertical-align:middle;background-color:#f7f7f7;overflow:visible;border:#ababab 1px solid;outline:none;padding:3px;margin:0;padding-left:7px;font-family:monospace;min-height:50px;-moz-box-shadow:0 6px 10px -1px #adadad;-webkit-box-shadow:0 6px 10px -1px #adadad;box-shadow:0 6px 10px -1px #adadad;border-radius:4px;position:absolute;z-index:2}.ipython_tooltip a{float:right}
.ipython_tooltip .tooltiptext pre{border:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0;font-size:100%;background-color:#f7f7f7}
.pretooltiparrow{left:0;margin:0;top:-16px;width:40px;height:16px;overflow:hidden;position:absolute}
.pretooltiparrow:before{background-color:#f7f7f7;border:1px #ababab solid;z-index:11;content:"";position:absolute;left:15px;top:10px;width:25px;height:25px;-webkit-transform:rotate(45deg);-moz-transform:rotate(45deg);-ms-transform:rotate(45deg);-o-transform:rotate(45deg)}
</style>
<style type="text/css">
.highlight .hll { background-color: #ffffcc }
.highlight { background: #f8f8f8; }
.highlight .c { color: #408080; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #008000; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #BC7A00 } /* Comment.Preproc */
.highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */
.highlight .cs { color: #408080; font-style: italic } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0044DD } /* Generic.Traceback */
.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008000 } /* Keyword.Pseudo */
.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #B00040 } /* Keyword.Type */
.highlight .m { color: #666666 } /* Literal.Number */
.highlight .s { color: #BA2121 } /* Literal.String */
.highlight .na { color: #7D9029 } /* Name.Attribute */
.highlight .nb { color: #008000 } /* Name.Builtin */
.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
.highlight .no { color: #880000 } /* Name.Constant */
.highlight .nd { color: #AA22FF } /* Name.Decorator */
.highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0000FF } /* Name.Function */
.highlight .nl { color: #A0A000 } /* Name.Label */
.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #19177C } /* Name.Variable */
.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mf { color: #666666 } /* Literal.Number.Float */
.highlight .mh { color: #666666 } /* Literal.Number.Hex */
.highlight .mi { color: #666666 } /* Literal.Number.Integer */
.highlight .mo { color: #666666 } /* Literal.Number.Oct */
.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
.highlight .sc { color: #BA2121 } /* Literal.String.Char */
.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
.highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
.highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
.highlight .sx { color: #008000 } /* Literal.String.Other */
.highlight .sr { color: #BB6688 } /* Literal.String.Regex */
.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
.highlight .ss { color: #19177C } /* Literal.String.Symbol */
.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
.highlight .vc { color: #19177C } /* Name.Variable.Class */
.highlight .vg { color: #19177C } /* Name.Variable.Global */
.highlight .vi { color: #19177C } /* Name.Variable.Instance */
.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */
</style>
<style type="text/css">
/* Overrides of notebook CSS for static HTML export */
body {
overflow: visible;
padding: 8px;
}
div#notebook {
overflow: visible;
border-top: none;
}
@media print {
div.cell {
display: block;
page-break-inside: avoid;
}
div.output_wrapper {
display: block;
page-break-inside: avoid;
}
div.output {
display: block;
page-break-inside: avoid;
}
}
</style>
<!-- Custom stylesheet, it must be in the same directory as the html file -->
<link rel="stylesheet" href="custom.css">
<!-- Loading mathjax macro -->
<!-- Load mathjax -->
<script src="https://c328740.ssl.cf1.rackcdn.com/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"></script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": {
styles: {'.MathJax_Display': {"margin": 0}},
linebreaks: { automatic: true }
}
});
</script>
<!-- End of mathjax configuration -->
</head>
<body>
<div tabindex="-1" id="notebook" class="border-box-sizing">
<div class="container" id="notebook-container">
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="loan-data-2007-2011-from-lending-club">Loan Data (2007-2011) from Lending Club</h1>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>I used Lending Club to extract loan information.</p>
<p>See the data at https://www.lendingclub.com/info/download-data.action</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="whats-a-good-predictor-for-whether-someone-will-pay-off-their-loan-or-not">What's a good predictor for whether someone will pay off their loan or not?</h3>
<p>My prediction is that the length of employment, the amount funded and/or annual income will help to determine loan status.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[339]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">pandas</span> <span class="kn">as</span> <span class="nn">pd</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">datetime</span> <span class="kn">import</span> <span class="n">datetime</span>
<span class="kn">from</span> <span class="nn">matplotlib</span> <span class="kn">import</span> <span class="n">pyplot</span> <span class="k">as</span> <span class="n">plt</span>
<span class="o">%</span><span class="k">matplotlib</span> <span class="n">inline</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="import-csv-file">Import CSV file</h1>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[340]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">url</span> <span class="o">=</span> <span class="s">&#39;/Users/olehdubno/Desktop/python_tests/LoanStats3b2.csv&#39;</span>
<span class="n">loan</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">url</span><span class="p">,</span> <span class="n">low_memory</span> <span class="o">=</span> <span class="bp">False</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[341]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span> <span class="o">=</span> <span class="n">loan</span><span class="p">[[</span><span class="s">&#39;funded_amnt&#39;</span><span class="p">,</span><span class="s">&#39;emp_length&#39;</span><span class="p">,</span><span class="s">&#39;annual_inc&#39;</span><span class="p">,</span><span class="s">&#39;loan_status&#39;</span><span class="p">,</span><span class="s">&#39;home_ownership&#39;</span><span class="p">,</span><span class="s">&#39;addr_state&#39;</span><span class="p">,</span><span class="s">&#39;tax_liens&#39;</span><span class="p">,</span><span class="s">&#39;grade&#39;</span><span class="p">]]</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[342]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[342]:</div>
<div class="output_html rendered_html output_subarea output_pyout">
<div style="max-height:1000px;max-width:1500px;overflow:auto;">
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>funded_amnt</th>
<th>emp_length</th>
<th>annual_inc</th>
<th>loan_status</th>
<th>home_ownership</th>
<th>addr_state</th>
<th>tax_liens</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td> 24000</td>
<td> 10+ years</td>
<td> 100000</td>
<td> Current</td>
<td> MORTGAGE</td>
<td> MI</td>
<td> 0</td>
<td> B</td>
</tr>
<tr>
<th>1</th>
<td> 11100</td>
<td> 10+ years</td>
<td> 90000</td>
<td> Current</td>
<td> MORTGAGE</td>
<td> NY</td>
<td> 0</td>
<td> C</td>
</tr>
<tr>
<th>2</th>
<td> 12000</td>
<td> 3 years</td>
<td> 96500</td>
<td> Current</td>
<td> MORTGAGE</td>
<td> TX</td>
<td> 0</td>
<td> A</td>
</tr>
<tr>
<th>3</th>
<td> 15000</td>
<td> 10+ years</td>
<td> 98000</td>
<td> Fully Paid</td>
<td> RENT</td>
<td> NY</td>
<td> 0</td>
<td> C</td>
</tr>
<tr>
<th>4</th>
<td> 27600</td>
<td> 6 years</td>
<td> 73000</td>
<td> Current</td>
<td> MORTGAGE</td>
<td> CO</td>
<td> 0</td>
<td> D</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[343]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span><span class="o">.</span><span class="n">info</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>
&lt;class &apos;pandas.core.frame.DataFrame&apos;&gt;
Int64Index: 188127 entries, 0 to 188126
Data columns (total 8 columns):
funded_amnt 188123 non-null float64
emp_length 188123 non-null object
annual_inc 188123 non-null float64
loan_status 188123 non-null object
home_ownership 188123 non-null object
addr_state 188123 non-null object
tax_liens 188123 non-null float64
grade 188123 non-null object
dtypes: float64(3), object(5)
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h4 id="dropping-na-values-its-only-4-rows-and-not-very-significant">Dropping N/A values (It's only 4 rows and not very significant)</h4>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[344]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span><span class="o">.</span><span class="n">dropna</span><span class="p">()</span><span class="o">.</span><span class="n">info</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>
&lt;class &apos;pandas.core.frame.DataFrame&apos;&gt;
Int64Index: 188123 entries, 0 to 188122
Data columns (total 8 columns):
funded_amnt 188123 non-null float64
emp_length 188123 non-null object
annual_inc 188123 non-null float64
loan_status 188123 non-null object
home_ownership 188123 non-null object
addr_state 188123 non-null object
tax_liens 188123 non-null float64
grade 188123 non-null object
dtypes: float64(3), object(5)
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>We will be focusing on determing the features that cause people to default on their loans.</p>
<p>The loan status column has 7 items. We will leave Current and Fully Paid. The rest of the columns will be grouped as Unpaid.</p>
<p>Which features are representative of a person not paying their loan on time?</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[345]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span><span class="o">.</span><span class="n">loan_status</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">kind</span><span class="o">=</span><span class="s">&#39;bar&#39;</span><span class="p">,</span><span class="n">alpha</span><span class="o">=.</span><span class="mi">30</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[345]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
&lt;matplotlib.axes.AxesSubplot at 0x13788aa50&gt;
</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzt3X18VNW97/FPNAW1oBGKimiNWlCptKhXsbVqfPaeIyin
PnFvLbFPL6W2x9Z61Pa22OOt12p7qrbX2tYnOK2olFalRxF8SGtrFUUDUURAG4UIKFBE+4BQc/74
rc3sDJNkz2TPXntlvu/Xa14ze82e4ZuQZM1ev7XXBhERERERERERERERERERERERERERkaq6DVgD
tJV47hLgPWBIrO0KYBmwBDg51n6Ye49lwA2x9oHA3a79SWCf2HOTgaXu9um+fBEiIpKOo4FD2LZT
2BuYA/yJQqcwGmgF3gc0AsuBOvfcfOAI9/gB4FT3eApwk3t8DnCXezwEeBlocLfosYiIeNbItp3C
TOAjdO0UrgAui+0zBzgSGA68GGs/F7g5ts8497geeNM9ngT8OPaam93rRESkirar4DWnAyuBRUXt
e7r2yEpgRIn2DteOu1/hHm8B3gKG9vBeIiJSRfVl7r8T8HXgpFhbXTf7iohIYMrtFPbHhpMWuu29
gAXYEFAHVmsg9txK175XiXbccx8EXndZdgHWufam2Gv2Bh4tGWj//TtffvnlMr8MEZGathAYW+mL
Gyk9+whKF5oHAPtixeHoKOIprOOoY9tCc1Q7OJeuheZXsOLyrrHHpXSGaOrUqb4jVES5s6Xc2Qs1
ezm5gc7u/uD3dqQwAzgWG+dfAXwLuD3+Bzn2eDFwj7vf4v7gR89PAe4AdsQ6hTmu/VbgP7Epqeso
FJPXA1cBT7vtbwMbeskalPb2dt8RKqLc2VLu7IWaPa3cvXUKk3p5fr+i7avdrdgCYEyJ9k3A2d28
9+107YBERKTKKpl9JClobm72HaEiyp0t5c5eqNnTyt0fZg65ITIREUmirq4Ouvn7ryMFT1paWnxH
qIhyZ0u5sxdq9rRyq1MQEZGtNHwkIlJjNHwkIiKJlHtGs3Rj5syHWLfu3cT7L13axqhRpWbpbmvo
0AGcddYplUZLVUtLC01NTb5jlE25sxVqbgg3e1q51SmkZN26dxkxYnzi/devH8yIEU2J9u3omF1h
KhGR8qimkJKbb55dVqdQjo6O2VxwQXXeW0Rqj2oKIiKSiDoFT9raWnxHqEitz+HOmnJnL9TsOk9B
RERSp5pCSlRTEJFQqKYgIiKJqFPwRDWFbCl3tkLNDeFmV01BRERSp5pCSlRTEJFQqKYgIiKJqFPw
RDWFbCl3tkLNDeFmV01BRERSp5pCSlRTEJFQqKYgIiKJqFPwRDWFbCl3tkLNDeFmz6qmcBuwBmiL
tV0HvAgsBH4F7BJ77gpgGbAEODnWfph7j2XADbH2gcDdrv1JYJ/Yc5OBpe726URfjYiI9ElvNYWj
gXeA6UB0mbCTgEeA94BrXNvlwGjgTuBwYATwMDAS6ATmAxe5+weAG4E5wBTgYHd/DjAROBcYAjyN
dSYAC9zjDSUyqqYgIlKGvtQUHgf+XNQ2D+sQAJ4C9nKPTwdmAJuBdmA5MA4YDgzGOgSwDuYM93gC
MM09ngWc4B6fAszFOoEN7t88tZesIiLSR32tKXwG++QPsCewMvbcSuyIobi9w7Xj7le4x1uAt4Ch
PbxXv6GaQraUO1uh5oZws+fhPIVvAO9iQ0YiItIP1Ff4umbgnygM94AdAewd294L+4TfQWGIKd4e
veaDwOsuyy7AOtfeFHvN3sCj3YZpbqaxsRGAhoYGxo4dS1OTvTzqPau9HYmOAMaMaUpte+3aNmB8
pl9Pd9tRm69/v9a2o7a85KmV7Uhe8iTZbmpq6vHraWlpob29nd4kOXmtEZhNodB8KvB94FhgbWy/
qNB8BIVC84ewQvNTwJexusJ/0bXQPAa4ECswn0Gh0PwMcKjLuMA9VqFZRKSP+lJongE8ARyAjf1/
BvghMAgr/j4H3OT2XQzc4+4fxP7gR3+tpwC3YFNPl2MdAsCtWA1hGXAxNosJYD1wFTYDaT7wbUp3
CMFSTSFbyp2tUHNDuNnTyt3b8NGkEm239bD/1e5WbAGFI424TcDZ3bzX7e4mIiIZ0dpHKdHwkYiE
QmsfiYhIIuoUPFFNIVvKna1Qc0O42dPKrU5BRES2Uk0hJaopiEgoVFMQEZFE1Cl4oppCtpQ7W6Hm
hnCzq6YgIiKpU00hJaopiEgoVFMQEZFE1Cl4oppCtpQ7W6HmhnCzq6YgIiKpU00hJaopiEgoVFMQ
EZFE1Cl4oppCtpQ7W6HmhnCzq6YgIiKpU00hJaopiEgoVFMQEZFE1Cl4oppCtpQ7W6HmhnCzq6Yg
IiKpU00hJaopiEgoVFMQEZFE1Cl4oppCtpQ7W6HmhnCzZ1VTuA1YA7TF2oYA84ClwFygIfbcFcAy
YAlwcqz9MPcey4AbYu0Dgbtd+5PAPrHnJrt/Yynw6URfjYiI9ElvNYWjgXeA6cAY13YtsNbdXwbs
ClwOjAbuBA4HRgAPAyOBTmA+cJG7fwC4EZgDTAEOdvfnABOBc7GO52msMwFY4B5vKJFRNQURkTL0
pabwOPDnorYJwDT3eBpwhnt8OjAD2Ay0A8uBccBwYDDWIYB1MGeUeK9ZwAnu8SnYUcgGd5sHnNpL
VhER6aNKagq7Y0NKuPvd3eM9gZWx/VZiRwzF7R2uHXe/wj3eArwFDO3hvfoN1RSypdzZCjU3hJs9
rdz1fXx9p7t51dzcTGNjIwANDQ2MHTuWpqYmoPCNqvZ2JPpjP2ZMU4/b5ey/dm0bMD7Tr6e77dbW
Vq//fl//f/KSR9/v/G63trbmKk8a29Hj9vZ2epPkPIVGYDaFmsISoAlYjQ0NPQYciNUVAK5x93OA
qcCrbp+DXPsk4BjgQrfPlViRuR5YBQzD6gpNwAXuNT8BHsWK0sVUUxARKUPa5yncj80Mwt3fG2s/
FxgA7IsVmedjncdGrL5QB5wH3Ffivc4EHnGP52KzlxqwQvZJwEMVZBURkTL01inMAJ4ADsDG/s/H
jgROwqaKHk/hyGAxcI+7fxCbURR9hJ8C3IJNPV2OHSEA3IrVEJYBF1M42lgPXIXNQJoPfJvSM4+C
pZpCtpQ7W6HmhnCzp5W7t5rCpG7aT+ym/Wp3K7aAwvBT3Cbg7G7e63Z3ExGRjGjto5SopiAiodDa
RyIikog6BU9UU8iWcmcr1NwQbva0cqtTEBGRrVRTSIlqCiISCtUUREQkEXUKnqimkC3lzlaouSHc
7KopiIhI6lRTSIlqCiISCtUUREQkEXUKnqimkC3lzlaouSHc7KopiIhI6lRTSIlqCiISCtUUREQk
EXUKnqimkC3lzlaouSHc7KopiIhI6lRTSIlqCiISCtUUREQkEXUKnqimkC3lzlaouSHc7KopiIhI
6lRTSIlqCiISCtUUREQkEXUKnqimkC3lzlaouSHc7HmoKVwBvAC0AXcCA4EhwDxgKTAXaCjafxmw
BDg51n6Ye49lwA2x9oHA3a79SWCfPmQVEZEEKq0pNAKPAgcBm7A/3g8AHwbWAtcClwG7ApcDo7GO
43BgBPAwMBLoBOYDF7n7B4AbgTnAFOBgd38OMBE4t0QW1RRERMpQjZrCRmAzsBNQ7+5fByYA09w+
04Az3OPTgRnuNe3AcmAcMBwYjHUIANNjr4m/1yzghAqziohIQpV2CuuB7wOvYZ3BBmzYaHdgjdtn
jdsG2BNYGXv9SuyIobi9w7Xj7le4x1uAt7DhqX5BNYVsKXe2Qs0N4WZPK3d9ha/bH7gYG0Z6C5gJ
fKpon053q7rm5mYaGxsBaGhoYOzYsTQ1NQGFb1S1tyPRH/sxY5p63C5n/7Vr24DxmX493W23trZ6
/ff7+v+Tlzz6fud3u7W1NVd50tiOHre3t9ObSmsK5wAnAZ9z2+cBRwLHA8cBq7GhoceAA7G6AsA1
7n4OMBV41e1zkGufBBwDXOj2uRIrMtcDq4BhJbKopiAiUoZq1BSWYJ3Aju6NTwQWA7OByW6fycC9
7vH9WJF4ALAvVmSej3UeG7H6Qh3WudwXe030XmcCj1SYVUREEqq0U1iIFYWfARa5tp9iRwInYVNS
j6dwZLAYuMfdP4jNKIo+3k8BbsGmni7HjhAAbgWGuvaLKRxt9AuqKWRLubMVam4IN3tauSutKYBN
O722qG09dtRQytXuVmwBMKZE+ybg7IrTiYhI2bT2UUpUUxCRUGjtIxERSUSdgieqKWRLubMVam4I
N3taudUpiIjIVqoppEQ1BREJhWoKIiKSiDoFT1RTyJZyZyvU3BBudtUUREQkdaoppEQ1BREJhWoK
IiKSiDoFT1RTyJZyZyvU3BBudtUUREQkdaoppEQ1BREJhWoKIiKSiDoFT1RTyJZyZyvU3BBudtUU
REQkdaoppEQ1BREJhWoKIiKSiDoFT1RTyJZyZyvU3BBudtUUREQkdaoppEQ1BREJhWoKIiKSiDoF
T1RTyJZyZyvU3BBu9jzUFBqAXwIvAouBccAQYB6wFJjr9olcASwDlgAnx9oPA9rcczfE2gcCd7v2
J4F9+pBVREQS6EtNYRrwW+A2oB54P/ANYC1wLXAZsCtwOTAauBM4HBgBPAyMBDqB+cBF7v4B4EZg
DjAFONjdnwNMBM4tkUM1BRGRMlSjprALcDTWIQBsAd4CJmCdBe7+DPf4dGAGsBloB5ZjRxbDgcFY
hwAwPfaa+HvNAk6oMKuIiCRUaaewL/AmcDvwLPAz7Ehhd2CN22eN2wbYE1gZe/1K7IihuL3DtePu
V7jHUaczpMK8uaOaQraUO1uh5oZws6eVu74PrzsUG/Z5GrgeGyaK63S3qmtubqaxsRGAhoYGxo4d
S1NTE1D4RlV7OxL9sR8zpqnH7XL2X7u2DRif6dfT3XZra6vXf7+v/z95yaPvd363W1tbc5Unje3o
cXt7O72ptKawB/BH7IgB4BNYIXk/4DhgNTY09BhwIIUO4xp3PweYCrzq9jnItU8CjgEudPtciRWZ
64FVwLASWVRTEBEpQzVqCquxoZ1RbvtE4AVgNjDZtU0G7nWP78eKxAOwjmQkVkdYDWzE6gt1wHnA
fbHXRO91JvBIhVlFRCShvkxJ/RLwC2Ah8BHgO9iRwEnYlNTjKRwZLAbucfcPYjOKoo/3U4BbsKmn
y7EjBIBbgaGu/WK2HZ4KmmoK2VLubIWaG8LNnlbuSmsKYJ3B4SXaT+xm/6vdrdgCYEyJ9k3A2ZVF
ExGRSmjto5SopiAiodDaRyIikog6BU9UU8iWcmcr1NwQbva0cqtTEBGRrVRTSIlqCiISCtUUREQk
EXUKnqimkC3lzlaouSHc7KopiIhI6lRTSIlqCiISCtUUREQkEXUKnqimkC3lzlaouSHc7KopiIhI
6lRTSIlqCiISCtUUREQkEXUKnqimkC3lzlaouSHc7KopiIhI6lRTSIlqCiISCtUUREQkEXUKnqim
kC3lzlaouSHc7KopiIhI6lRTSIlqCiISCtUUREQkEXUKnqimkC3lzlaouSHc7HmpKWwPPAfMdttD
gHnAUmAu0BDb9wpgGbAEODnWfhjQ5p67IdY+ELjbtT8J7NPHrCIi0ou+1hS+iv1RHwxMAK4F1rr7
y4BdgcuB0cCdwOHACOBhYCTQCcwHLnL3DwA3AnOAKcDB7v4cYCJwbokMqimIiJShWjWFvYB/Am6J
vfkEYJp7PA04wz0+HZgBbAbageXAOGA41qHMd/tNj70m/l6zgBP6kFVERBLoS6fwA+BS4L1Y2+7A
Gvd4jdsG2BNYGdtvJXbEUNze4dpx9yvc4y3AW9jwVL+gmkK2lDtboeaGcLOnlbu+wtedBryB1ROa
utmn092qrrm5mcbGRgAaGhoYO3YsTU0WK/pGVXs7Ev2xHzOmqcftcvZfu7YNGJ/p19Pddmtrq9d/
v6//P3nJo+93frdbW1tzlSeN7ehxe3s7vam0pnA1cB72CX4HYGfgV1jNoAlYjQ0NPQYciNUVAK5x
93OAqcCrbp+DXPsk4BjgQrfPlViRuR5YBQwrkUU1BRGRMlSjpvB1YG9gX6z4+yjWSdwPTHb7TAbu
dY/vd/sNcK8ZidURVgMbsfpCnXuP+2Kvid7rTOCRCrOKiEhClQ4fFYs+ql8D3AN8Fison+3aF7v2
xdjRxZTYa6YAdwA7YrOP5rj2W4H/xKakrqP0zKNgtbW1bB0i8mnmzIdYt+7dxPsvXdrGqFFjEu07
dOgAzjrrlEqjpaqlpWXrIXVIlDt7oWZPK3cancJv3Q1gPXBiN/td7W7FFgCl/spsotCpSJWsW/du
WcNe69cPZsSIpkT7dnTM7n0nEckVndHsSR6OEioRau4QP/mBcvsQava0cqtTEBGRrdQpeBLqeQqh
5i6eKhkK5c5eqNnTyq1OQUREtlKn4EmoY/Oh5q71ceKshZobws2umoKIiKROnYInoY7Nh5q71seJ
sxZqbgg3u2oKIiKSOnUKnoQ6Nh9q7lofJ85aqLkh3OyqKYiISOrUKXgS6th8qLlrfZw4a6HmhnCz
q6YgIiKpU6fgSahj86HmrvVx4qyFmhvCza6agoiIpE6dgiehjs2HmrvWx4mzFmpuCDe7agoiIpI6
dQqehDo2H2ruWh8nzlqouSHc7KopiIhI6tQpeBLq2HyouWt9nDhroeaGcLOrpiAiIqlTp+BJqGPz
oeau9XHirIWaG8LNrpqCiIikTp2CJ6GOzYeau9bHibMWam4IN7vvmsLewGPAC8DzwJdd+xBgHrAU
mAs0xF5zBbAMWAKcHGs/DGhzz90Qax8I3O3anwT2qTCriIgkVGmnsBn4CvBh4Ejgi8BBwOVYpzAK
eMRtA4wGznH3pwI3AXXuuR8DnwVGutuprv2zwDrX9gPguxVmzaVQx+ZDzV3r48RZCzU3hJvdd01h
NdDqHr8DvAiMACYA01z7NOAM9/h0YAbWmbQDy4FxwHBgMDDf7Tc99pr4e80CTqgwq4iIJJRGTaER
OAR4CtgdWOPa17htgD2BlbHXrMQ6keL2DteOu1/hHm8B3sKGp/qFUMfmQ81d6+PEWQs1N4SbPa3c
9X18/SDsU/y/Am8XPdfpblXX3NxMY2MjAA0NDYwdO3broVT0jar2diT6oxkNs3S3Xc7+a9e2AeOr
kn/p0jbWrx/ca95o+5VXWhN9fdF2Vt//pP8/ecmTdLu1tTVXefr797ulpYXW1tZc5UljO3rc3t5O
b+p63aN77wN+AzwIXO/algBN2PDScKwYfSCF2sI17n4OMBV41e1zkGufBBwDXOj2uRIrMtcDq4Bh
JXJ0dnZm0vf06OabZzNixPiqvHdHx2wuuKA67x1qbhGpXF1dHXTz97/S4aM64FZgMYUOAeB+YLJ7
PBm4N9Z+LjAA2BcrHs/HOo+NWH2hDjgPuK/Ee52JFa5FRKSKKu0UjgI+BRwHPOdup2JHAidhU1KP
p3BksBi4x90/CEyhMLQ0BbgFm3q6HDtCAOt0hrr2iykcbfQLoY7Nh5q7eFgjFMqdvVCzp5W70prC
7+m+Qzmxm/ar3a3YAmBMifZNwNnlRxMRkUrpjGZPQp3vH2ruqPAWGuXOXqjZ08qtTkFERLZSp+BJ
qGPzoeau9XHirIWaG8LNnlZudQoiIrKVOgVPQh2bDzV3rY8TZy3U3BBudtUUREQkdeoUPAl1bD7U
3LU+Tpy1UHNDuNlVUxARkdSpU/Ak1LH5UHPX+jhx1kLNDeFmV01BRERS19els6VCbW0tQX7qzlPu
mTMfYt26dxPtu3RpG6NGlVpNpbShQwdw1lmnVBotNS0tLUF+cg01N4SbPa3c6hQkWOvWvZt42e/1
6wczYkRT4vfu6JhdYSqRsGn4yJO8fNoul3JnK8RPrBBubgg3u2oKIiKSOnUKnoQ631+5s1Xrc+Z9
CDW7zlMQEZHUqVPwJNQxbuXOVq2Pb/sQanbVFEREJHXqFDwJdYxbubNV6+PbPoSaXTUFERFJnToF
T0Id41bubNX6+LYPoWZPK7fOaBbJWDnLc5QrL8tzSLhC6BROBa4HtgduAb7rN0468rSGUDmUu+/K
WZ6j3Nx5WZ4j1PWDINzsaeXO+/DR9sCPsI5hNDAJOMhropS88kqr7wgVUe5shZq7tTXM3BBu9rRy
571TOAJYDrQDm4G7gNN9BkrLX/6ywXeEiih3tkLNvWFDmLkh3Oxp5c778NEIYEVseyUwzlMWkZpW
Ti3kmWde4uabkw9lqRaSH3nvFDp9B6iWN95o9x2hIsqdrTzlLqcW8re/zUq8L1S3FlJuYf+hhx5n
jz2S5almZ1bN3D2p6/M7VNeRwJVYTQHgCuA9uhabW4GPZhtLRCRoC4GxvkNUoh54GWgEBmAdQL8o
NIuISGX+J/ASVnC+wnMWEREREREREZEak/dCc3/yCeD3RW1HAX/wkCWJT2Kzv+ooPQvsV9nGSexf
gRso/f3Ou0OxEzSPweponcCrwO+AO4HnvCXrXqg/J3Efpuv3vB14HHjBX6REop/13trKok4hO88B
hyRoy4s7sF+Q3YCPA4+69uOAJ4DT/MTq1UJsNlqev7elPAD8GbgfmA+swn4/h2MncY4HGoB/9hWw
G3cQ5s8JwHnAl4B12Pf8dbp+zz+A/YH9ua+AvSj1M95KH2cV5f08hf7gY9gvyzDgqxQ64sHk+4zy
Znc/D1tiZJXbHg5M8xEoocXAMuzEx7ai5zqBj2SeKJnzgTUl2l9xt7uwP7x50+zuQ/s5AdgVOAF4
u5vnd6bw9eXJJOB/AfsC8RMTBmMdXJ+oU6i+Adh/1vbuPrIRONNLovLsDayOba8BPugpSxKTgD2A
h4AJhHM0HHUI7wf+DvwDOMDdHsSWeXnDT7REQvs5Abixl+c3JtjHhyewzncY8D0KP+NvY0fKEohG
3wEq9CNgLvaJ6XxgDvBDn4F68Yi7v9Zriso9C+yEHem0AzOBX/gMlFBoPydx1wG7AO/Dfn7WYkNL
NSmUT1H9wQHA17DOITpC6wSO9xUooTpgIlaI68SKnr/2mqhni4HPA7dih9jFBdBnfYQqQzRO/CVg
R6xzi+okeRb9nBzttvP+cxIXfX8nYjWQr2KF5rwONb5D90sAdWLDXhXT8FF2ZgI/xq4J8Q/XFsLa
Tp3YDJIQZpEATAW+iX3S/n6J54/LNk5FPgb8b+CzbjvPtadIJzassdltP+UxS7miv4OnAb8E3iLf
v5uDfAeQdCzwHaBM0VTZd7Cxyvhto69QZfim7wAVOhabgXSZ296ffI5rFzsbmz473d3agbN8BirD
NcASbObOAKygH0Kn9sFubn2i4aPsXAm8iX3i3hRrX+8lTf82APgUNv+8E5tvfiddv+95NYZtZ02F
YBFwIoVi+DBsfD6vQzDFhmAfdrZgxf7BdC2c59HzFI5odsBmI72E/dxLANqBP5W4hWI3Uvw0UkWj
sXWypgNfxk7mmY4trBjCL8vvsTnzU7DiZyja6PohczvC6dwWAF/EpqiG7FCsliZSVROwef9/wTqx
98j3mZ6PAieVaD8ReCzjLJUahQ1pvAzMAE72GyeR69h29lEoM8BGAldjHybuAk4h3FGU530HkOTe
j41z/8xtjyTfZ3tGFmFndkZLLBwH3OYvTq9e6uG5JZml6Lt67DyW14EXsa/rk14T9awOy/cD4D+w
mTyh2Q77ENSBXfHx29iwUl5dErtdin2AeMhrIinLPVjxMPqU/X7CONEkKpAvxE7AA+so8mopNr5a
bAfsiCfvPor9YV0G3IQNCQDsCbzmK1QN+ChwPdb53ohd4OtrWPE5r67EZttNBb6BzVgr9bMvORX9
cY0vahZCp/AwVnT7EXZofSM29TCv/g/wG7qeLBgtB/AtH4HK9Fvg09gJbMU+nXGWJEKfpQb2u/ko
dl5L8R/VUM61kAA9gZ2MFHUK+2MFxbx7P3ZY/T5svPjLwFCfgRK4CPtUvc7dXsNOBhMpZX/fASq0
G7bMxQNYvewxCgsSSgBOxj4FvolNj3yVfJ9IdSR2JPMX4I/YrJ7Q7Ewfz+70YBR2AtWLFGaoveI1
Ue/qCateU8ppwL9hQzHfIoyjynnA57Dv/bHA7YRT3K952wHnYAXb09xtmNdEvVuAzeLZATsJSQWs
bPwBmym1CNgHGze+ymeghO7D8oboJ9i05ZVYp/A8YUztjJZsidf4nvERRCoT2hnNxRd0yeMFXvqj
6Be9rURbnj2O1RUexeo3s7Ezs0MQfa+jP66DCOMCTU+6+7nYB81DsWnMfaK1j7IzD5vNcDc2JBPJ
6xnNuwD/QmG+dnw7Wg9J0vd3bJbXcqw28jpW18m7UsuK5Hn9oLi/ufu/YmtmrcOWX8+7/4tdeOkS
bEXanYGv9PVNQz1BI0TtbPtL0gnsl32URO6ga97i1UbPzzRNcqFfHvIIrJ7QgA0b7YyNEz/Z04ty
ohH4EDZjbSfsQ2cIM5C+hf1RPR74/67tZ+R3/azvYtPbz8amukuAopqCVN8dWMHtv7DLW85yt/XY
VFWpji8AT1MYvhhF4doWIdkB65Dz7HnsQ09VhnQ1fJSN97CZDXf7DlIDmt19aJeHjF9WMTrSiR6D
nWmbZ1/EjnKiI5ql5PPyoXHRUWV38npU+SD2gWcQ215KVNdTCEhoNYXQhXZ5yOjaDxOx8eyfYx3D
JEpfuzlvNtF1Fdp68l9TGI9l3A27jno0x/847LyivHYKl7rb/eT/w4L0oJ2wV0kNTaiXhyw1Sy2E
mWvXYUstvIRNZf418B2viZKbhx1JRoZjPzsh2AebwgxWxxncw74iqQh1WeE6bLbUD9wtlAXaXqTr
Gbb7uba82w67DOov3e3zhDORZQnbLvsdwsl4VanjaPgoO5MpfTg9PesgZToX+6T9NHZizO3Yp6i8
Dw10YvP738Y+CUafoorHYPPmK9hyBdFRZCP2y59XuwNfx2YdLcIuIfqW10Tlexg7OfNOrHM4B/uZ
ybsQ6zgS8yNs+OKH2HWaX8E+UYUitGWFQ54NswMwFlu5M++rXj6EDROdiv2M3+E1TeVCPKqM1k6L
ZiHVk+/SsybuAAAKKElEQVQVjKUXDYSzdESIywovBAbSddpeKFcCC0nxSr868z07IddxpIQB2OFe
3oW6rLA+RWVjEXbEOARbPTe+necjyf5ge+yIONU6TiiFoP4gPg99O2wOfXThnTzbj/yv0lnKdcAG
7BoEF2HXPF6MfbKS9LTTfX0pz2fs9xdRDeGNtN5QnUL1jcSKcfGi/hbse78KW+Mmjy6JPY6fTBVt
/0e2ccq2PVb0jK5v/BBWy8lzgXw7rHA4AsvZgR3x5DmzZK8OW831IgpXQ/wHVq/8d/r486LZR9V3
PXAF2w5dfAQrao3PPFEygyn9w9XdmkJ58w/gp+4WgpOxy28ux5ZwBtgL+1AxhXDqTyFpAC4HzsA+
uHVin7jvBa7BjjTz6CvAUcDhFGap7Qfc7J7L+we2mtfT+ubPZ5ai9rRhHXFb7PZ7rCPO45XjltD1
EqKRfQljznyI5mLDt3tQOBIejnUUeT55rZXS12MZRgqTP3SkUH09La6V5+mGPZ3924ldljPP5mDD
dNHc83OxcxXWYNMm83aEtj02XFSsA/2eVksjtuJo3CrsKOEzmadJrh67gmOxN0nhZ0U/bNX3DDZD
oHgY4/Pke/mCBWxbS4iEMHx0InBIbHsRNhPpEPI5NfU27LyKGRSGj/bGOrPbfIUq09HYSWy3Y59a
B5HvpVxexRaqnEZhfak9sBNNX/MVKoHNFT6XiArN1bcHNnXzXQqdwGHYHPqJFFbxlHQtwjrep9z2
Edga+R+l0DnkzWjgdGBPt92BLXq22Fui5K7Efq4PwE4UHIHNrjvKY6beDMGGiiZgNQWwzuF+7Ggh
r4tV/gO7IFApO9LHD/vqFLJRh628eDD2KfsFCisy5t1jJdo6sQuS5Nnh2CfWQW77bWw20gvAP6OL
k6RtIdbRLqDQ4S7CJlRIQDR8lI1OrBMIpSOIuzT2eAdsDfotnrIktT3wCawTjmo68ZkkeewQdsFm
qe0FPIDVQiI3YTOQ8mwTdt2QSAiXEAU7kvkzdjTWhB3ttBLOkigiufC07wAJhJAx7lfYkMVE7ETH
WRQmIoSwdMSlwE+wGsIXsEXa8j4Z4f9hOZ+mcMnTbwK/o+uHIRGJiS9Z8AFs4bOXvCZK5gfYAm1H
A4dinwAP9ZqoZ8VrCH0D+AP2PQ+hUwA71+J77naS5yxJLMZGS3bChhd3ce07UsNLomj4SHrzLIXZ
RluwZQ0+6y1Ncodguf+9qP04D1mSGICd0RwNwXwHKzT/lkJdJM/2BR6nML9/R2zKZ7unPEm8i/1M
b8FW042W/P4bXYfCRIR8X7qyP7qO0p+uTwWWZZylEguwji0ykJ5P3MyDp7CjBLAOOdKAfRiqSZp9
JN2JT9uchRWYQ3MaNs0zfpJg8ZGDpKMVuwZE3EJsCnBe7QD8vUT7B7Azm/N4PkvVbdf7LiJBrnT5
E+BsrNhZ5x7v4zVR5c73HSCBtdg5FpHTXVueleoQvoDlrskOQaQnz3XzOBTRL3VUMByErX0UohW+
AyTwIWw4ZoW7/dG1hSbEn/VUqdAs3fkIhesZ70jXaxt3Ajtnnqg8f3P3f8XOrl2HnV2eVz19Mg3h
urvLgXEUVtd9x2+citX8kLo6BenO9r3vkmuzgV2xAm60vMjP/MXp1W5YUfnPJZ57IuMsleoPNZzT
fAcQkerbgZ5Xq82D27BzKkqZkWWQCv0EmI4t5jcVWxb+Vq+JenckhXMTdsI6sN9gK6fu0t2L+rua
P1SSfu0obK58/Khnup8o/V4bMIbCekeDsOXLP+EzVC8WY1m3YEeRf8GudXyia/8Xf9H80fCR9Fc/
x2ZNtWKrSkZC6hRKLbmeV6HVcMA+FEfreMXPeP89255hLiKBe5Hwj4RDmgnzTayG80lgtbtd5TVR
735J4WI6t2Mr64It/R3a2lki0ouZFK5LEKpQOoXt6HrdhBBqOGAZpwGvYNNpN2ML+v2OfJ90V1Wh
f5ISKTbb3Q/Czsiejy3rDDZVcoKPUBXamzDOUYDSZzSHYhds7aZ6rFC+2m8cv9QpSH/TRGEBv/jP
d9T220zTpON8bHgjz76HLT09izAu19qbQYR7roWIxIyk9IyXTwD7Z5wlLSEcLbyDrSy6GTvR8W1g
o9dEfZPnazRXlWYfSX9zPXYFs2Ib3XPjs42TWOhnNIewvHexS3p4bnBmKXJGnYL0N7tT+gIpi7Bx
47wK9Yzmeroug3IkhSW0n6Pr8ih58x1s2GtzUXsdWixUpN9YXuFzvoV6RvP3gcti23/Civ3zsDOD
8+yPwP/o5rkQhuxEJIG7sJO+in0euDvjLLWgFXhfbDuaRluHXU40zw4EhnXzXN5PvKsazT6S/mYP
4NfYpRajhfAOw64ENhFY5SlXJYZiZwbnWbSsReRkCpfkzPtFdkSkRtQBx2MX2PmSe5x3x2PDW08C
RwAvYdcNfpnCmbZ59CKll1HfBViScZZy3UbP39tx5H8qsIj0UwuwBeU+BmygUF84FHjcV6gEvgo8
QNer2jUCDwJf8xGoDGOwtbCWYnWQn2IL4812bXcAB/sKJyK1Lb6kxYs9PJdHF2Dz+te722vAhV4T
lWcgNmvqHOyyrePoek0IEZHMxVflPCP2uA67NkEIdib/V+STXoR+dS2R/mIVtu7OZrqOxe/v2vI+
kwdsjalNve4lIiIiIiLJaSaMfzv5DpAHOk9BJB/GAJdiBc+XsOGkOuy8iwOwpS6+R77rC9HlT6Pl
czoJ40p3HwduwdY72htbAvwLwBSfoXxRpyCSLwOx60Dsg/1RfRUrQv/dZ6gEurv86Zf8xCnLfOBM
4D7sew/wAvBhb4lERAIX8uVP57v7+NTfmr1Gs1YCFJE0PA8M9x2iQq9RuJzoAOyku+JzRUREpAwt
2JnYc7EzgmcD9/sMVIZhwJ3AG8CbwC+wdadqUqiHeyL93U7AX32HKENTN+0tGWao1FFsex5IqTYR
kcx9HFhMYT3/scBN/uLUhFLLiOR9aZGq0ZXXRPLleuwKbPe57VbgWH9xevUONkuqlE7yvezFx7BO
eBi2sF80cjKYGq63qlMQyZ/ii8Zv8ZIimRCvzRwZgHUA29P1mswbsSmqIiLe/RIbz36OwkyYu7wm
6v8afQfIExWaRfJlGHADcCL2+zkXu1hQ3q/AFrLdgH8DRgM7urZOwrg4k4j0c0clbJP0zAM+h61O
eyy2xtS1XhOJiDiaCZO9Z939oljbMz6C5IEKzSL5oJkw/rzr7lcDpwGvA7v6i+OXOgWRfNBMGH++
AzQAlwA/xKbRfsVrIhERp9F3AAFquFPQ7CORfNFMmHxYgV1boeZorFIkX36BzYLZD7gSaKeGi54i
IrVOM2HyYUXvu/RPKjSL5ItmwmSnp3WbdL1mEcmF8dhMmDHYstPPAhN8BhIRkXyp2ZkwIiKyrZod
35bsafaRiIhspU5BRES20uwjkXzQTBgRERERERERERERERERERERERERERHpD/4bh16OigHDAWgA
AAAASUVORK5CYII=
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="cleaning-data">Cleaning Data</h1>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h4 id="using-the-map-function-to-numerate-the-items-of-the-argument-sequence-for-loan-status-and-grade.">Using the map function to numerate the items of the argument sequence for loan status and grade.</h4>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[346]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;loan_status_clean&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;loan_status&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">({</span><span class="s">&#39;Current&#39;</span><span class="p">:</span> <span class="mi">2</span><span class="p">,</span> <span class="s">&#39;Fully Paid&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span> <span class="s">&#39;Charged Off&#39;</span><span class="p">:</span><span class="mi">0</span><span class="p">,</span> <span class="s">&#39;Late(31-120 days)&#39;</span><span class="p">:</span><span class="mi">0</span><span class="p">,</span> <span class="s">&#39;In Grace Period&#39;</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="s">&#39;Late(16-30 days)&#39;</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="s">&#39;Default&#39;</span><span class="p">:</span> <span class="mi">0</span><span class="p">})</span>
<span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;grade_clean&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;grade&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">({</span><span class="s">&#39;A&#39;</span><span class="p">:</span><span class="mi">7</span><span class="p">,</span><span class="s">&#39;B&#39;</span><span class="p">:</span><span class="mi">6</span><span class="p">,</span><span class="s">&#39;C&#39;</span><span class="p">:</span><span class="mi">5</span><span class="p">,</span><span class="s">&#39;D&#39;</span><span class="p">:</span><span class="mi">4</span><span class="p">,</span><span class="s">&#39;E&#39;</span><span class="p">:</span><span class="mi">3</span><span class="p">,</span><span class="s">&#39;F&#39;</span><span class="p">:</span><span class="mi">2</span><span class="p">,</span><span class="s">&#39;G&#39;</span><span class="p">:</span><span class="mi">1</span><span class="p">})</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Majority of my data is in Current. However, that's not our focus, we want to focus on paid and unpaid.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[347]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span><span class="o">.</span><span class="n">loan_status_clean</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">kind</span><span class="o">=</span><span class="s">&#39;bar&#39;</span><span class="p">,</span><span class="n">alpha</span><span class="o">=.</span><span class="mi">30</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">&#39;Current Paid Unpaid&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[347]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
&lt;matplotlib.text.Text at 0x13834b650&gt;
</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAHK1JREFUeJzt3XuQXNV94PFvGxn8kplIm4A0CI0XkI0SYRliIJtgy7ys
uMLDiQGxFZtJlGyEdkPIZreMki2DyxUWnPISWBdoEx4WKSMDATueBWQEuNf2egEjEB4stCPhjIMG
I5yRwTa14WFm/zinuy9NX82oZ+6cM6Pvp6qr7zn30WfmTPev7+93uwckSZIkSZIkSZIkSZIkSZKk
St0I7AYGO6z7M+A1YF6hbx2wA9gOnF7oPy4eYwdwdaH/IODW2P8gsLiw7gJgKN4+MZkfQpI0NU4C
3scbg8IiYBPwj7SCwlJgK/BmoA/YCdTiuoeB4+Py3cDKuLwWuDYunwd8KS7PA54CeuKtsSxJSqyP
NwaF24FjeH1QWAd8srDNJuBEYAHwZKF/FbC+sM0JcXkO8KO4fD5wXWGf9XE/SVKF3tTFPmcBu4Dv
tvUvjP0Nu4DeDv0jsZ94/3RcfhV4AZi/l2NJkio0Zx+3fxvw58Bphb5aybaSpBlmX4PCEYR00uOx
fRiwhZACGiHUGiis2xX7D+vQT1x3OPBMHMvBwGjsX1HYZxHwQMcBHXHE2FNPPbWPP4Yk7dceB5Z3
u3Mfna8+gs6F5gOBdxGKw42ziIcIgaPGGwvNjdrBKl5faP4+obj8C4XlTsaUp0svvTT1EFTCucnX
dMwNMFb2gj/emcJG4IOEPP/TwKeAm4ovyIXlbcBt8f7V+ILfWL8W+ALwVkJQ2BT7bwD+jnBJ6iit
YvIe4DPAd2L708Dz44xVmRkeHk49BJVwbvKVem7GCwrnj7P+X7e1L4+3dluAZR36XwLOLTn2Tbw+
AEmSKtbN1UfShPT396cegko4N/lKPTez4cqhmCKTJE1ErVaDktd/zxRUmXq9nnoIKuHc5Cv13BgU
JElNpo8kaT9j+kiSNCH7+olmzQK33/41RkdfrvxxhoYGWbKk05XIU2f+/AM555wPV/oYs1G9XmfF
ihWph6EOUs+NQWE/NDr6Mr29Z1T+OHv2zKW3d0WljzEyMlDp8aX9jekjVWbZshWph6ASniXkK/Xc
GBQkSU0GBVVmcLCeeggqkfpaeJVLPTcGBUlSk0FBlbGmkK/UeWuVSz03BgVJUpNBQZWxppCv1Hlr
lUs9NwYFSVKTQUGVsaaQr9R5a5VLPTcGBUlSk0FBlbGmkK/UeWuVSz03BgVJUpNBQZWxppCv1Hlr
lUs9NwYFSVKTQUGVsaaQr9R5a5VLPTfjBYUbgd3AYKHvr4AngceBO4GDC+vWATuA7cDphf7j4jF2
AFcX+g8Cbo39DwKLC+suAIbi7RMT+mkkSZMyXlC4CVjZ1ncv8MvAewkv2Oti/1LgvHi/EriW1v8A
vQ5YDRwVb41jrgZGY99VwJWxfx7wKeD4eLsU6Nmnn0zJWVPIV+q8tcqlnpvxgsI3gR+39W0GXovL
DwGHxeWzgI3AK8AwsBM4AVgAzAUejtvdDJwdl88ENsTlO4BT4vKHCcHn+XjbzBuDkyRpik22pvD7
wN1xeSGwq7BuF9DboX8k9hPvn47LrwIvAPP3cizNINYU8pU6b61yqedmMkHhL4CXgVumaCySpMTm
dLlfP/ARWukeCGcAiwrtwwjv8EdopZiK/Y19DgeeiWM5mFBjGAFWFPZZBDxQOpj+fvr6+gDo6elh
+fLlzbxcI+rabrWHhgbp7T0DaL2bb+T/p7K9bNmKSo8PMDQ0SL0+N6vfr23bk203TOXx6vU6w8PD
jKc27hbQBwwAy2J7JfA54IPAPxe2W0o4aziekOq5DzgSGCPUHi4i1BXuAq4BNgFr43EvBFYRag2r
CIXmR4Bj4xi3xOXnO4xvbGxsbAI/hhrWrx9oBoWZbmRkgDVrZsfPIk2XWq0GJa//46WPNgLfBt5N
yP3/PvDfgXcQir+PEa4yAtgG3Bbv7yG84DderdcC1xMuPd1JCAgANxBqCDuAi4FLYv8e4DPAdwiB
5NN0DgjKmDWFfLW/I1U+Us/NeOmj8zv03biX7S+Pt3ZbaJ1pFL0EnFtyrJviTZI0TfxEsyrj5xTy
1cg5Kz+p58agIElqMiioMtYU8pU6b61yqefGoCBJajIoqDLWFPKVOm+tcqnnxqAgSWoyKKgy1hTy
lTpvrXKp58agIElqMiioMtYU8pU6b61yqefGoCBJajIoqDLWFPKVOm+tcqnnxqAgSWoyKKgy1hTy
lTpvrXKp58agIElqMiioMtYU8pU6b61yqefGoCBJajIoqDLWFPKVOm+tcqnnxqAgSWoyKKgy1hTy
lTpvrXKp58agIElqMiioMtYU8pU6b61yqefGoCBJajIoqDLWFPKVOm+tcqnnZrygcCOwGxgs9M0D
NgNDwL1AT2HdOmAHsB04vdB/XDzGDuDqQv9BwK2x/0FgcWHdBfExhoBPTOinkSRNynhB4SZgZVvf
JYSgsAS4P7YBlgLnxfuVwLVALa67DlgNHBVvjWOuBkZj31XAlbF/HvAp4Ph4u5TXBx/NANYU8pU6
b61yqedmvKDwTeDHbX1nAhvi8gbg7Lh8FrAReAUYBnYCJwALgLnAw3G7mwv7FI91B3BKXP4w4Szk
+XjbzBuDkyRpinVTUziEkFIi3h8SlxcCuwrb7QJ6O/SPxH7i/dNx+VXgBWD+Xo6lGcSaQr5S561V
LvXcTLbQPBZvkqRZYE4X++wGDgWeJaSGnov9I8CiwnaHEd7hj8Tl9v7GPocDz8SxHEyoMYwAKwr7
LAIeKBtQf38/fX19APT09LB8+fJmXq4RdW232kNDg/T2ngG03s038v9T2V62bEWlxwcYGhqkXp+b
1e/Xtu3Jthum8nj1ep3h4WHGUxt3C+gDBoBlsf1Zwgv3lYQic0+8XwrcQigM9wL3AUcSziQeAi4i
1BXuAq4BNgFr43EvBFYRag2rCIXmR4Bj4xi3xOXnO4xvbGzMk5V9sX79QDMozHQjIwOsWTM7fhZp
utRqNSh5/R8vfbQR+DbwbkLu//eAK4DTCJeKnhzbANuA2+L9PYQX/Mar9VrgesKlpzsJAQHgBkIN
YQdwMa0rmfYAnwG+Qwgkn6ZzQFDGrCnkq/0dqfKRem7GSx+dX9J/akn/5fHWbgutM42il4BzS451
U7xJkqaJn2hWZfycQr4aOWflJ/XcGBQkSU0GBVXGmkK+UuetVS713BgUJElNBgVVxppCvlLnrVUu
9dwYFCRJTQYFVcaaQr5S561VLvXcGBQkSU0GBVXGmkK+UuetVS713BgUJElNBgVVxppCvlLnrVUu
9dwYFCRJTQYFVcaaQr5S561VLvXcGBQkSU0GBVXGmkK+UuetVS713BgUJElNBgVVxppCvlLnrVUu
9dwYFCRJTQYFVcaaQr5S561VLvXcGBQkSU0GBVXGmkK+UuetVS713BgUJElNBgVVxppCvlLnrVUu
9dxMJiisA74HDAK3AAcB84DNwBBwL9DTtv0OYDtweqH/uHiMHcDVhf6DgFtj/4PA4kmMVZI0Ad0G
hT7gD4FjgWXAAcAq4BJCUFgC3B/bAEuB8+L9SuBaoBbXXQesBo6Kt5WxfzUwGvuuAq7scqxKxJpC
vlLnrVUu9dx0GxR+ArwCvA2YE++fAc4ENsRtNgBnx+WzgI1xn2FgJ3ACsACYCzwct7u5sE/xWHcA
p3Q5VknSBHUbFPYAnwP+iRAMniecIRwC7I7b7I5tgIXArsL+u4DeDv0jsZ94/3RcfhV4gZCe0gxh
TSFfqfPWKpd6broNCkcAFxPSSAuBdwC/27bNWLxJkmaIOV3u96vAtwk5f4A7gV8DngUOjfcLgOfi
+hFgUWH/wwhnCCNxub2/sc/hhDOROcDBhDOUN+jv76evrw+Anp4eli9f3szLNaKu7VZ7aGiQ3t4z
gNa7+Ub+fyrby5atqPT4AENDg9Trc7P6/dq2Pdl2w1Qer16vMzw8zHhq427R2XuBLwLvB/4F+AKh
LrCYECiuJBSZe+L9UsIVSscT0kL3AUcSziQeAi6K+98FXANsAtYSitgXEorYZ8f7dmNjY56Q7Iv1
6weaQWGmGxkZYM2a2fGzSNOlVqtByet/t+mjxwlF4UeA78a+vwGuAE4jXJJ6cmwDbANui/f3EF7w
G6/ka4HrCZee7iQEBIAbgPmx/2JaVzJphrCmkK/2d6TKR+q56TZ9BPDZeCvaA5xasv3l8dZuC+GM
oN1LwLldj06StM/8RLMq4+cU8tXIOSs/qefGoCBJajIoqDLWFPKVOm+tcqnnxqAgSWoyKKgy1hTy
lTpvrXKp58agIElqMiioMtYU8pU6b61yqefGoCBJajIoqDLWFPKVOm+tcqnnxqAgSWoyKKgy1hTy
lTpvrXKp58agIElqMiioMtYU8pU6b61yqefGoCBJajIoqDLWFPKVOm+tcqnnxqAgSWoyKKgy1hTy
lTpvrXKp58agIElqMiioMtYU8pU6b61yqefGoCBJajIoqDLWFPKVOm+tcqnnxqAgSWoyKKgy1hTy
lTpvrXKp52YyQaEH+HvgSWAbcAIwD9gMDAH3xm0a1gE7gO3A6YX+44DBuO7qQv9BwK2x/0Fg8STG
KkmagMkEhauBu4GjgWMIL/aXEILCEuD+2AZYCpwX71cC1wK1uO46YDVwVLytjP2rgdHYdxVw5STG
qgSsKeQrdd5a5VLPTbdB4WDgJODG2H4VeAE4E9gQ+zYAZ8fls4CNwCvAMLCTcGaxAJgLPBy3u7mw
T/FYdwCndDlWSdIEdRsU3gX8CLgJeBT4W+DtwCHA7rjN7tgGWAjsKuy/C+jt0D8S+4n3T8flRtCZ
1+V4lYA1hXylzlurXOq56TYozAGOJaSBjgVepJUqahiLN0nSDDGny/12xdt3YvvvCYXkZ4FD4/0C
4Lm4fgRYVNj/sLj/SFxu72/sczjwTBznwcCeToPp7++nr68PgJ6eHpYvX97MyzWiru1We2hokN7e
M4DWu/lG/n8q28uWraj0+ABDQ4PU63Oz+v3atj3ZdsNUHq9erzM8PMx4auNuUe4bwB8QrjS6DHhb
7B8lFIUvIVx9dAmhwHwLcDwhLXQfcCThTOIh4CJCXeEu4BpgE7AWWAZcCKwi1BpWdRjH2NiYJyT7
Yv36gWZQmOlGRgZYs2Z2/CzSdKnValDy+j+Zq4/+GPgi8Djh6qO/BK4ATiMEipNjG8Ilq7fF+3sI
L/iNV/K1wPWES093EgICwA3A/Nh/MW9MTylz1hTy1f6OVPlIPTfdpo8gBIP3d+g/tWT7y+Ot3RbC
GUG7l4BzuxuaJKkbfqJZlfFzCvlq5JyVn9RzY1CQJDUZFFQZawr5Sp23VrnUc2NQkCQ1GRRUGWsK
+Uqdt1a51HNjUJAkNRkUVBlrCvlKnbdWudRzY1CQJDUZFFQZawr5Sp23VrnUc2NQkCQ1GRRUGWsK
+Uqdt1a51HNjUJAkNRkUVBlrCvlKnbdWudRzY1CQJDUZFFQZawr5Sp23VrnUc2NQkCQ1GRRUGWsK
+Uqdt1a51HNjUJAkNRkUVBlrCvlKnbdWudRzY1CQJDUZFFQZawr5Sp23VrnUc2NQkCQ1GRRUGWsK
+Uqdt1a51HMz2aBwAPAYMBDb84DNwBBwL9BT2HYdsAPYDpxe6D8OGIzrri70HwTcGvsfBBZPcqyS
pHFMNij8CbANGIvtSwhBYQlwf2wDLAXOi/crgWuBWlx3HbAaOCreVsb+1cBo7LsKuHKSY9U0s6aQ
r9R5a5VLPTeTCQqHAR8Brqf1An8msCEubwDOjstnARuBV4BhYCdwArAAmAs8HLe7ubBP8Vh3AKdM
YqySpAmYTFC4CvjPwGuFvkOA3XF5d2wDLAR2FbbbBfR26B+J/cT7p+Pyq8ALhPSUZghrCvlKnbdW
udRzM6fL/X4LeI5QT1hRss0YrbRSpfr7++nr6wOgp6eH5cuXN0/BGr9g26320NAgvb1nAK0X7kaq
Z6a1h4YGqdfnZvX7nQnthlzGY7vV3rp1ayXzXa/XGR4eZjy1cbfo7HLg44R38G8B3gncCbyfECSe
JaSGvg68h1Zt4Yp4vwm4FPhB3Obo2H8+8AHgwrjNZYQi8xzgh8AvdhjL2NjYtMSeWWP9+oFmUJjp
RkYGWLNmdvws0nSp1WpQ8vrfbfroz4FFwLuAVcADhCDxVeCCuM0FwFfi8lfjdgfGfY4i1BGeBX5C
qC/U4jH+obBP41gfIxSuJUkV6jZ91K7xVv0K4DbClUPDwLmxf1vs30Y4u1hb2Gct8AXgrcDdhDME
gBuAvyNckjpKCCqaQQYH616BtI9uv/1rjI6+XPnjDA0NsmTJskofY/78AznnnA9X+hizUb1eb6Z/
UpiKoPC/4g1gD3BqyXaXx1u7LUCnv86XaAUVab8wOvrytKT29uyZS2/vikofY2RkYPyNlB0/0azK
eJaQL+cmXynPEsCgIEkqMCioMn5OIV/OTb7aLxuebgYFSVKTQUGVMW+dL+cmX9YUJEnZMCioMuat
8+Xc5MuagiQpGwYFVca8db6cm3xZU5AkZcOgoMqYt86Xc5MvawqSpGwYFFQZ89b5cm7yZU1BkpQN
g4IqY946X85NvqwpSJKyYVBQZcxb58u5yZc1BUlSNgwKqox563w5N/mypiBJyoZBQZUxb50v5yZf
1hQkSdkwKKgy5q3z5dzka6bWFBYBXwe+BzwBXBT75wGbgSHgXqCnsM86YAewHTi90H8cMBjXXV3o
Pwi4NfY/CCzucqySpAnqNii8Avwp8MvAicC/B44GLiEEhSXA/bENsBQ4L96vBK4FanHddcBq4Kh4
Wxn7VwOjse8q4Moux6pEzFvny7nJ10ytKTwLbI3LPwOeBHqBM4ENsX8DcHZcPgvYSAgmw8BO4ARg
ATAXeDhud3Nhn+Kx7gBO6XKskqQJmoqaQh/wPuAh4BBgd+zfHdsAC4FdhX12EYJIe/9I7CfePx2X
XwVeIKSnNEOYt86Xc5Ov1DWFOZPc/x2Ed/F/Avy0bd1YvFWuv7+fvr4+AHp6eli+fHnzFKzxC7bd
ag8NDdLbewbQenFopBNmWntoaJB6fW5Wv9/JtIeGBtmzZ27lv7+Gqucn9e9zJra3bt065cdvLA8P
DzOe2rhblHsz8D+Be4C/jn3bgRWE9NICQjH6PbRqC1fE+03ApcAP4jZHx/7zgQ8AF8ZtLiMUmecA
PwR+scM4xsbGpiX2zBrr1w80g8JMNzIywJo1s+NnAedG06NWq0HJ63+36aMacAOwjVZAAPgqcEFc
vgD4SqF/FXAg8C5C8fhhQvD4CaG+UAM+DvxDh2N9jFC4liRVqNug8OvA7wIfAh6Lt5WEM4HTCJek
nkzrzGAbcFu8vwdYSyu1tBa4nnDp6U7CGQKEoDM/9l9M62xDM4R563w5N/maqTWFb1EeUE4t6b88
3tptAZZ16H8JOHffhyZJ6pafaFZlvBY+X85Nvmbq5xQkSbOQQUGVMW+dL+cmX6lrCgYFSVKTQUGV
MW+dL+cmX9YUJEnZMCioMuat8+Xc5MuagiQpG5P9QjyplHnrfDk3++7227/G6OjL0/JY27cPTMvj
dGJQkKQJGB19edZ8WeHemD5SZcxb58u5yVfquTEoSJKaDAqqjHnrfDk3+Uo9NwYFSVKTQUGVSZ0b
VTnnJl+p58agIElqMiioMqlzoyrn3OQr9dwYFCRJTQYFVSZ1blTlnJt8pZ4bg4IkqcmgoMqkzo2q
nHOTr9RzY1CQJDXNhKCwEtgO7AA+mXgs2gepc6Mq59zkK/Xc5B4UDgA+TwgMS4HzgaOTjkgT9v3v
b009BJVwbvKVem5yDwrHAzuBYeAV4EvAWSkHpIl78cXnUw9BJZybfKWem9yDQi/wdKG9K/ZJkiqQ
e1AYSz0Ade+554ZTD0ElnJt8pZ6bWtJHH9+JwGWEmgLAOuA14MrCNluB907vsCRpRnscWJ56EN2Y
AzwF9AEHEgKAhWZJ2o/9JvB/CQXndYnHIkmSJEmStJ85IPUANKscArwHWEC4IODFtMORZoSsnje5
X32kmeF9wHVAD+GzJACHAc8Da4FHE41LLYcQ5mQMGAF2px2O8HmjWexx4IQO/SfGdUrnfcCDhO8P
uy/etse+YxOOSz5vNIvt2Mu6ndM2CnXiC0++snzezEn1wJpV7gHuBjYQvpakBiwCPgFsSjguwduA
hzr0Pwi8fZrHotfL8nljTUFT5SPAmbS+m2oE+Crhj17pXAMcSecXnu8D/yHd0ESGzxuDgjT7ZffC
I2n/9UepByDNQMmeN7l/S6qk6hiw9QYWmjVVjgYWEoqaPyv0/1Oa4UgzwtGEfxzWSO3tIqT2/keq
AXmmoKlwEfAV4I+B7wFnF9ZdnmREmohXUg9gP/dJYGNcfije3hT7/PJPzWhPAO+Iy33AI8DFsf1Y
igFpQp4efxNVaAfw5g79B+LnFDTD1WiljIaBFcAdwGK8wi21wb2sO2TaRqFOfk5IGw239S+M65Iw
KGgqPEf4L05bY/tnwG8BNwDHpBqUAPglwn8u/HGHdd+e5rHo9S4mfO3ITlpnbYuAo/DzI5rhFgGH
duivAb8xzWPR690InFSybmNJv6bPAcCvAR8Dfofw9SO+WZckSZIkSZIkSZrlDgW+RLh64BHgLsKV
A9Ppg4RClfLxBcI3kD4GbCEUD/fmf+/lOL8zZaNS0WXAn7X1DQPzpvhxjgOuLllXxeNNmlXu7tWA
LwM3Aati3zGEa7/39s8zit5E+J+sZe2J+BDwU+D/7ON+qs4Y8J+AO4HTCF9Z8N69bP/reznO2NQO
TVGn32sVv+st8TbRMSTn11x070PAy8DfFPq+C3yL8OGtgUL/54EL4vIwcAXhD+WcDu3TCdePbwFu
o/WPUIYJ7262xMd5N+HTw38E/CnhXamXf+aj8aG9bxL+n8HbCdekN+bvzMK2Pyvs83nCv8vcTPiM
gR/+m359wJOE5/YTwNeAt8R1deCvCc+3QeD9sf94wvP2UcKZ35LYv4LWa8F84N54zL8l07k1KHTv
Vyh/B9Cu+I5vDPhnwmnlrW3t+4G/AE6J7S3Afyzs96PYfx3hnegwsB74b4T/xfutSfw8qsYZhCDw
/4CPEubvZOBzhW0afxsfJbyYHE34Jzj/hkzfTe4HjiQE6F8BnqeVxhsD3kp4vq0lfA4EQhA5ifB/
ry+l83d+XQp8Ix7zy8DhFY19UkwfdW8yT9ZbS9onAktpfdL0QF7/qdM74/2jwG8X+rN8x7EfqwF/
BfwXwqe9VxM+pPRfCS8crxG+yuCX4vqGDwC3EP62fgg8MH1D3u+UPX8b/f9ICOYQ3pz1FbZpfOjv
m8A74+1g4GZCMBmj83canUQI/BD+wVGnT5knZ1Do3vcIn0Ls5FVefxb21rb1L+6lvRn4tyXHfSne
/xznLmfFmkJDP/CvCO8kf0540XlLh/0M8NNjFFjQ1jeXcFZwMK3nGoT5ap+rdp8hnOl/lPCdX/WS
7bKfX9NH3XsAOAj4w0LfMYS8/jDhHf+BQA8hXTARDxGKjkfE9tsZ/2qmnxL+mJWX9if/OwlnBT8n
1KMWd9jnG8B5hOflgridqvENQl2n8e2+v0347q6yM4ha4f68uPwbhCDyE8L8PhP7f28vj9l4w/eb
wC90M/CqGRQm56PAqYRLUp8A/pJw2r+LUCR+gpAaenQvxyj+Ef6I8I5yI/A4IXX07pJ9GvsNxHE8
RvlVLJp+7S8uXwR+lZCS+DghB92+7ZcJV65tAzbgF9ZVaZBQM/gW4bnz74A/KKxvn79iTfBfCM/p
awmpQYDPEtKDjxJShWMd9v00IUX4BOE5+4Mp+DkkSQl9nZACnLU8U5AkSZIkSZIkSZIkSZIkSZIk
SVPl/wMcLoqjl2jI+gAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h4 id="removing-the-current-status-2-column.-interested-in-determing-whats-responsible-for-people-paying-off-or-defaulting-on-their-loans.">Removing the Current Status '2' column. Interested in determing what's responsible for people paying off or defaulting on their loans.</h4>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Removing the &quot;Current&quot; status information will gravely limit our data. However, it'll still be pretty good granted we'll have around 54,000 rows still left.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[348]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span> <span class="o">=</span> <span class="n">loan_2</span><span class="p">[</span><span class="n">loan_2</span><span class="o">.</span><span class="n">loan_status_clean</span> <span class="o">!=</span> <span class="mi">2</span><span class="p">]</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[349]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span><span class="p">[</span><span class="s">&quot;loan_status_clean&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">loan_2</span><span class="p">[</span><span class="s">&quot;loan_status_clean&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">loan_status_clean</span><span class="p">:</span> <span class="mi">0</span> <span class="k">if</span> <span class="n">loan_status_clean</span> <span class="o">==</span> <span class="mi">0</span> <span class="k">else</span> <span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h4 id="cleaning-up-the-employment-length-column-and-removing-years-and-year.">Cleaning up the Employment Length Column and removing '&lt;', '+', 'years' and 'year'.</h4>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[350]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;emp_length_clean&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">loan_2</span><span class="o">.</span><span class="n">emp_length</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s">&#39;+&#39;</span><span class="p">,</span><span class="s">&#39;&#39;</span><span class="p">)</span>
<span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;emp_length_clean&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">loan_2</span><span class="o">.</span><span class="n">emp_length_clean</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s">&#39;&lt;&#39;</span><span class="p">,</span><span class="s">&#39;&#39;</span><span class="p">)</span>
<span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;emp_length_clean&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">loan_2</span><span class="o">.</span><span class="n">emp_length_clean</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s">&#39;years&#39;</span><span class="p">,</span><span class="s">&#39;&#39;</span><span class="p">)</span>
<span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;emp_length_clean&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">loan_2</span><span class="o">.</span><span class="n">emp_length_clean</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s">&#39;year&#39;</span><span class="p">,</span><span class="s">&#39;&#39;</span><span class="p">)</span>
<span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;emp_length_clean&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">loan_2</span><span class="o">.</span><span class="n">emp_length_clean</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s">&#39;n/a&#39;</span><span class="p">,</span><span class="s">&#39;0&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[351]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span><span class="o">.</span><span class="n">emp_length_clean</span><span class="o">.</span><span class="n">unique</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[351]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
array([&apos;10 &apos;, &apos;2 &apos;, &apos;5 &apos;, &apos;1 &apos;, &apos;9 &apos;, &apos; 1 &apos;, &apos;8 &apos;, &apos;0&apos;, &apos;7 &apos;, &apos;4 &apos;, &apos;3 &apos;,
&apos;6 &apos;, nan], dtype=object)
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h4 id="converting-my-already-cleaned-employment-length-column-to-a-float.">Converting my already cleaned employment length column to a float.</h4>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[352]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;emp_length_clean&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">loan_2</span><span class="o">.</span><span class="n">emp_length_clean</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="nb">float</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h4 id="substituting-mean-values-for-nan-in-relevant-columns.">Substituting mean values for NaN in relevant columns.</h4>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[353]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">funded_amnt</span> <span class="o">=</span> <span class="n">loan_2</span><span class="o">.</span><span class="n">funded_amnt</span>
<span class="n">mean_funded_amnt</span> <span class="o">=</span> <span class="n">loan_2</span><span class="p">[</span><span class="n">loan_2</span><span class="o">.</span><span class="n">funded_amnt</span><span class="o">.</span><span class="n">notnull</span><span class="p">()]</span><span class="o">.</span><span class="n">funded_amnt</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
<span class="n">loan_2</span><span class="o">.</span><span class="n">funded_amnt</span><span class="o">.</span><span class="n">fillna</span><span class="p">(</span><span class="n">mean_funded_amnt</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="n">annual_inc</span> <span class="o">=</span> <span class="n">loan_2</span><span class="o">.</span><span class="n">annual_inc</span>
<span class="n">mean_annual_inc</span> <span class="o">=</span> <span class="n">loan_2</span><span class="p">[</span><span class="n">loan_2</span><span class="o">.</span><span class="n">annual_inc</span><span class="o">.</span><span class="n">notnull</span><span class="p">()]</span><span class="o">.</span><span class="n">annual_inc</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
<span class="n">loan_2</span><span class="o">.</span><span class="n">annual_inc</span><span class="o">.</span><span class="n">fillna</span><span class="p">(</span><span class="n">mean_annual_inc</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="n">emp_length</span> <span class="o">=</span> <span class="n">loan_2</span><span class="o">.</span><span class="n">emp_length_clean</span>
<span class="n">mean_emp_length_clean</span> <span class="o">=</span> <span class="n">loan_2</span><span class="p">[</span><span class="n">loan_2</span><span class="o">.</span><span class="n">emp_length_clean</span><span class="o">.</span><span class="n">notnull</span><span class="p">()]</span><span class="o">.</span><span class="n">emp_length_clean</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
<span class="n">loan_2</span><span class="o">.</span><span class="n">emp_length_clean</span><span class="o">.</span><span class="n">fillna</span><span class="p">(</span><span class="n">mean_emp_length_clean</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="n">grade</span> <span class="o">=</span> <span class="n">loan_2</span><span class="o">.</span><span class="n">grade</span>
<span class="n">mean_grade_clean</span> <span class="o">=</span> <span class="n">loan_2</span><span class="p">[</span><span class="n">loan_2</span><span class="o">.</span><span class="n">grade</span><span class="o">.</span><span class="n">notnull</span><span class="p">()]</span><span class="o">.</span><span class="n">grade_clean</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
<span class="n">loan_2</span><span class="o">.</span><span class="n">grade_clean</span><span class="o">.</span><span class="n">fillna</span><span class="p">(</span><span class="n">mean_grade_clean</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="running-logistic-regression">Running Logistic Regression</h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[354]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">statsmodels.api</span> <span class="kn">as</span> <span class="nn">sm</span>
<span class="kn">from</span> <span class="nn">sklearn</span> <span class="kn">import</span> <span class="n">linear_model</span><span class="p">,</span> <span class="n">datasets</span>
<span class="kn">from</span> <span class="nn">sklearn.cross_validation</span> <span class="kn">import</span> <span class="n">train_test_split</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[355]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">X_Variables</span> <span class="o">=</span> <span class="p">[</span><span class="s">&#39;funded_amnt&#39;</span><span class="p">,</span> <span class="s">&#39;annual_inc&#39;</span><span class="p">,</span> <span class="s">&#39;emp_length_clean&#39;</span><span class="p">,</span> <span class="s">&#39;grade_clean&#39;</span><span class="p">]</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">loan_2</span><span class="p">[</span><span class="n">X_Variables</span><span class="p">]</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[356]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">X</span> <span class="o">=</span> <span class="n">X</span><span class="o">.</span><span class="n">values</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[357]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">y</span> <span class="o">=</span> <span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;loan_status_clean&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">values</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[358]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">clf</span> <span class="o">=</span> <span class="n">linear_model</span><span class="o">.</span><span class="n">LogisticRegression</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[359]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">model</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[360]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">model</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[360]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
0.77943365368713136
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[361]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="n">X_Variables</span><span class="p">,</span><span class="n">model</span><span class="o">.</span><span class="n">coef_</span><span class="o">.</span><span class="n">T</span><span class="p">))</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[361]:</div>
<div class="output_html rendered_html output_subarea output_pyout">
<div style="max-height:1000px;max-width:1500px;overflow:auto;">
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td> funded_amnt</td>
<td> [-1.49218373653e-05]</td>
</tr>
<tr>
<th>1</th>
<td> annual_inc</td>
<td> [2.02376963817e-05]</td>
</tr>
<tr>
<th>2</th>
<td> emp_length_clean</td>
<td> [2.93841504621e-08]</td>
</tr>
<tr>
<th>3</th>
<td> grade_clean</td>
<td> [5.18210343946e-08]</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="train-test-split">Train test split</h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[362]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">Y_train</span><span class="p">,</span> <span class="n">Y_test</span> <span class="o">=</span> <span class="n">train_test_split</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="p">,</span><span class="n">test_size</span><span class="o">=</span><span class="mf">0.25</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[363]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span><span class="n">Y_train</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[363]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, penalty=&apos;l2&apos;, random_state=None, tol=0.0001)
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[364]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">clf</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span><span class="n">Y_train</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[364]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
0.78029597687068164
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[365]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">clf</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span><span class="n">Y_test</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[365]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
0.77684674751929439
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="decision-tree">Decision Tree</h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[366]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">sklearn</span> <span class="kn">import</span> <span class="n">tree</span>
<span class="n">clf</span> <span class="o">=</span> <span class="n">tree</span><span class="o">.</span><span class="n">DecisionTreeClassifier</span><span class="p">(</span><span class="n">criterion</span><span class="o">=</span><span class="s">&#39;entropy&#39;</span><span class="p">,</span> <span class="n">max_depth</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span><span class="n">min_samples_leaf</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="n">clf</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span><span class="n">Y_train</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[367]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">sklearn</span> <span class="kn">import</span> <span class="n">metrics</span>
<span class="k">def</span> <span class="nf">measure_performance</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="p">,</span><span class="n">clf</span><span class="p">,</span> <span class="n">show_accuracy</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span> <span class="n">show_classification_report</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span> <span class="n">show_confusion_matrix</span><span class="o">=</span><span class="bp">True</span><span class="p">):</span>
<span class="n">y_pred</span><span class="o">=</span><span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="k">if</span> <span class="n">show_accuracy</span><span class="p">:</span>
<span class="k">print</span> <span class="s">&quot;Accuracy:{0:.3f}&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">metrics</span><span class="o">.</span><span class="n">accuracy_score</span><span class="p">(</span><span class="n">y</span><span class="p">,</span><span class="n">y_pred</span><span class="p">)),</span><span class="s">&quot;</span><span class="se">\n</span><span class="s">&quot;</span>
<span class="k">if</span> <span class="n">show_classification_report</span><span class="p">:</span>
<span class="k">print</span> <span class="s">&quot;Classification report&quot;</span>
<span class="k">print</span> <span class="n">metrics</span><span class="o">.</span><span class="n">classification_report</span><span class="p">(</span><span class="n">y</span><span class="p">,</span><span class="n">y_pred</span><span class="p">),</span><span class="s">&quot;</span><span class="se">\n</span><span class="s">&quot;</span>
<span class="k">if</span> <span class="n">show_confusion_matrix</span><span class="p">:</span>
<span class="k">print</span> <span class="s">&quot;Confusion matrix&quot;</span>
<span class="k">print</span> <span class="n">metrics</span><span class="o">.</span><span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y</span><span class="p">,</span><span class="n">y_pred</span><span class="p">),</span><span class="s">&quot;</span><span class="se">\n</span><span class="s">&quot;</span>
<span class="n">measure_performance</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span><span class="n">Y_train</span><span class="p">,</span><span class="n">clf</span><span class="p">,</span> <span class="n">show_classification_report</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span> <span class="n">show_confusion_matrix</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>
Accuracy:0.780
Classification report
precision recall f1-score support
0 0.00 0.00 0.00 8967
1 0.78 1.00 0.88 31847
avg / total 0.61 0.78 0.68 40814
Confusion matrix
[[ 0 8967]
[ 0 31847]]
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>According to the confusion matrix, 9,074 of the loans are predicted as unpaid and 31,767 of loans are predicted as paid.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="kfold">KFold</h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Creating a kfold function</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[368]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">sklearn.cross_validation</span> <span class="kn">import</span> <span class="n">KFold</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[369]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">sklearn.cross_validation</span> <span class="kn">import</span> <span class="n">cross_val_score</span><span class="p">,</span> <span class="n">LeaveOneOut</span>
<span class="kn">from</span> <span class="nn">sklearn</span> <span class="kn">import</span> <span class="n">metrics</span>
<span class="kn">from</span> <span class="nn">scipy.stats</span> <span class="kn">import</span> <span class="n">sem</span>
<span class="k">def</span> <span class="nf">kfold_cv</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span><span class="n">Y_train</span><span class="p">,</span><span class="n">clf</span><span class="p">):</span>
<span class="c"># Perform Leave-One-Out cross validation</span>
<span class="c"># We are performing 1313 classifications!</span>
<span class="n">kf</span> <span class="o">=</span> <span class="n">KFold</span><span class="p">(</span><span class="n">X_train</span><span class="p">[:]</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">n_folds</span> <span class="o">=</span> <span class="mi">10</span><span class="p">)</span>
<span class="n">scores</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">X_train</span><span class="p">[:]</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="k">for</span> <span class="n">train_index</span><span class="p">,</span><span class="n">test_index</span> <span class="ow">in</span> <span class="n">kf</span><span class="p">:</span>
<span class="n">X_train_cv</span><span class="p">,</span> <span class="n">X_test_cv</span><span class="o">=</span> <span class="n">X_train</span><span class="p">[</span><span class="n">train_index</span><span class="p">],</span> <span class="n">X_train</span><span class="p">[</span><span class="n">test_index</span><span class="p">]</span>
<span class="n">y_train_cv</span><span class="p">,</span> <span class="n">y_test_cv</span><span class="o">=</span> <span class="n">Y_train</span><span class="p">[</span><span class="n">train_index</span><span class="p">],</span> <span class="n">Y_train</span><span class="p">[</span><span class="n">test_index</span><span class="p">]</span>
<span class="n">clf</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train_cv</span><span class="p">,</span><span class="n">y_train_cv</span><span class="p">)</span>
<span class="n">y_pred</span><span class="o">=</span><span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test_cv</span><span class="p">)</span>
<span class="n">scores</span><span class="p">[</span><span class="n">test_index</span><span class="p">]</span><span class="o">=</span><span class="n">metrics</span><span class="o">.</span><span class="n">accuracy_score</span><span class="p">(</span><span class="n">y_test_cv</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">int</span><span class="p">),</span> <span class="n">y_pred</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">int</span><span class="p">))</span>
<span class="k">print</span> <span class="p">(</span><span class="s">&quot;Mean score: {0:.3f} (+/-{1:.3f})&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">scores</span><span class="p">),</span> <span class="n">sem</span><span class="p">(</span><span class="n">scores</span><span class="p">))</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[370]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">kf</span> <span class="o">=</span> <span class="n">KFold</span><span class="p">(</span><span class="n">X_train</span><span class="p">[:]</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">n_folds</span> <span class="o">=</span> <span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h4 id="our-kfold-model-predictive-accuracy-is-77.9">Our kfold model predictive accuracy is 77.9%</h4>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[371]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">kfold_cv</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="p">,</span><span class="n">clf</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>
Mean score: 0.779 (+/-0.000)
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[372]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">y</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[372]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
0.77943365368713136
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="roc-and-area-under-the-curve-auc">ROC and Area Under the Curve (AUC)</h3>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[373]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">sklearn.ensemble</span> <span class="kn">import</span> <span class="n">RandomForestClassifier</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[374]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">predictions</span> <span class="o">=</span> <span class="p">[</span><span class="n">p</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict_proba</span><span class="p">(</span><span class="n">X_train</span><span class="p">)]</span>
<span class="n">fpr_p</span><span class="p">,</span> <span class="n">tpr_p</span><span class="p">,</span> <span class="n">thresholds_p</span> <span class="o">=</span> <span class="n">metrics</span><span class="o">.</span><span class="n">roc_curve</span><span class="p">(</span><span class="n">Y_train</span><span class="p">,</span><span class="n">predictions</span><span class="p">)</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
<span class="n">fig</span><span class="o">.</span><span class="n">set_figwidth</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">suptitle</span><span class="p">(</span><span class="s">&#39;AUC for Decision Tree Classifier Predicting Loans Paid&#39;</span><span class="p">)</span>
<span class="n">ax1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s">&#39;false positive rate&#39;</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s">&#39;true positive rate&#39;</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_p</span><span class="p">,</span> <span class="n">tpr_p</span><span class="p">)</span>
<span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">metrics</span><span class="o">.</span><span class="n">roc_curve</span><span class="p">(</span><span class="n">Y_train</span><span class="p">,</span><span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_train</span><span class="p">))</span>
<span class="n">ax2</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">ax2</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s">&#39;false positive rate&#39;</span><span class="p">)</span>
<span class="n">ax2</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s">&#39;true positive rate&#39;</span><span class="p">)</span>
<span class="n">ax2</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">)</span>
<span class="k">print</span> <span class="s">&quot;False-positive rate:&quot;</span><span class="p">,</span> <span class="n">fpr</span>
<span class="k">print</span> <span class="s">&quot;True-positive rate: &quot;</span><span class="p">,</span> <span class="n">tpr</span>
<span class="k">print</span> <span class="s">&quot;Thresholds: &quot;</span><span class="p">,</span> <span class="n">thresholds</span>
<span class="k">print</span> <span class="n">fig</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>
False-positive rate: [ 0. 1.]
True-positive rate: [ 0. 1.]
Thresholds: [2 1]
Figure(800x320)
</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzt3X18FNXZ//EPIFJBqbQUFarwK1K0gIqtClgkrU8oFES0
QkWxiLfYG9Gq+IBS0tsbFYsKilVAKQVEFMEWFQRLiGAQEUEefEgVwVvQopWKiEII2d8f16xZwm6y
SXb2zMx+369XXtndzM5es5tcueacM+eAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI
iPjoAqAMaJvwWB7wXIXtpgJ9vdv1gXuAfwJvAMuB7kn23RV4C1gNfKeG8W0G1nlfbwF3Ag1quK+r
gcsq+fmvgFtquO+47wNrvK9PgC3e7dXAQbXcd6JTgaXAu96+JwOHAFcAD2XwdV4AGnu3hwFvA9Op
/XvVCvgGe2/eAh4B6tRif4XAyd7txJiT6Q0cn3D/j8CZtXjtRJuB72VoXzUxFfgAe1/fADpVsX1R
Jfvpm+JnIiLik6eAeUB+wmN5HFiU/QW40Lt9j3e/vne/GXBxkn0/ClxajViSFS2bKP8n1wh4AvuH
EQajgBuSPF6vlvs9Avvnf1rCY32xz2EgmS3KEr0DNK/hcyt+tq2A9d7tesDLQJ8qnlOZJZQXZVWZ
in8FR+LvqwuJf6dnA2szsB+RwKrrOgCRDDoU+8c+FLgkzec0BAYD1wJ7vcc+BWZX2G4wVqjdibWs
APwJ+0e8Dvi191gesAz4O9ZiUpldwBCsde9w77HhwErsn09+wraXe4+9CfzVeywfuNG7Pcx7vbXA
TO+xKygvaFoBBd7P/wEc7T0+FRiPtTBspOp/7vHWn6lYkboCGAO0BhYAq7AWr3hL5Q+AZ7xjWgl0
SbLP//b291rCY3OwzyHRr7zXWw28hBVtAN0ob81bjRW7R3lxrME+o9O9bTdjrX+PAj8CXgSuZ//3
KlXM+dhn/wrln0Ey+7DW1mOxonIesNiLuSEwxTvW1UAv7zmHALOwlru53v24zZQXRom/B9OAzt77
8idvfz9i/yJtsxf3G9jvaeLn8hKwAWuVTHyNqrQi+e9Sqs8n3zvmJdjv2LXe442wVsA3sc8o/jdU
Ufx3bhn2njbyXjd+TL0Stv0q4TkTsJbXeCy1abkUEZFquhT7Zwv2Dzne0pBH8payvsAJ2D+RdCSe
bfcFFmGJvhnwIXCk91pfAS1T7CNZy8MarPvuHGCi91hdL+auQDugOOF58QIuseVqK+UtffGursRW
puco7+r8LfCsd3sq1roI1gX2Xoq4468XLwKnYsVG/B/dYuwfJlhhvNi7PZPygugYrOioaA72Dz2Z
xGM4POHxwcBY7/Y8rDgBK3rqYe/LCO+xuljBDvu//4m3E18nVcz5wOsk725uRXlLWUOsmDsXK/Y+
Soj9LspbWw/HPteGXryPeY93wE4Q4r+/8ThT/R5UbAVKvL8JK3oBrsEKMLCCJd5dey7W5Z+sKEv2
+5rqdynV55OPFbL1sYL431irYV9gUsJzknXRxv9OwU6KXsU+z8O8x5qy/+/sTu/7hZT/fR4F/Ae1
lEkIZHJMiIhr/YEHvNuzvfurgViK7csq+VlVTsf+ecewFp2XgVOAL7F/yB9WY1/xwuYc72uNd78R
5S0DTwPbvce/SLKPdV48f/O+KuqEtcgBzADu9W7HErZ/B+tKTEcMe49jWMHTmf1bFw/2vp/F/uOd
DsOKkK8r7C+dVoyjsffhSG//H3iPF2Gf+xNYK9NWrHiaghUCf6N63V7JYm6EHes8YE+K57XGPrv4
e7oQK8peovwzOwcrQG/y7jfACr+uWIsllLe+JqoD/JLUvweVvX9zve+rKS9MTqf892EhVrSkK9Xv
UqrPJ4a1iO0FPsf+XpphxzgWGz7wPFa4VVQHawW8w3velVjRfTf2npVhXdDN2L9l9QzK/z4/wVr2
RAJPRZlExfeAXwDtsURcz/s+HPtH0CTJ9v/GulOOwf7x7qR6Kv4jjBd4u6qxj8OwVpZ/evfvZv/W
A7Du2FT/dOOP98D+Ef0KuB1rban4nFT7KEljm7jEIjZeWNXFCoSOKeI7rcJrVPQW8FOs4KnMQ9g/
8eexLst87/Ex3mM9sALtXKyrqyvQE2vVu5/ybueqVBZzxWIy0UYOfA9iHPj7cCHJWyTTee9TbVPZ
yUW8iNzH/jm/Nt15yZ6b6vOB/d/LeBzvYe9XD+B/sdbVOyvsM4YVsHMTHrsCayE72dvXJg688Kay
90oksDSmTKLiImyMTSvg/2GF1ibsH/M/sbPp47xtWwInYmNZvgYex1op4t1/P/D2l0zi+JZLsL+h
H2AF0UrS+0cQ3+ZQ4M9Y988XWIvFIKxVBqCFt+8CrOsm3o1UscCs4x1vIXAr8F3Ku+vilgP9vNuX
Yt27NZHs+L7E3uuLErY5wbu9CBvvFndSkudPwLoPT014rA8HjgNqDHzs3b4i4fHWWGF3L9ZC1hZ7
Pz7DugQfJ3nBmCjxdSrGfGIVz013v2CfceK+43EtBX7j3W5P+fsXFyP178FOKr86M5kiysdwncOB
v1OJKh5Dqt+lVJ9Pqr+Jo4DdWAvnWFJf2FDx+Y2xVrF92IlYsqECSyn/+zzK204k8FSUSVT0o3xs
S9wc7/ESYAA2PmUN1s12JeUtY3dg/8DfxrqOngN2pHideIvEs1j3y1rsDH849o8iRtVdoku813kN
G2B9tff4S1iXy6vevp/Giqu3gdFYF+mbwH0V4qmHtQKtw7qoxnvxJ8ZyLTb+Zy32j/S6JMdU8XYy
qba9FHtP38QGj8cHXw8Dfua97lvAfyXZ56fY5zQWG5j9NlYo7KxwDPnYZ7cK+7zij1+HvZ9rsc/6
RWxs35vY+3Ex5V2DlR1L/H7FmK9O8ZzK9pdsv2AtQfWxz2oDNn0F2BQa8c/6j94xVpTq92AW9vv3
BjbQv7L44rH8EXuP12PF9L9I3VK8DhsX9xH2GaX6Xcon+eeT6m+iA/Y3sAYYyYGtZIlxJ3oC+3zW
YWPb3kmy7bNYS9zb2EUZy1PsW0RERMSpgymfyqQz6V/sIiI+0pgyEZHccwzWElsXa128ym04IiIi
IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi4sIUYBu2lEcqD2LLYayl6vXpRESy
RflLRCKlK5aoUiW184H53u3TgBXZCEpEJA3KXyISOa1IndQeBS5JuP8ucITfAYmIpKkVyl8ikiV1
Hb9+C+CjhPtbgB86ikVEpDqUv0Qko1wXZQB1KtyPOYlCRKT6lL9EJGMOcvz6W4GjE+7/0HtsP61b
t45t3Lgxa0GJSCBsBI51HUQllL9EJJUa5S/XLWXzgMu9252AL7CrnfazceNGYrFYJL5GjRrlPAYd
h44lCF9lZTFeeSVGnz4xmjaNcdttMbZsKf850Dp7qahGlL9C/BWVY4nKcYT9WD74IEbbtjGGD4+x
b1/N85ffLWVPAt2AptjYi1FAfe9nE7Erl84H3gd2Ab/1OR4Rcay0FObOhfvug88/h9//HqZPh0aN
XEd2AOUvEanSqlXQqxeMGAFDh9ZuX34XZf3T2KaWhyAiYfDll/DYYzB+PLRsCbfdBr/6FdSr5zqy
lJS/RKRS8+fDwIEwaRL06VP7/bkeU5Zz8vLyXIeQEVE5DtCx+O3DD+HBB2HqVDjnHHjmGTjlFNdR
SU0E8ferpqJyLFE5DgjfsUyeDCNHwrx50LlzZvZZ8cqhoIrFYrqoSSRMVq6E+++Hl16C3/4Whg2D
Y45J//l16tSB8OSoyih/iURILGbF2KxZsGABtGlz4DY1zV9qKRORjNm3z84a778fPvoIrr/emvUb
N3YdmYhI7ZWUwODBUFwMy5dDs2aZ3b+KMhGpta++su7JceOgaVO48UYbX3GQMoyIRMSOHdC3r12U
tGQJNGyY+ddwPSWGiITY1q1w663QqhUUFsK0abBiBVx8sQoyEYmOLVuga1do29auHvejIAMVZSJS
A2vWwGWXQYcO8M03Nn7smWegSxfXkYmIZNb69ZbbBgyACRP8vWJc57IikpayMrv8+/774b334Npr
4aGH4PDDXUcmIuKPggLo18+m8umfziQ5taSiTEQq9fXXNrnrAw/YWIobb7Tuyfr1q36uiEhYzZhh
+W72bOjWLTuvqaJMRJL617/gz3+GRx+FTp1g4kQ44wyoE4VJKkREUojF4J57LOcVFEC7dtl7bRVl
IrKfDRusi/LZZ625/pVX4Mc/dh2ViIj/SkttqaQVK2zKi+bNs/v6KspEhFjMJnm97z5Yt86S0nvv
2fQWIiK5YNcuGz+2Zw8sXepmfkUVZSI5bM8eeOIJaxmrWxduuMEmf23QwHVkIiLZs20b9OwJ7dvb
hNeuxsyqKBPJQf/+NzzyiI0ZO+kkm/T1zDM1XkxEck9xMZx3Hlx+OYwa5TYPap4ykRzy7rswZIit
1fbhh/CPf9jabWedpYJMRHJPUZFdWXn77ZCf7z4PqqVMJOJiMZtt//77bZLXa66x4uyII1xHJiLi
zpw5dpI6fTp07+46GqOiTCSiSkrg6aetGPvmGxsv9vTTcMghriMTEXFr3DgYOxYWLYKOHV1HU05F
mUjE/Oc/Nr/OhAlw3HHwv/9rZ4F1NVhBRHJcWZlNCLtwoXVdtmzpOqL9qSgTiYiNG+3s74kn4Fe/
gueft0H8IiICu3fbmr2ffmoFWZMmriM6kM6dRUIsFrPJXS+80GbdP+wwm/z1r39VQSYiErd9O5x9
ti0mvmhRMAsyUFEmEkqlpfDUU1aI/fa3dvXk5s1w113Zn4FaRCTINm2CLl2gc2eYOTPY8zCq+1Ik
ZObPt0H7P/gBjBhhEx7Wq+c6KhGR4Fm1Cnr1slw5dKjraKqmokwkJN5+2waofvCBXVF5/vnu59QR
EQmq+fNh4ECbob9PH9fRpEfdlyIB9/nncO21kJdnV1Fu2AA9eqggExFJZfJkGDTIlo0LS0EGKspE
AmvvXnjwQTj+eBvQ/847cN117tZkExEJulgM7rgDxoyBZctsHFmYqPtSJIDi48ZatoQlS6BdO9cR
iYgEW0kJDB5sa1kuXw7NmrmOqPpUlIkEiMaNiYhU344d0LcvNGpkJ7ING7qOqGbUfSkSAJ9/DsOG
adyYiEh1bdkCXbtC27Ywd254CzJQUSbiVOK4sbIyaynTuDERkfSsX29zkA0YYEvLhX16IHVfijiy
YIGNGzv6aI0bExGproIC6NcPxo+H/v1dR5MZKspEskzjxkREamfGDMujs2dDt26uo8kcdV+KZEl8
3Fi3bnDuudbsrnFjIiLpi8Xg7rtt2ouCgmgVZKCiTMR3FceNvfMOXH89HHyw68hERMKjtBSuucbW
/V2+PJpDPtR9KeIjjRsTEam9Xbts/NiePbB0KTRu7Doif6goE/HBO+/YeIeNG+G++9RNKSJSU9u2
Qc+e0L69rWMZ5avT1X0pkkHbt9u4sTPOgHPOsXFjPXuqIBMRqYniYlsqqUcPmDIl2gUZqCgTyYi9
e+Ghh+C442DfPo0bExGpraIiG8h/++2Qn58bJ7d+F2XdgXeB94Bbkvy8KfAi8CawAbjC53hEMm7B
AjjhBHjuObsa6OGHoWlT11FJhiiHiTgwZw5ccAFMnQpXXuk6muzxs+6sBxQDZwFbgdeB/sA7Cdvk
Aw2A27DkVgwcAZRW2FcsFov5GKpI9RUXw+9/r3Fjfqljb6bLdzRTOUz5S6Qaxo2DsWPtRLdjR9fR
1ExN85efLWWnAu8Dm4G9wCygd4VtPgHi11A0Bj7nwIJMJFBKSmD0aPj5z+GsszRuLMKUw0SyqKzM
TnQnTbKuy7AWZLXh59WXLYCPEu5vAU6rsM1koAD4GDgM+LWP8YjU2muvweDBcMwx8MYb9l0iSzlM
JEt274bLLoNPP7WCrEkT1xG54WdRlk57/QhsLEYe0Bp4CTgR2Flxw/z8/G9v5+XlkZeXl4EQRdLz
1Vc2g/RTT8EDD8All6hlLNMKCwspLCx0HUaijOUw5S+R1LZvh969oUULWLQIGjRwHVH1ZSp/+flv
pRM23qK7d/82oAwYk7DNfGA0UOTdX4wNpl1VYV8akyHOLFhgs0jn5dnYse9/33VEuSEAY8oylcOU
v0RS2LQJzjsPevWCe+6BuhGZEyKIY8pWAW2AVsDBwCXAvArbvIsNogUbHNsW+MDHmETS9tlnMGAA
DB0KkyfbVUAqyHKKcpiIj1atgtNPtxx7773RKchqw8+3oBQYCiwE3gaewq5autr7ArgL+BmwFvgH
cDOw3ceYRKoUi8H06TZ79FFHwbp1cPbZrqMSB5TDRHwyf761kD38sBVlYsIyKkbN/5IVmzbBkCE2
2PSxx+CnP3UdUe4KQPdlpih/iSSYPBlGjoRnn7XZ+qMoiN2XIqGxb58N4D/lFPjlL2HlShVkIiKZ
FIvZBVNjxsCyZdEtyGpDC5JLzlu7Fq66Cg49FFasgGOPdR2RiEi0lJTYdELFxbB8OTRr5jqiYFJL
meSsb76BESNsvNiQIbB4sQoyEZFM27EDzj/fvi9ZooKsMirKJCe9/DKceCK8/74N5B80SPOOiYhk
2pYt0LUrtG0Lc+dCw4auIwo2dV9KTvniC7j5Zpt7bMIEm7BQREQyb/16WxN46FAYPlwnvulQS5nk
jLlzoV07OOgg2LBBBZmIiF8KCuDMM21Q/803qyBLl1rKJPK2brUztXfftWWSfv5z1xGJiETXjBlw
440wezZ06+Y6mnBRS5lEVlkZTJwIJ50EHTrAmjUqyERE/BKLwd1327QXBQUqyGpCLWUSScXFNs1F
SYld7dO+veuIRESiq7TUeiRWrLApL5o3dx1ROKmlTCKlpARGj7b11C6+GIqKVJCJiPhp1y7o0wc+
+ACWLlVBVhtqKZPIeO01m5zwmGNg9Wr7LiIi/tm2DXr2tJPfSZOgfn3XEYWbWsok9L76Cq6/Hi64
wCaDff55FWQiIn4rLralknr0gClTVJBlgooyCbUXX7QztC++sGku+vfXpdciIn4rKrKB/LffDvn5
yruZou5LCaXPPoPf/94GlE6ebEsliYiI/+bMsaXppk+H7t1dRxMtaimTUInFbA6cDh3gyCNtxmgV
ZCIi2TFuHFx3HSxapILMD2opk9DYvNnOzv71Lxs39rOfuY5IRCQ3lJXZhLALF1rXZcuWriOKJrWU
SeDt2wcPPGBFWF4evP66CjIRkWzZvRsuucSualdB5i+1lEmgrVtn01w0agSvvgpt2riOSEQkd2zf
busEt2hhXZYNGriOKNrUUiaBtHu3XdVz1llw9dW2ZIcKMhGR7Nm0Cbp0sWkvZs5UQZYNKsokcF5+
GU48Ef75T1i7Fq68Updbi4hk06pVtjLK0KFw771QV9VCVqj7UgLjiy/g5pth/nyYMMEmgxURkeya
Px8GDrQZ+vv0cR1Nbkmn9q0LXAb8wbt/DHCqbxFJTpo7F9q1g3r14K23VJBJRimHiaRp8mQYNAjm
zVNB5kI6nUKPAmXAL4HjgO8Bi4BsXv8Wi8ViWXw5yZaPP7bm8bfftmTQtavriCQo6lifdSY6rl3n
MOUvCbxYDEaOhFmzYMECjeGtrZrmr3Rayk4Dfgd8493fDmiFK6mVWMyaxk880ZZJevNNFWTiG+Uw
kUqUlFh35Usv2SopKsjcSWdMWQlQL+H+D7CzTpEa2bXLBu+/955dVdmhg+uIJOKUw0RS2LED+va1
aYeWLIGGDV1HlNvSaSl7CHgWaAbcBRQBd/sZlETXxo12efUhh8Arr6ggk6xQDhNJYssW66Fo29bG
9aogcy/d/s7jgTO924uBd/wJJyWNyYiAF1+0JvJRo+CaazTNhVQug2PKwG0OU/6SwFm/Hnr0sDG9
w4crH2daTfNXOk+Yjl25VNVjflJSC7FYDO6+Gx5+GJ56Cn7+c9cRSRhksChzncOUvyRQCgqgXz8Y
Px7693cdTTTVNH+lM6asfZLn/LS6LyS56csv4Yor4JNPYOVKW6pDJMuUw0Q8M2bYwuKzZ0O3bq6j
kYoqG1M2AtgJdPC+x78+Beb5H5qEXXExnHYaNGsGhYUqyCTrlMNEPPEeizvusJYyFWTBlE7T2j3A
rX4HUgU1/4fM3/8OV10Fd91lC4qLVFcGuy9d5zDlL3GqtNTGjq1YYbP1N2/uOqLo83NMGUAToA3w
nYTHllb3xWpBSS0kysogPx+mTrXm8dNOcx2RhFWGB/q7zGHKX+LMrl02fmzPHnjmGWjc2HVEucHP
MWVXAcOAo4E1QCfgVWx2bJFvffEFDBhg48hefx2OOMJ1RCKAcpjkqG3boGdPm6B70iSorymTAy+d
ecquw9aJ2wz8AugI7PAxJgmhDRvglFOgdWtYvFgFmQSKcpjknOJimxOyRw+YMkUFWVik01K2m/Ll
Sb4DvAu09S0iCZ3Zs+F3v4P774fLsjlRikh6lMMkpxQV2Sz9o0fb6ikSHukUZVuw8Rh/A14C/oOd
cUqO27cPRoyAp5+GhQvh5JNdRySSlHKY5Iw5c2DIEJg+Hbp3dx2NVFd1B6HlAY2BF7H15KrSHRiH
rTv3GDAmxT4fwBYI/rd3vyINlA2Yzz+3SQfLymDWLGja1HVEEjUZHugfl0f2c5jyl2TFuHEwdiw8
9xx07Og6mtzm19WXBwEbgONqEFM9oBg4C9gKvA70Z//lTQ7H1qE7FzubbYoltYqU1AJkzRq48EK4
+GKb8uKgdNpbRaopQ0VZEHKY8pf4qqzMJoRduBAWLICWLV1HJDXNX1UN9C/FklJNPuJTgfexboK9
wCygd4VtfgPMwZIZJC/IJEBmzIBzzoF77oF771VBJoGnHCaRtns3XHIJrF5tY8lUkIVbOv9Svwe8
BawEdnmPxYBeVTyvBfBRwv0tQMVZq9pgTf5LgMOA8diadBIwe/faorXPP2+zQXfo4DoikbQph0kk
bd8OvXvbaimLFkGDBq4jktpKpygbmeSxdNri09mmPnAycCbQEJs7aAXwXsUN8/Pzv72dl5dHXl5e
GruXTPj0U/j1r6FhQ5t/rEkT1xFJFBUWFlJYWOjHrp3nMOUvybRNm+C886BXL+u5qJvOBFfim0zl
r0wPok3UCcjHBsoC3AaUsf9A2VuAQ7ztwAbSvgg8U2FfGpPhyOuv26XVAwfaTP316rmOSHKFTwP9
qyNTOUz5SzJq1SorxkaMsOWTJHj8GlNWG6uwpv1WwMHAJRy4CPDfgZ9jA2obYl0Db/sYk1TDtGk2
8eCDD8Kdd6ogk5yjHCaBM3++tZA9/LAKsijyc5h2KTAUWIglrMexq5au9n4+EZvE8UVgHXYGOhkl
tECYPNkKsZdfhuOPdx2NiBPKYRIokyfDyJEwb57N1i/Rk27TWkNs3bhiH2OpjJr/syhekBUUwLHH
uo5GclWGuy9d5jDlL6mVWMyKsVmzbMqLNm1cRyRV8bP7she2iO9C735HDmzCl4hQQSYRpBwmoVVS
YmN6X3oJli9XQRZ16RRl+dg4if9499cAP/IrIHHnscdUkEkk5aMcJiG0Ywecf759X7IEmjVzHZH4
LZ2ibC/wRYXHynyIRRx67DH44x9h8WIVZBI5ymESOlu2QNeu0LYtzJ1rUxJJ9KVTlL0FXIpdFNAG
eAhY7mdQkl3xgqygQE3jEknKYRIq69dDly4wYABMmKAr33NJOkXZtUA7YA/wJPAlcL2fQUn2PP64
CjKJPOUwCY2CAjjzTBgzBm6+Geq4nKlPsi6dj/tkYLXfgVRBVy/54PHHbUJYFWQSRBm8+tJ1DlP+
krTMmGELiz/9NHTr5joaqY2a5q90nlAIHAnMBp4CNlT3RTJASS3DVJBJ0GWwKCvEbQ5T/pJKxWK2
VNLEifDCC9CuneuIpLb8LMoAjgJ+7X01Bp4G7qzui9WCkloGTZkCo0apIJNgy/A8ZS5zmPKXpFRa
ajPzr1hhs/U3b+46IskEv4uyuA7YWm+XYAvxZouSWobEC7LFi+HHP3YdjUhqPq196SKHKX9JUrt2
Qb9+sGcPPPMMNG7sOiLJFD8nj/0JNs/PBmACdtVSi+q+kLingkxylHKYBM62bZCXB02bWpelCjKB
9Kq4FcAsbDzGVn/DSUlnmrWkgkzCJoMtZa5zmPKX7Ke42BYVv/xyy8u6wjJ6stV96YqSWi1MmQJ/
+IONIVNBJmHhU/elC8pf8q2iIujbF0aPhiuvdB2N+KWm+eugSn42G7gYWJ/kZzHghOq+mGSfCjLJ
YcphEihz5sCQITB9OnTv7joaCaLKqrjmwMdAyyTbxYAP/QoqCZ1p1sBf/gIjR6ogk3DKQEtZUHKY
8pcwbhyMHQvPPQcdO7qORvzmx0D/j73vvwM2V/j6XXVfSLIrXpBpDJnkMOUwca6sDH7/e5g0ybou
VZBJZdK5+vKcJI+dn+lAJHMSC7K2bV1HI+Kccpg4sXs3XHIJrF5tBVnLlq4jkqCrbEzZNdjZZGv2
H5NxGFDkZ1BSc1OnqiAT8SiHiTPbt0Pv3tCiBSxaBA0auI5IwqCy/s7vAk2Ae7DJFuPb7gQ+9zmu
ijQmIw1Tp8Idd6ggk2jIwJiyoOQw5a8cs2mTTXnRq5ctn1Q3nT4piRQ/psRoDHwJfB8bFFvR9uq+
WC0oqVVBBZlETQaKsqDkMOWvHLJqlRVjI0bY8kmSm/woyl4AemCDYpNllP9X3RerBSW1Svz1r5YA
CgpUkEl0ZKAoC0oOU/7KEfPnw8CBNqi/Tx/X0YhLmjw2R8ULssWL4bjjXEcjkjmaPFbCZPJkG8/7
7LPQubPraMQ1P9e+PB041Lt9GXA/Nu+POKaCTCQtymHim1jMho6MGQPLlqkgk9pJpyh7FPgaOBG4
AfgAmOZnUFI1FWQiaVMOE1+UlFh35UsvwfLl0KaN64gk7NIpykqBMuAC4GFgAnZJuTgybZoKMpFq
UA6TjNuxA84/374vWQLNmrmOSKIgnaJsJzACGAA8D9QD6vsZlKQ2bRrcdpsKMpFqUA6TjNqyBbp2
tQur5s7bh2C3AAAZWElEQVSFhg1dRyRRkU5RdgmwBxgE/AtoAfzJz6AkORVkIjWiHCYZs349dOkC
AwbAhAlQr57riCRK0r0y4EjgFOyy8pXAp75FlFzOX700fTrceqsKMskdGb760mUOy/n8FRUFBdCv
H4wfD/37u45GgszPqy9/DbwGXOzdXundliyJF2T/+IcKMpEaUA6TWpsxwwqx2bNVkIl/0qni1gFn
UX5m+QNgMXCCX0ElkbNnmokF2fHHu45GJHsy2FLmOoflbP6KgljMlkqaOBFeeAHatXMdkYRBTfNX
ZQuSf7tv4LOE+5/X5IWk+mbMUEEmkgHKYVIjpaW2VNKKFTblRfPmriOSqEunKHsRWAjMxBLZJcAC
P4MSK8huucXmv1FBJlIrymFSbbt22fixPXtg6VJo3Nh1RJIL0jlbrANciM2KDbAMeNa3iJLLqeb/
xILsJz9xHY2IGxnsvnSdw3Iqf0XBtm3Qsye0b2/rWNbXBCpSTX52X8aA5dgEjPErl8QnM2bAzTdb
l6UKMpGMUA6TtBUXw3nnweWXw6hRUEcd3ZJF6Vx9ORi7culCoK93+0o/g8pVKshEfKEcJmkpKoJu
3eD22yE/XwWZZF86v3L/BDpjg2MBvg+8CvzYr6CSiHzz/xNPwPDhKshE4jLYfek6h0U+f0XBnDkw
ZIhd8d69u+toJOz8nKfs38BXCfe/8h5LR3fgXeA94JZKtjsF61q4MM39RooKMhFfKYdJpcaNg+uu
g0WLVJCJW+mMKdsIrAD+7t3vjc37cyM2PuP+FM+rhy38exawFXgdmAe8k2S7MdgVUjnXWBwvyDSo
X8Q3ymGSVFkZ3HgjLFxoXZctW7qOSHJdukXZRix5gSW2GHBoFc87FXgf2Ozdn4Ulw4oJ7VrgGexM
M6fMmlVekGlCQhHfKIfJAXbvhssug08/tYKsSRPXEYmkV5Tl13DfLYCPEu5vAU5Lsk1v4JeUr0uX
E5Yvh2HDbC1LFWQivsqv4fOUwyJq+3bo3RtatLAuywYNXEckYtIZU1ZT6SSnccCt3rZ1yJGm///7
P7joIpg6FTp0cB2NiKSgHBZBmzZBly7QuTPMnKmCTIIlnZaymtoKHJ1w/2jsTDPRT7EuAYCmwHnA
Xmzcxn7y8/O/vZ2Xl0deXl7mIs2ir76CXr3gppvg/PNdRyMSHIWFhRQWFroOI1HGclhU8lfYrVpl
+XfECFs+SSRTMpW//DyrOwgoBs4EPsYmbOzPgeMx4v4CPAfMTfKzSFxSXlZmLWSHHw6PP645cEQq
k8EpMWoqUzksEvkr7ObPh4EDbYb+Pn1cRyNR5+eUGG2BxcBb3v0TgDvSeF4pMBRbc+5t4CksmV3t
feWcUaPgs8/gkUdUkIlkkXJYjps8GQYNgnnzVJBJsKVTGiwFhgOPAh2952wAsjk8PfRnmk8+aU3m
r70GzZq5jkYk+DLYUuY6h4U+f4VVLAYjR9qV7gsWQJs2riOSXOHn2pcNsWVJ4mLYmAlJ08qV5Vda
qiATyTrlsBxUUgKDB9talsuXK/dKOKRTlH0GHJtw/yLgE3/CiZ6tW+HCC20M2QknuI5GJCcph+WY
HTugb19o1AiWLIGGDV1HJJKedJrWWgOTgC7Af4BNwKWUT6iYDaFs/v/6azjjDBvcf+utrqMRCZcM
dl+6zmGhzF9htWWLXdnetSs8+CDUq+c6IslFNc1f1XlCI+zCgJ3VfZEMCF1Si8WgXz84+GCYNk0D
+0Wqy4erL13lsNDlr7Bavx569LDpLoYPV94Vd/wcUzaK8okREzPL/1T3xXLJnXfChx9CYaESg4hj
ymE5oKDAToTHj4f+/V1HI1Iz6RRluyhPZIcAPbHLwyWF2bPhscdsgP93vuM6GpGcpxwWcTNm2MLi
s2dDt26uoxGpuZq04TQAFgHZ/NUPTfP/6tVw7rm2nlrHjq6jEQkvHyePzXYOC03+CptYDO65ByZO
hBde0DrCEhx+dl9W1AhbhFcq+OQTuOACePRRFWQiAaYcFgGlpTZ2bMUKm/KieXPXEYnUXjpF2QbK
m/7rAs3QWIwDfPONFWRXXWWXYotIYCiHRcyuXTZ+bM8eWLoUGjd2HZFIZqTTtNYyYbtSYBvZn3gx
8M3/l19ukxU++aQG9otkQga7L13nsMDnrzDZtg169oT27W0dy/r1XUckciC/ui8PwtZ9O64GMeWM
OXNsUP/q1SrIRAJGOSxCiovhvPPsJHjUKOVbiZ6qFiQvBYqxM01JYvt2uPZam7Ffs0aLBI5yWEQU
FdmVlbffDvn5KsgkmtIZU/Y94C1gJXZpOdj4jF5+BRUmN95oY8hOP911JCKSgnJYyM2ZA0OGwPTp
0L2762hE/JNOUXYHB/aLaoAEsHChrau2YYPrSESkEsphITZuHIwdq2mGJDekU5T1AG6u8NgY4OXM
hxMeO3fC1Vfb/DiHHuo6GhGphHJYCJWVwU03wYsvWtdlS3VASw5Ip1d+DVDx/GQ90CHz4aQUuKuX
hg2DL7+EqVNdRyISTRm8+tJ1Dgtc/gq63bttMP+2bfC3v0GTJq4jEqkeP66+vAb4HdAaS2BxhwFF
1X2hKCkqgmeeUbelSMAph4XQ9u3Quze0aGFdlg0auI5IJHsqq+K+CzQB7gFuSdh2J/C5z3FVFJgz
zd274aSTYPRoTRIr4qcMtJQFJYcFJn8F3aZNNuVFr162fFLdquYHEAmomuavsFxUHJikdvvt8O67
djWQiPjHx7Uvsy0w+SvIVq2yYmzECFs+SSTMsrn2Zc56802YPBnWrnUdiYhIdMyfDwMH2gz9ffq4
jkbEHTUOp6m0FAYNgjFj4KijXEcjIhINkydbbp03TwWZiFrK0nTffdC0KVxxhetIRETCLxaDkSNh
1ixYtgzatHEdkYh7YRmv4XRMRnGxzdi/ahW0auUsDJGcojFl0VVSAoMHW2597jlo1sx1RCKZpTFl
Pikrs+Txhz+oIBMRqa0dO+zK9UaNbEUUrRksUk5jyqrw6KOwbx/893+7jkREJNy2bIGuXaFtW5g7
VwWZSEVh6Rpw0vz/f/8HJ58MS5fCT36S9ZcXyWnqvoyW9euhRw+b7mL4cKgThU9WJAV1X2ZYLAZD
hsD116sgExGpjYIC6NcPxo+H/v1dRyMSXOq+TGHGDNi6FW65xXUkIiLhNWOGFWKzZ6sgE6lKWBqQ
s9r8v20bnHCCTWj4059m7WVFJIG6L8MtFrOlkiZOhBdegHbtXEckkj3qvsygYcNsPjIVZCIi1Vda
amPHVqyA5cuheXPXEYmEg4qyCv72N1izBqZOdR2JiEj47Npl48f27LGLpBo3dh2RSHhoTFmCL76w
s7vHHoNDDnEdjYhIuGzbBnl5tvrJCy+oIBOpLhVlCW66CXr1gjPOcB2JiEi4FBdD58427cWUKVC/
vuuIRMJH3ZeexYth0SLYsMF1JCIi4VJUZLP0jx4NV17pOhqR8FJRho2BuOoqeOQRNbeLiFTHnDk2
p+P06dC9u+toRMItLJeb+3pJ+Q03wKef2nw6IhIMmhIj+MaNg7FjbVHxjh1dRyMSHDXNX9kYU9Yd
eBd4D0g2FeulwFpgHVAEnJCFmL61YgU8+aQlFxGRCgKdv1wpK7OT2UmTrOtSBZlIZvjdfVkPmACc
BWwFXgfmAe8kbPMBcAawA0uAk4BOPscF2CXbV15pBVnTptl4RREJkUDnL1d274bLL7crLYuKoEkT
1xGJRIffLWWnAu8Dm4G9wCygd4VtXsUSGsBrwA99julbd90Fxx4Lv/51tl5RREIk0PnLhe3b4eyz
oW5duzBKBZlIZvldlLUAPkq4v8V7LJUrgfm+RuRZtw7+/Gf7qhOFUSsikmmBzV8ubNoEXbrYtBcz
Z0KDBq4jEokev7svqzO69RfAIOD0ZD/Mz8//9nZeXh55eXk1Dqq01Lot77oLWlSWYkUkawoLCyks
LHQdRqJA5i8XVq2yORxHjLAJtkVkf5nKX363EXUC8rGxFgC3AWXAmArbnQDM9bZ7P8l+Mnr10tix
ttj44sVqJRMJqgBcfRnI/JVt8+fDwIE2qL9PH9fRiIRDTfOX3wnvIKAYOBP4GFgJ9Gf/gbLHAAXA
AGBFiv1kLKm9/z506gSvvQatW2dklyLigwAUZYHLX9k2eTKMHAnPPmvdliKSnprmL7+7L0uBocBC
7Eqmx7GEdrX384nAH4AmwCPeY3uxAbYZV1YGgwdbE7wKMhGpQqDyVzbFYlaMzZoFy5ZBmzauIxLJ
DWHpvMvImeakSfD447B8OdSrl4GoRMQ3AWgpy5RQtZSVlNjJa3GxTQrbrJnriETCJ6jdl5lS66S2
ZYtNcLhkCbRvn6GoRMQ3Ksqyb8cOW8OyUSObVLthQ9cRiYRTkGf0dy4Ws7XZhg5VQSYiksyWLdC1
K7RtC3PnqiATcSEnirJZs+DDD+G221xHIiISPOvX2xxkAwbAhAka3iHiSli6Bmrc/P/ZZ9ChA8yb
B6eGfvitSO5Q92V2FBRAv34wfjz07+86GpFo0JiyFC69FI48Eu67L8MRiYivVJT5b8YMuPFGePpp
6NbNdTQi0RHUKTGcev55m49s3TrXkYiIBEcsBvfcAxMnWktZu3auIxIRiHBRtmMHXHMNTJumAasi
InGlpXbR04oVNj1Q8+auIxKRuLB0DVS7+X/IEJssdtIknyISEV+p+zLzdu2y8WN79sAzz0Djxq4j
EokmdV8mKCyEF16ADRtcRyIiEgzbtkHPnjYt0KRJUL++64hEpKLITYnx9ddw1VXw5z/Dd7/rOhoR
EfeKi23tyh49YMoUFWQiQRWWroG0m/+HD7dJEJ980ueIRMRX6r7MjKIim6V/9Gi48kpnYYjkFHVf
Aq+/bgP71693HYmIiHtz5tj42unToXt319GISFUiU5SVlNhZ4P33awFdEZFx42DsWFi0yNb9FZHg
i0xR9vDD8MMfwm9+4zoSERF3ysrgppvgxRet67JlS9cRiUi6IlGUxWLw6KMwdSrUicIIFBGRGti9
Gy6/3K60LCqCJk1cRyQi1RGJqy+LiqBuXejUyXUkIiJubN8OZ59tuXDRIhVkImEUiaLs8cdtPJla
yUQkF23aBF262LQXM2dCgwauIxKRmghLGZPykvKdO+Hoo20eniOOyHJUIuIbTYmRnlWroFcvGDHC
lk8SEfdydkqMp56CX/xCBZmI5J7582HgQJuhv08f19GISG2FvvtyyhQYNMh1FCIi2TV5suW+efNU
kIlERahbyt55BzZvhvPOcx2JiEh2xGIwciTMmgXLlkGbNq4jEpFMCXVRNmWKXf59UKiPQkQkPSUl
MHiwjaFdvlwTZYtETWjLmb17bUmlZctcRyIi4r8dO2wNy0aNYMkSaNjQdUQikmmhHVP2wgvw4x/b
l4hIlG3ZAl27Qtu2MHeuCjKRqAptURafm0xEJMrWr7c5yAYMgAkToF491xGJiF/CMgfQfvP8fPwx
tGsHH30Ehx7qMCoR8Y3mKYOCAujXD8aPh/79MxyViPimpvkrlC1l06bBRRepIBOR6Joxwwqx2bNV
kInkitAN9I/F7KrLadNcRyIiknmxGNxzD0ycaC1l7dq5jkhEsiV0Rdkrr9gUGKed5joSEZHMKi21
pZJWrLApL5o3dx2RiGRT6IoyLT4uIlG0a5eNH9uzB5YuhcaNXUckItkWltImFovF+PJLOOYY+Oc/
NWmiSNTl0kD/bdugZ09o397WsaxfP0uRiYgvcmKg/1NPwS9/qYJMRKKjuBg6d4YePWy8rAoykdwV
qqJMi4+LSJQUFUG3bnD77ZCfr2EZIrkuNGPK3n4bPvwQund3HYmISO3NmQNDhsD06cprImJCU5Q9
/jgMHKjFx0Uk/MaNg7FjYdEi6NjRdTQiEhR+d192B94F3gNuSbHNg97P1wIp09OMGeq6FJGsy1gO
AygrgxtusMH8RUUqyERkf34WZfWACVhS+wnQHzi+wjbnA8cCbYD/Ah5JtbO2baFNG38CzabCwkLX
IWREVI4DdCySUkZz2O7dNuXFG29YQdaypT9B+ylKv19ROZaoHAdE61hqys+i7FTgfWAzsBeYBfSu
sE0v4K/e7deAw4Ejku0sKouPR+WXLirHAToWSSljOWz7djj7bKhb17osmzTxLWZfRen3KyrHEpXj
gGgdS035WZS1AD5KuL/Fe6yqbX6YbGcXXZTR2EREqpKxHNali017MXMmNGiQ8ThFJCL8HDZf+WyJ
5SpeBJ70eY0a1S4YEZFqylgOGzrUvkREXOkEvJhw/zYOHCj7KNAv4f67JO++fB9LdPrSl75y5+t9
3MpUDlP+0pe+cu/Ldf46wEHARqAVcDDwJskHyc73bncCVmQrOBGRKiiHiUiknAcUYxXjbd5jV3tf
cRO8n68FTs5qdCIilVMOExEREREREXcyOlGjQ1Udx6VY/OuAIuCE7IVWbel8JgCnAKXAhdkIqobS
OZY8YA2wASjMSlQ1U9WxNMXGQ72JHcsVWYuseqYA24D1lWwThr95iE7+gujkMOWvYFL+CoF6WBdA
K6A+VY/fOI1gjt9I5zg6A9/1bncnmMcB6R1LfLsC4Hmgb7aCq6Z0juVw4C3KpzRomq3gqimdY8kH
7vZuNwU+J5jLqnXFElWqpBaGv3mITv6C6OQw5a9gUv6qhN/LLFVHRiebdSid43gV2OHdfo0Uc7MF
QDrHAnAt8AzwWdYiq750juU3wBxsrimAf2cruGpK51g+ARp7txtjSa00S/FVxzLgP5X8PAx/8xCd
/AXRyWHKX8Gk/FWJIBVlGZ1s1qF0jiPRlZRX0kGT7mfSm/LlZWJZiKsm0jmWNsD3gCXAKuCy7IRW
bekcy2SgHfAx1mx+XXZCy7gw/M1DdPIXRCeHKX8Fk/JXJYLUHJjuH0Nak806VJ14fgEMAk73KZba
SudYxgG3etvW4cDPJyjSOZb62NVzZwINsdaAFdh4gCBJ51hGYN0CeUBr4CXgRGCnf2H5Juh/8xCd
/AXRyWHKX8pfQVCtv/kgFWVbgaMT7h9NeTNsqm1+6D0WJOkcB9jA2MnYeIzKmj9dSudYfoo1P4P1
/Z+HNUnP8z266knnWD7Cmvy/8b6WYokgaEktnWPpAoz2bm8ENgFtsTPoMAnD3zxEJ39BdHKY8pfy
l2th+ZtPKioTNaZzHMdgfeqdshpZ9aVzLIn+QnCvXkrnWI4D/oENRG2IDd78SfZCTFs6x3I/MMq7
fQSW9L6XpfiqqxXpDZQN6t88RCd/QXRymPKX8lc2tCL8+SulqEzUWNVxPIYNXFzjfa3MdoDVkM5n
EhfkpAbpHctN2BVM64FhWY2ueqo6lqbAc9jfyXpsEHAQPYmNGynBzvQHEc6/eYhO/oLo5DDlr2BS
/hIREREREREREREREREREREREREREREREREREREREREREREJpmHA28D0SrbJw+aICYJfAbd4ty9g
/0kG/4gtKZIt3YDOWXw9ETmQcljNKYeJBMw7QPMqtskjOAkt0VSgr8+vUa+Sn+UDN/r8+iJSOeWw
yimHiYTEo8AeYB1wPXAKsBxYDRQBP/a2y6M8oXWjfNbu1UAj7/Hh2Czea7E/9GS+wpbL2IAt/9HU
e/wkbLmJtcBc4HDv8WHYbNRrgZneY1cAD2Fnd58DH3hx/IjyBHcu8HTC6ybGf453jG942zTiQIXA
A8DrwA1ATy++1dhCuM2wpTQ+wZb7WIMtwPwD4BnvfViJrdcmIv5RDlMOE4mUTZSvIXYY5WdVZ2F/
nLB/QphHeXN3Q2/7c4CJ3mN1vW27JnmtMqC/d3sklpjAEmp8+z9iyQRsodb63u3G3veBCc+ruAxK
/H494EPgEO/xR7BlOZoCLyc8fosXR0VLsKUw4g5PuD0YGOvdHoUlvLiZWGIDWwvw7ST7FpHMUg47
kHJYRBzkOgBx6nBgGnAsEKM8mSQqwhLOE9gZ4VYsoZ2DnW2BnbkdCyyr8Nwy4Cnv9gzv+Y2B7yZs
+1dgtnd7HZYk/uZ9JVMnyWP7gBeBXsAcbBHYm4BfYAvyLve2OzjhdkVPJdw+GjsjPdJ7zgcpXv8s
9h8fchiW9L9O8RoiklnKYeWUwyJARVluuxNYDPQBWmJN4BWNAZ4HemDJ7Vzv8buBSdV4rTpY0kz2
eFwP4AxsYOztQAcOTGDJ9gEwCxgKbMea8Hd5j79EeovZ7kq4/RB2Zvk81vWRn+I5dYDTsMVoRST7
lMPKKYdFQF3XAYhTjbEV7gF+m2Kb1tgYiXuxRNEWWAgMonxsQwtsbEJFdYGLvdu/wc4svwT+A/zc
e/wyLJHWwZrPC4FbsTPRQyvsbyflXQJx8YS3FDgZuApLbgCvYU3zrb37jYA2KY4zMXEmvi9XVHj9
wxLuL8LGkMSdlGLfIuIP5bAD9wPKYaGloiz3JJ6l3YudLa7GxjTEkmx3HbAeG7haAizAztxmAq9i
zfVPc2DyATtzO9V7fh7wP97jA4E/efs8wXv8IOwS93VePOOBHV4c8VhmYYNz38AGySbGuQ87K+zu
fQf4DEtIT3qvtRxLyMkkHns+1h2xyttH/GfPYWfk8UGyw4Cfeft+C/ivFPsWkcxRDktOOUxEKrXT
dQAiIrWgHCZZpZYy8VOqsRMiImGgHCYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiK5
7P8DBQxbZrl1j9kAAAAASUVORK5CYII=
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="running-the-logistic-regression-against-home-ownership">Running the Logistic Regression against Home Ownership</h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h4 id="creating-dummies-for-home-ownership-to-better-understand-if-one-status-of-home-ownership-is-more-predictive-of-someone-paying-back-their-loan.">Creating dummies for home ownership to better understand if one status of home ownership is more predictive of someone paying back their loan.</h4>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[375]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span><span class="o">.</span><span class="n">home_ownership</span><span class="o">.</span><span class="n">unique</span><span class="p">()</span><span class="o">.</span><span class="n">tolist</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[375]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
[&apos;RENT&apos;, &apos;MORTGAGE&apos;, &apos;OWN&apos;, &apos;NONE&apos;, &apos;OTHER&apos;, nan]
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[376]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">home_ownership</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">get_dummies</span><span class="p">(</span><span class="n">loan_2</span><span class="o">.</span><span class="n">home_ownership</span><span class="p">)</span>
<span class="n">loan_2</span> <span class="o">=</span> <span class="n">loan_2</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">home_ownership</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[377]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">X_Variables_2</span> <span class="o">=</span> <span class="p">[</span><span class="s">&#39;RENT&#39;</span><span class="p">,</span> <span class="s">&#39;MORTGAGE&#39;</span><span class="p">,</span> <span class="s">&#39;OWN&#39;</span><span class="p">,</span> <span class="s">&#39;NONE&#39;</span><span class="p">,</span> <span class="s">&#39;OTHER&#39;</span><span class="p">]</span>
<span class="n">X_2</span> <span class="o">=</span> <span class="n">loan_2</span><span class="p">[</span><span class="n">X_Variables_2</span><span class="p">]</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[378]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">X_2</span> <span class="o">=</span> <span class="n">X_2</span><span class="o">.</span><span class="n">values</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[379]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">y_2</span> <span class="o">=</span> <span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;loan_status_clean&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">values</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[380]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">clf</span> <span class="o">=</span> <span class="n">linear_model</span><span class="o">.</span><span class="n">LogisticRegression</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[381]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">model_2</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_2</span><span class="p">,</span><span class="n">y_2</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[382]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">model_2</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_2</span><span class="p">,</span><span class="n">y_2</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[382]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
0.77943365368713136
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[383]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="n">X_Variables_2</span><span class="p">,</span><span class="n">model_2</span><span class="o">.</span><span class="n">coef_</span><span class="o">.</span><span class="n">T</span><span class="p">))</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[383]:</div>
<div class="output_html rendered_html output_subarea output_pyout">
<div style="max-height:1000px;max-width:1500px;overflow:auto;">
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td> RENT</td>
<td> [0.0310973077512]</td>
</tr>
<tr>
<th>1</th>
<td> MORTGAGE</td>
<td> [0.372819013643]</td>
</tr>
<tr>
<th>2</th>
<td> OWN</td>
<td> [0.135355977702]</td>
</tr>
<tr>
<th>3</th>
<td> NONE</td>
<td> [0.290465054095]</td>
</tr>
<tr>
<th>4</th>
<td> OTHER</td>
<td> [-0.794573804391]</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>'OTHER', I suppose is when someone is unsure whether they rent, own or have a mortgage. Not suprisingly that's the category that has a higher coefficient predicting whether they'll default on the loan. Don't give a loan to someone that doesn't know their home ownership situation.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="running-the-logistic-regression-against-years-of-employment">Running the Logistic Regression against years of employment</h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h4 id="printing-out-the-contents-of-the-column-and-creating-dummies-for-better-logistic-regression.-we-would-want-to-know-they-years-of-employment-that-could-be-predictive-of-someone-not-paying-their-loan.">Printing out the contents of the column and creating dummies for better logistic regression. We would want to know they years of employment that could be predictive of someone not paying their loan.</h4>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[384]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">emp_dummies</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">get_dummies</span><span class="p">(</span><span class="n">loan_2</span><span class="o">.</span><span class="n">emp_length</span><span class="p">)</span>
<span class="n">loan_2</span> <span class="o">=</span> <span class="n">loan_2</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">emp_dummies</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[385]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span><span class="o">.</span><span class="n">emp_length</span><span class="o">.</span><span class="n">unique</span><span class="p">()</span><span class="o">.</span><span class="n">tolist</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[385]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
[&apos;10+ years&apos;,
&apos;2 years&apos;,
&apos;5 years&apos;,
&apos;1 year&apos;,
&apos;9 years&apos;,
&apos;&lt; 1 year&apos;,
&apos;8 years&apos;,
&apos;n/a&apos;,
&apos;7 years&apos;,
&apos;4 years&apos;,
&apos;3 years&apos;,
&apos;6 years&apos;,
nan]
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[386]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">X_Variables_3</span> <span class="o">=</span> <span class="p">[</span><span class="s">&#39;&lt; 1 year&#39;</span><span class="p">,</span><span class="s">&#39;1 year&#39;</span><span class="p">,</span><span class="s">&#39;2 years&#39;</span><span class="p">,</span><span class="s">&#39;3 years&#39;</span><span class="p">,</span><span class="s">&#39;4 years&#39;</span><span class="p">,</span><span class="s">&#39;5 years&#39;</span><span class="p">,</span><span class="s">&#39;6 years&#39;</span><span class="p">,</span><span class="s">&#39;7 years&#39;</span><span class="p">,</span><span class="s">&#39;8 years&#39;</span><span class="p">,</span><span class="s">&#39;9 years&#39;</span><span class="p">,</span><span class="s">&#39;10+ years&#39;</span><span class="p">]</span>
<span class="n">X_3</span> <span class="o">=</span> <span class="n">loan_2</span><span class="p">[</span><span class="n">X_Variables_3</span><span class="p">]</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[387]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">X_3</span> <span class="o">=</span> <span class="n">X_3</span><span class="o">.</span><span class="n">values</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[388]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">y_3</span> <span class="o">=</span> <span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;loan_status_clean&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">values</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[389]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">clf</span> <span class="o">=</span> <span class="n">linear_model</span><span class="o">.</span><span class="n">LogisticRegression</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[390]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">model_3</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_3</span><span class="p">,</span><span class="n">y_3</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[391]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">model_3</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_3</span><span class="p">,</span> <span class="n">y_3</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[391]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
0.77943365368713136
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[392]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="n">X_Variables_3</span><span class="p">,</span><span class="n">model</span><span class="o">.</span><span class="n">coef_</span><span class="o">.</span><span class="n">T</span><span class="p">))</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[392]:</div>
<div class="output_html rendered_html output_subarea output_pyout">
<div style="max-height:1000px;max-width:1500px;overflow:auto;">
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td> &lt; 1 year</td>
<td> [-1.51966442806e-05]</td>
</tr>
<tr>
<th>1</th>
<td> 1 year</td>
<td> [2.0332536044e-05]</td>
</tr>
<tr>
<th>2</th>
<td> 2 years</td>
<td> [8.05831027416e-06]</td>
</tr>
<tr>
<th>3</th>
<td> 3 years</td>
<td> [1.36166767322e-05]</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="lets-see-some-graphs">Lets see some graphs</h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>As expected only the people without Tax Liens qualify for loans. Not surprisingly.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[393]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">18</span><span class="p">,</span><span class="mi">6</span><span class="p">))</span>
<span class="n">ax1</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">121</span><span class="p">)</span>
<span class="n">loan_2</span><span class="o">.</span><span class="n">loan_status_clean</span><span class="p">[</span><span class="n">loan_2</span><span class="o">.</span><span class="n">tax_liens</span> <span class="o">==</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">kind</span><span class="o">=</span><span class="s">&#39;barh&#39;</span><span class="p">,</span><span class="n">label</span><span class="o">=</span><span class="s">&#39;Tax Liens&#39;</span><span class="p">)</span>
<span class="n">loan_2</span><span class="o">.</span><span class="n">loan_status_clean</span><span class="p">[</span><span class="n">loan_2</span><span class="o">.</span><span class="n">tax_liens</span> <span class="o">==</span> <span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">kind</span><span class="o">=</span><span class="s">&#39;barh&#39;</span><span class="p">,</span><span class="n">color</span><span class="o">=</span><span class="s">&#39;#FA2379&#39;</span><span class="p">,</span><span class="n">label</span><span class="o">=</span><span class="s">&#39;No Tax Liens&#39;</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">&#39;best&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">&#39;Paid Loan Unpaid Loan&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[393]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
&lt;matplotlib.text.Text at 0x10d271bd0&gt;
</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2QVfWd5/E3Daj00jw0Oi2iAmqpqxV1HEPUGRfCDDEG
klSRmmgGaiHGwREkEzEmw7ImrdEyG3ETzKqpBINJBGHIzKaimYnuutG11KBkBpJBelo0UBFniAo0
DT7QLr1/nNsPYNNe+p7DPed736+qU/S93d7z+3jQb9/zOfdekCRJkiRJkiRJkiRJkiRJkiRJkiRJ
GRtUzZ2ff/75nRs3bqzmEiRJyquNwAVpP2hd2g94JDZu3EhnZ2eI7atf/WrV12CWmDnMkt8tSpYo
OaJlAc7PYvZWdfBHsnXr1movITVRskTJAWbJqyhZouSAWFmy4uCXJKmGDK7y/pubm5urvIR0jBo1
igkTJlR7GamIkiVKDjBLXkXJEiUHxMpyyy23ANyS9uNW9eI+oLPUY0iSpF4GDRoEGcxpT/Wn5Ikn
nqj2ElITJUuUHGCWvDraWRobGxk0aJBbsK2xsfGo/j0aclT3JkkasF27duFZ0nhKz+yP3v6O6t7e
y1P9klSmQYMGOfgDOtxx9VS/JEmqmIM/JfaW+RMlB5glryJlUe1w8EuSCmvlypVcfvnl1V5Godjx
S1JB9NUFjxjRSHv7rsz22dAwmj17dvb7M8OHD+++QG3fvn0cd9xxDB6cvE3Md7/7XT7zmc9UvI66
ujq2bNnCaaedVvFj5c3R7vi9ql+SCiwZ+tk9gWpvf/+5s3fv3u6vJ06cyP3338/UqVMzW5Mq46n+
lETq+qJkiZIDzJJXkbJk4bnnnuOSSy5h9OjRnHTSSSxcuJCOjg4AnnnmGU444QReeeUVIPnQtsbG
RlpbW49oHw888ACXXXZZ9+2WlhamTZvGmDFjOPvss1m7dm339+bOncuCBQuYMWMGI0aM4OKLL+bl
l1/u/v4NN9xAU1MTI0eO5LzzzmPTpk2VxM8tB78kKRNDhgxh2bJlvPHGGzz77LM8/vjj3HvvvQBc
eumlXHvttcyZM4e33nqL2bNnc9ttt3HmmWcOeH/79u1j2rRpzJ49m9dee43Vq1czf/58Nm/e3P0z
a9asobm5mV27dnHGGWewZMkSAB599FGeeuopXnzxRdra2li7di1jxoyp7F9ATjn4UzJlypRqLyE1
UbJEyQFmyatIWbJw4YUXMmnSJOrq6hg/fjzz5s3jySef7P5+c3MzbW1tTJo0iVNOOYX58+dXtL9H
HnmEiRMnMmfOHOrq6rjggguYOXPmQc/6Z86cyUUXXcTgwYOZNWsWGzZsAGDo0KG0t7ezefNmDhw4
wFlnncWJJ55Y0XryysEvScpEa2srM2bMYOzYsYwcOZIlS5bwxhtvdH9/yJAhzJkzh02bNnHjjTdW
vL9t27axbt06Ro8e3b2tWrWKHTt2AMnFck1NTd0/P2zYsO7rE6ZOncr111/PggULaGpq4tprr6W9
vb3iNeWRgz8lkbq+KFmi5ACz5FWkLFm47rrrOOecc9iyZQttbW3cfvvtHDhwoPv727dv59Zbb+Xq
q69m0aJF7N+/v6L9nXrqqUyePJldu3Z1b+3t7dxzzz1l/fMLFy5k/fr1vPDCC7S2tnLnnXdWtJ68
cvBLkjKxd+9eGhoaqK+vp6Wlhfvuu6/7e52dncydO5drrrmG5cuXM3bsWG6++eZ+H++dd97h7bff
7t56/xIBMH36dFpbW3nwwQfp6Oigo6OD559/npaWlu59Hs769etZt24dHR0d1NfXH/SSxGgc/CmJ
1PVFyRIlB5glryJlycLSpUtZtWoVI0aMYN68eVx11VXdr/e/++67ef311/na174GwIoVK1ixYgVP
P/30YR/v3HPPpb6+vntbsWJF9yfcATQ0NPDYY4+xevVqxo0bx9ixY1m8eHH3mYTeP9ul6/aePXuY
N28ejY2NTJgwgeOPP56bbrop9X8neeAb+EhSQeT1DXxUGT+kp6AidX1RskTJAWbJqzxk2bNnJ52d
nZltDv14HPySJNUQT/VLUkEc7pSwis1T/ZIkKTMO/pTkoetLS5QsUXKAWfIqUhbVDge/JEk1xI5f
kgrCjj8mO35JkpQZB39KInV9UbJEyQFmyatIWZRYuXIll19+ebWXkSkHvyQVWOOIUd1vRZvF1jhi
VFnrmDBhAk1NTbz55pvd9y1fvpwPf/jDR5xp+PDhNDQ00NDQQF1dHfX19d23H3rooSN+vL7U1dXx
8ssvv+f+WbNm8eijj6ayj7yy45ekguirCx40aBD7T1+c2T6PeemOsq4rmDBhAvv27WPRokUsXpys
Z/ny5axcuZJf/OIXA97/xIkTuf/++5k6deqAH6MvdXV1bNmyhdNOOy3Vxx0IO35JUuEMGjSIL37x
iyxdupS2trY+f+aZZ57hgx/8IKNGjWLSpEk8++yzR7SP5557jksuuYTRo0dz0kknsXDhQjo6Orof
+4QTTuCVV14BYOPGjTQ2NtLa2npE+3jggQe47LLLum+3tLQwbdo0xowZw9lnn83atWu7vzd37lwW
LFjAjBkzGDFiBBdffPFBZxFuuOEGmpqaGDlyJOeddx6bNm06orVkxcGfkkhdX5QsUXKAWfIqUpY0
XHTRRUyZMoWlS5e+53s7d+5k+vTpfOELX2Dnzp0sWrSI6dOns3Nn+Z8FMGTIEJYtW8Ybb7zBs88+
y+OPP869994LwKWXXsq1117LnDlzeOutt5g9eza33XYbZ5555oDz7Nu3j2nTpjF79mxee+01Vq9e
zfz589m8eXP3z6xZs4bm5mZ27drFGWecwZIlSwB49NFHeeqpp3jxxRdpa2tj7dq1jBkzZsBrSZOD
X5KUikGDBnHrrbfy7W9/m9dff/2g7/3sZz/jrLPOYtasWdTV1XHVVVdx9tln8/DDD5f9+BdeeCGT
Jk2irq6O8ePHM2/ePJ588snu7zc3N9PW1sakSZM45ZRTmD9/fkV5HnnkESZOnMicOXOoq6vjggsu
YObMmQc96585cyYXXXQRgwcPZtasWWzYsAGAoUOH0t7ezubNmzlw4ABnnXUWJ554YkXrSYuDPyWR
Ppc7SpYoOcAseRUpS1rOPfdcZsyYwde//vXuz7oHePXVVzn11FMP+tnx48ezffv2sh+7tbWVGTNm
MHbsWEaOHMmSJUt44403ur8/ZMgQ5syZw6ZNm7jxxhsrzrJt2zbWrVvH6NGju7dVq1axY8cOIPlF
p6mpqfvnhw0bxt69ewGYOnUq119/PQsWLKCpqYlrr72W9vb2iteUBge/JClVt9xyC9/73vcOGurj
xo1j27ZtB/3ctm3bOPnkk8t+3Ouuu45zzjmHLVu20NbWxu23386BAwe6v799+3ZuvfVWrr76ahYt
WsT+/fsrynHqqacyefJkdu3a1b21t7dzzz33lPXPL1y4kPXr1/PCCy/Q2trKnXfeWdF60uLgT0mk
ri9Klig5wCx5FSlLmk4//XSuvPJKli1b1n3fFVdcQWtrKw899BDvvvsua9asoaWlhRkzZpT9uHv3
7qWhoYH6+npaWlq47777ur/X2dnJ3Llzueaaa1i+fDljx47l5ptv7vfx3nnnHd5+++3urfcvEQDT
p0+ntbWVBx98kI6ODjo6Onj++edpaWnp3ufhrF+/nnXr1tHR0UF9fT3HHXccgwcPLjtrlhz8kqTU
feUrX+HNN9/sPt0/ZswYHnnkEe666y6OP/54li5dyiOPPEJjY2PZj7l06VJWrVrFiBEjmDdvHldd
dVX349999928/vrrfO1rXwNgxYoVrFixgqeffvqwj3fuuedSX1/fva1YsaL7/QsAGhoaeOyxx1i9
ejXjxo1j7NixLF68uPtMQu+f7dJ1e8+ePcybN4/GxkYmTJjA8ccfz0033VR21iz5On5JKoi+Xu/d
OGIUu9r7fvlcGkY3jGTnnt2ZPb6O/uv4HfySVBB+SE9MvoFPQUXq+qJkiZIDzJJXkbKodjj4JUmq
IZ7ql6SC8FR/TJ7qlyRJmXHwpyRS1xclS5QcYJa8ipRFtcPBL0lSDbHjl6SCaGxsZNeuXdVehlI2
evToPj+l0NfxS5JUQ7y4L+cidX1RskTJAWbJqyhZouSAWFmy4uCXJKmGeKpfkqQc8lS/JEmqmIM/
JZF6pShZouQAs+RVlCxRckCsLFlx8EuSVEPs+CVJyiE7fkmSVDEHf0oi9UpRskTJAWbJqyhZouSA
WFmy4uCXJKmG2PFLkpRDdvySJKliDv6UROqVomSJkgPMkldRskTJAbGyZMXBL0lSDbHjlyQph+z4
JUlSxRz8KYnUK0XJEiUHmCWvomSJkgNiZcmKg1+SpBpixy9JUg7Z8UuSpIo5+FMSqVeKkiVKDjBL
XkXJEiUHxMqSFQe/JEk1xI5fkqQcsuOXJEkVc/CnJFKvFCVLlBxglryKkiVKDoiVJSsOfkmSaogd
vyRJOWTHL0mSKubgT0mkXilKlig5wCx5FSVLlBwQK0tWHPySJNUQO35JknLIjl+SJFXMwZ+SSL1S
lCxRcoBZ8ipKlig5IFaWrDj4JUmqIVXv+Ku8f2VsdMNIdu7ZXe1lSFLhZNXxD0n7AY/U/tMXV3sJ
ytAxL91R7SVIknrxVH9KnnxrW7WXkJooWSJ1fWbJpyhZouSAWFmy4uCXJKmGVL3j91R/bMe8dAe+
V4MkHTlfxy9Jkirm4E9JlF4c4mSJ1PWZJZ+iZImSA2JlyYqDX5KkGmLHr0zZ8UvSwNjxS5KkipUz
+D8FvAjsAdpL254sF1VEUXpxiJMlUtdnlnyKkiVKDoiVJSvlvHPfN4AZwOaM1yJJkjJWTnfwNPDH
Ge3fjj84O35JGphqvlf/emAN8BNgf+m+TuDv016MJEnKVjkd/0jgLeAjJKf8ZwAfz3JRRRSlF4c4
WSJ1fWbJpyhZouSAWFmyUs4z/rlZL0KSJB0d5XQHw4DPAeeUvu4qbK9OYf92/MHZ8UvSwFTzdfw/
ApqAjwJPAKcAe9NeiCRJyl45g/8M4GaSYf8D4GPAh7JcVBFF6cUhTpZIXZ9Z8ilKlig5IFaWrJQz
+Luu5G8DPgCMAk7IbEWSJCkz5XQHfwn8HcnQfwAYTnIG4Dsp7N+OPzg7fkkamGq+jv97pT+fBCam
vQBJknT0lHOqfxTwTeBXpe0uktf2q5covTjEyRKp6zNLPkXJEiUHxMqSlXIG//dJPpTnz4FPk3xI
z4oyH/+jQAvJh/x8eSALlCRJ6SmnO9gInF/GfYcaDPwr8GfAduB54DMc/GE/dvzB2fFL0sBU83X8
bwGX9br9J8CbZfxzk4AtwFagA1gNfPII1ydJklJUzuD/K+AeYFtp+x+l+97POOB3vW6/UrovpCi9
OMTJEqnrM0s+RckSJQfEypKVcq7q3wCcR88FfW3AF0hO9/fH87uSJOVMOYO/S1uvr28EvvU+P7+d
5O19u5xC8qz/IJ/b8TDjh44CYFTdsZx/bBOTh40Hep55FuH25GHjc7WePN3u0vWb+JQpU47K7a77
jtb+srw9ZcqUXK3H2+99ZpmX9fj3q7i3N2zYwO7duwHYunUrWRnoRQO/4+Ch3pchJBf3/SnwKvAc
XtxXc7y4T5IGppoX9w3Uu8D1wKPAC8AaDh76oUTpxSFOlkOfkRWZWfIpSpYoOSBWlqz0d6p/L4fv
6evLfPx/LG2SJCkHUj+FcIQ81R+cp/olaWCKeKpfkiTljIM/JVF6cYiTJVLXZ5Z8ipIlSg6IlSUr
Dn5JkmqIHb8yZccvSQOTVcc/0Kv6O4ERaS9GkiRlq79T/cOBBmAZyUfqjittXyrdp16i9OIQJ0uk
rs8s+RQlS5QcECtLVsrp+D8B3AvsKW334afsSZJUSOV0B8+SfDrfQ6XbVwELgEtT2L8df3B2/JI0
MNV8Hf9fAJ8GdpS2T5fukyRJBVPO4P8tyen+40vbJ4GtGa6pkKL04hAnS6Suzyz5FCVLlBwQK0tW
+ruq/8vAfwO+3cf3OoHPZ7IiSZKUmf66g48DDwNz+/heJ/CDFPZvxx+cHb8kDUw1Xsf/cOnPB9Le
qSRJqo5yOv4/AJYC/wD8orT9nywXVURRenGIkyVS12eWfIqSJUoOiJUlK+UM/pVAC3Aa0ExyYd/6
7JYkSZKyUk538E/AhcCvgfNK960HLkph/3b8wdnxS9LAVKPj77K/9Oe/AzOAV4HRaS9EkiRlr5xT
/bcDo4AbgS8Cy4EbslxUEUXpxSFOlkhdn1nyKUqWKDkgVpaslPOMv+vq/t3AlOyWIkmSslZOd3A6
8C3gEpLX7z9D8oz/5RT2b8cfnB2/JA1MNd+rfxXwt8BY4CRgLT0f2CNJkgqknME/DPgR0FHaHgSO
y3JRRRSlF4c4WSJ1fWbJpyhZouSAWFmyUk7H/4/AYnqe5V9Zuq+xdHtnBuuSJEkZKKc72ErS7fel
k+SNfQbK8je40Q0j2blnd7WXIUmFk1XHn/oDHqFOL/ySJOm9qnlxH8ClwF8A/7nXpl4i9UpRskTJ
AWbJqyhZouSAWFmyUk7H/yDJ6fwNwP/rdf8PM1mRJEnKTDmnEDYD55BNH++pfkmS+lDNU/3/QvIa
fkmSVHDlDP4TgBeAx0jevvdh4KdZLqqIIvVKUbJEyQFmyasoWaLkgFhZslJOx9/cx32en5ckqYB8
OZ8kSTlUjY5/L9Dea9tD8sE8y4ExaS9EkiRlr7/BPxxo6LWNAC4i6fu/k/3SiiVSrxQlS5QcYJa8
ipIlSg6IlSUr5b6BT5edwH8HzshgLZIkKWMD6Q6GAr8Czkth/3b8kiT1IauOv7+r+j9FcvV+752O
Jvl0vh+nvRBJkpS9/k71f7y0zSht04GzgG8Bt2a/tGKJ1CtFyRIlB5glr6JkiZIDYmXJSn/P+Oce
rUVIkqSjw9fxS5KUQ9X+WF5JkhSAgz8lkXqlKFmi5ACz5FWULFFyQKwsWXHwS5JUQ+z4JUnKITt+
SZJUMQd/SiL1SlGyRMkBZsmrKFmi5IBYWbLi4JckqYbY8UuSlEN2/JIkqWIO/pRE6pWiZImSA8yS
V1GyRMkBsbJkxcEvSVINseOXJCmH7PglSVLFHPwpidQrRckSJQeYJa+iZImSA2JlyYqDX5KkGmLH
L0lSDtnxS5Kkijn4UxKpV4qSJUoOMEteRckSJQfEypIVB78kSTXEjl+SpByy45ckSRVz8KckUq8U
JUuUHGCWvIqSJUoOiJUlKw5+SZJqiB2/JEk5ZMcvSZIq5uBPSaReKUqWKDnALHkVJUuUHBArS1Yc
/JIk1RA7fkmScsiOX5IkVczBn5JIvVKULFFygFnyKkqWKDkgVpasOPglSaohdvySJOWQHb8kSaqY
gz8lkXqlKFmi5ACz5FWULFFyQKwsWXHwS5JUQ+z4JUnKITt+SZJUMQd/SiL1SlGyRMkBZsmrKFmi
5IBYWbIypNoLKJ3KkCQpt0Y3jGTnnt3VXkYqqj7495++uNpLkCSpX8e8dEe1l5Cack71fwp4EdgD
tJe2PVkuSpIkZaOcwf8N4BPACKChtI3IclFF9ORb26q9hNREyRIlB5glr6JkiZIDYmXJSjmD/9+B
zVkvRJIkZa+cK+uWAScCPwH2l+7rBP4+hf132vFLkvLumJfu4Gi/70xWr+Mv5+K+kcBbwEcOuT+N
wS9Jko6ick71zy1tnz1kUy+ReqUoWaLkALPkVZQsUXJArCxZKecZ/zDgc8A5pa+7znVcndWiJElS
NsrpDn5McnHfLOAWYHbp9udT2L8dvyQp9yJ1/OWc6j8DuBnYC/wA+BjwobQXIkmSslfO4O+6kr8N
+AAwCjghsxUVVKReKUqWKDnALHkVJUuUHBArS1bK6fi/BzQC/xX4KTCc5AyAJEkqmGp/Qo4dvyQp
92qt4x8FfBP4VWm7i+S1/ZIkqWDKGfzfJ/lQnj8HPk3yIT0rslxUEUXqlaJkiZIDzJJXUbJEyQGx
smSlnI7/dGBmr9vNwMZMViNJkjJVTnfwS+Am4KnS7T8B7gQuSWH/dvySpNyL1PGX84z/r4Af0tPr
7wLmpL0QSZKUvXI6/g3Aeb22C4APZ7moIorUK0XJEiUHmCWvomSJkgNiZclKOYO/S1tpA7gxg7VI
kqSMDbQ7+B1wSgr7t+OXJOVepI7/SJ7xS5Kkgutv8O8lec1+X9tJZT7+94EdwG8qWGMhROqVomSJ
kgPMkldRskTJAbGyZKW/wT8caDjMNrjMx18BfLSSBUqSpPQcjffqnwA8TPLJfoey45ck5Z4dvyRJ
KiQHf0oi9UpRskTJAWbJqyhZouSAWFmyUs4792XqczseZvzQUQCMqjuW849tYvKw8UDPAfT20b3d
JS/rGejtje/syNV6vB3r79eTb21j4zs7crUeb/dI+/EBnnjiCaZMmdL9NZDq7Q0bNrB7924Atm7d
Slb66w72AocrNDqBEWXuYwJ2/JKkAovU8ff3jH946c/bgFeBB0u3Z1H+y/keAiYDY0je9Ocr+JG+
kiRVTTkd/yeAe4E9pe0+4JNlPv5nSH5JOJbknf7CDv1IvVKULFFygFnyKkqWKDkgVpaslDP49wGz
SV67P5jkGf/eLBclSZKyUU53MBFYBlxauv008NfA1hT2b8cvScq9Wun4u/yW5HS/JEkquP5O9X+5
9Oe3+9juznhdhROpV4qSJUoOMEteRckSJQfEypKV/p7xv1D681d9fO/onu+QJEmpSL07OEJ2/JKk
3Ku1jv8PgC8B5wDDSvd1AlPTXowkScpWOS/nWwm0AKcBzSRX86/PbknFFKlXipIlSg4wS15FyRIl
B8TKkpVyBv8YYDmwH3gS+Cw+25ckqZDK6Q5+CVwMPEZyNf+rwFrg9BT2b8cvScq9Wuv4bwNGATeS
vJRvBHBD2guRJEnZ6+9U/zCSAX8FcCWwGZgCXAj8NPOVFUykXilKlig5wCx5FSVLlBwQK0tW+hv8
PwD+CPg18DHgrqOyIkmSlJn+uoPfAB8ofT0EeB74w5T3b8cvScq9SB1/f8/43z3M15IkqaD6G/zn
Ae29tg/0+npP9ksrlki9UpQsUXKAWfIqSpYoOSBWlqz0d1X/4KO2CkmSdFT4Xv2SJL2PWun4JUlS
MA7+lETqlaJkiZIDzJJXUbJEyQGxsmTFwS9JUg2x45ck6X3Y8UuSpEJy8KckUq8UJUuUHGCWvIqS
JUoOiJUlK1U/1V/l/UuS9L5GN4xk557dR3Wf1fxY3kwd7c5EkqRa5ql+SZJqiIM/JU888US1l5Ca
KFmi5ACz5FWULFFyQKwsWXHwS5JUQ6p+cZ8dvyRJ7+Xr+CVJUsUc/CmJ1CtFyRIlB5glr6JkiZID
YmXJioNfkqQaYscvSVIO2fFLkqSKOfhTEqlXipIlSg4wS15FyRIlB8TKkhUHvyRJNcSOX5KkHLLj
lyRJFXPwpyRSrxQlS5QcYJa8ipIlSg6IlSUrDn5JkmqIHb8kSTlkxy9Jkirm4E9JpF4pSpYoOcAs
eRUlS5QcECtLVhz8kiTVEDt+SZJyyI5fkiRVzMGfkki9UpQsUXKAWfIqSpYoOSBWlqw4+CVJqiF2
/JIk5ZAdvyRJqpiDPyWReqUoWaLkALPkVZQsUXJArCxZcfBLklRD7PglScohO35JklQxB39KIvVK
UbJEyQFmyasoWaLkgFhZsuLglySphtjxS5KUQ3b8kiSpYg7+lETqlaJkiZIDzJJXUbJEyQGxsmTF
wS9JUg2x45ckKYfs+CVJUsUc/CmJ1CtFyRIlB5glr6JkiZIDYmXJioNfkqQaYscvSVIO2fFLkqSK
OfhTEqlXipIlSg4wS15FyRIlB8TKkhUHvyRJNcSOX5KkHLLjlyRJFXPwpyRSrxQlS5QcYJa8ipIl
Sg6IlSUrDn5JkmqIHb8kSTlkxy9Jkirm4E9JpF4pSpYoOcAseRUlS5QcECtLVhz8kiTVEDt+SZJy
yI5fkiRVzMGfkki9UpQsUXKAWfIqSpYoOSBWlqw4+CVJqiF2/JIk5ZAdvyRJqpiDPyWReqUoWaLk
ALPkVZQsUXJArCxZcfBLklRD7PglScohO35JklQxB39KIvVKUbJEyQFmyasoWaLkgFhZsuLglySp
htjxS5KUQ3b8kiSpYg7+lETqlaJkiZIDzJJXUbJEyQGxsmTFwS9JUg2x45ckKYfs+CVJUsUc/CmJ
1CtFyRIlB5glr6JkiZIDYmXJioNfkqQaYscvSVIO2fFLkqSKOfhTEqlXipIlSg4wS15FyRIlB8TK
khUHvyRJNcSOX5KkHLLjlyRJFXPwpyRSrxQlS5QcYJa8ipIlSg6IlSUrDv6UbNiwodpLSE2ULFFy
gFnyKkqWKDkgVpasOPhTsnv37movITVRskTJAWbJqyhZouSAWFmy4uCXJKmGOPhTsnXr1movITVR
skTJAWbJqyhZouSAWFmyUu2X820Azq/yGiRJyqONwAXVXoQkSZIkSZIkSVLJR4EW4EXgy1Vey+Fs
BX4N/DPwXOm+RuB/Aa3AY8CoXj+/mCRPC/CRXvf/EfCb0veWZbriHt8HdpT22yXNtR8LrCnd/0tg
fLrL79ZXjmbgFZLj8s/AFb2+l9ccAKcAvwA2Af8CfL50fxGPy+GyNFOsY3McsI7keqMXgDtK9xfx
mBwuSzPFOia9DSZZ88Ol20U8LvDeHM0U95gM2GBgCzABGEryF/U/VnNBh/Fbkr9ovX0D+FLp6y8D
Xy99fQ5JjqEkubbQc/Hkc8Ck0tf/QPJLT9YuA/6QgwdmmmufD9xb+vpKYHWqq+/RV46vAov6+Nk8
5wA4kZ4LdYYD/0ry976Ix+VwWYp4bOpLfw4h+R/nn1DMYwJ9ZyniMemyCFgJ/LR0u6jH5dAcRT4m
A3YJ8PNet/+mtOXNb4Exh9zXAjSVvj6xdBuS39J6n7n4OXAxMBbY3Ov+q4DvpL7Svk3g4IGZ5tp/
Dnyo9PUQ4LW0Ft2HCbx38N/Yx8/lPcehfgL8GcU9Lr11ZSnysakHngfOpfjHpHeWoh6Tk4H/DXyY
nmfKRTzF0hNaAAACv0lEQVQufeVoporHpFqv4x8H/K7X7VdK9+VNJ8kBWw/8Zem+JpJTz5T+7PpL
eBJJji5dmQ69fzvVy5rm2nsfw3eBNt57diRLC0le6nI/Paf7ipRjAsmZjHUU/7hMIMnyy9Ltoh2b
OpJnWTvoqS+Kekz6ygLFOyYA3wRuAg70uq+Ix6WvHJ1U8ZhUa/AX5bN4/5jkf2hXAAtITjv31klx
shyqyGu/D5hIcqr534C7qrucIzYc+Dvgr4H2Q75XtOMyHPgxSZa9FPPYHCBZ78nAfyJ5ZtZbkY7J
oVmmUMxjMgP4PUn/fbj3mynCcTlcjqoek2oN/u0kFwd1OYWDf5vJi38r/fka8D9J+pUdJKeYIDn9
8vvS14dmOpkk0/bS173v357Ret9PGmt/pdc/c2rp6yHASGBn+kvu0+/p+Y9+OT29VxFyDCUZ+j8i
OT0OxT0uXVkepCdLkY9NG/AzkouoinpMunRluYhiHpNLgU+Q1K0PAVNJ/psp2nHpK8cPKeYxqdgQ
4CWSU4THkM+L++qBhtLX/wF4muQKy2/Q08H8De+9uOQYkt/kXqLnN7x1JB3MII7exX3w3m48zbXP
J/mtFZK+KcsLSiZwcI6xvb6+AVhV+jrvOQaR/Ef/zUPuL+JxOVyWoh2b4+k5zToM+L/An1LMY3K4
LCf2+pkiHJNDTaanGy/icenSO0fR/jtJzRUkVwJvIbmgIW8mkhyADSQvV+paYyNJ79/Xy0n+C0me
FuDyXvd3vQxjC3B3pqvu8RDwKrCfpP/5LOmu/Vjgb+l5CcmEDDLAe3NcTTJwfk3Sj/2Enp4P8psD
kiusD5D8nep6Gc9HKeZx6SvLFRTv2HwA+CeSHL8m6WKhmMfkcFmKdkwONZmeq+GLeFy6TKEnx48o
9jGRJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJKn2/H9XsDpB0LTdHAAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>According to our boxplots a loan is more likelier to be paid off if the person is making $20,000 more on average in annual income.</p>
<p>And interestingly the amount of the loan doesn't really effect whether it'll be paid off.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[394]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">loan_2</span><span class="o">.</span><span class="n">boxplot</span><span class="p">(</span><span class="n">column</span><span class="o">=</span><span class="s">&#39;annual_inc&#39;</span><span class="p">,</span> <span class="n">by</span><span class="o">=</span><span class="s">&#39;loan_status_clean&#39;</span><span class="p">,</span><span class="n">grid</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">100000</span><span class="p">)</span>
<span class="n">loan_2</span><span class="o">.</span><span class="n">boxplot</span><span class="p">(</span><span class="n">column</span><span class="o">=</span><span class="s">&#39;funded_amnt&#39;</span><span class="p">,</span> <span class="n">by</span><span class="o">=</span><span class="s">&#39;loan_status_clean&#39;</span><span class="p">,</span><span class="n">grid</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">40000</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[394]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
(0, 40000)
</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAHpdJREFUeJzt3X2YZFV94PFvw8iAvDWDvAu04SWAQQaJvASVQgiOxgVc
XV42kGmduC6YB9BoBKLLuNlVRpMgoJCNIDOQgBBFlBVhEKcSVoFBoBEZkRdtZEYZFKcBJRpwev/4
nbLuNLe6p25X16079f08Tz1176lzb52qvl2/Oud37ymQJEmSJEmSJEmSJEmSJEmSJEmS1Ot+C9wH
jAD3AId1eP814MYp6hwxA8/bDaPAnJzyX05jn4uBd0xj++nYGjitg/U6YTrvpbpgo7IboFI9DxwI
zAXOAT5RQhuOBP5oGtsPpFu3jbdZvr77nM7207ENcHoH63VCWe+F1pMBRA1bA79IywPAp4AHgO8C
J6TyTwMfTctvBv411V0M/ANwN/AD4E9y9j8HuAG4H7gD2B8YAt4LvJ/oCb1+wjbbAbcC3wM+R/Nb
/1B6niWpjbu2aG+NdXtAnwHmp+VRYFGqfxewR+Y5vwgsT7dGcNsWWJppy2RB6+9TvW8Ar0j7vifz
+F4T1rMa+z0KuDe173Jgk1T+0dSuB4D/k9muDpyfXssPeOl7mfXqVK/R+9wzbbtHKlsEbJ7af09q
w7Fp22y9TxI9yFbv8fnAg8Tf/FOTtGcH4MupLSPAoTl1PkS87vuBhZnyLwPfId7v92TKfwn8r7S/
O4DtJ3l+SQW8SHwQfB8YI3ojEMMoS4kPs+2Bx4l/8s2If9QjgYeAV6X6i4Gb0vKewBPAbNb9AL+Y
ZvA5Mj0vwHnAB1q07zPAh9Pym4G1NAPIb4GDJ2nvjrw0gFwM/Fla/hHR6wI4NVPvauDwtLwbsCIt
XwR8JC2/NdOWidYCJ6flj6bnBPgmcEBa/jjwvpxtrwD+M7Ap8GPivYQIlGem5W0y9a8E3paWl9H8
kH4LEXhbuQj4r2l5Vnq+3Ymg1LAxsGVafgXwSFqeWK9G/ns8hzhGGraapD3XAmek5Y0ydZ9L98fQ
DJYbped7Q1pvvB+bpXY11tfS/CKzCPjrSZ5fBdkD6W//TgSNfYF5wFWp/PXEB+k48BTR0zg41X8P
8eF0MfEhTKp3XVp+FPghsM+E5zo8s/9lxDf6xgdUq2/zhwNfSMu3AGsyjz1OfCNt1JvY3tcx9RDI
Nen+CzTzMEcTges+4CupjZsTH1j/lOrcNKEtWWuJD0RS/UZP4DLgXcT/3AmpvXkGgN8n3ttHU9kS
4I1p+U3AnUSv4E3Afpltr0/39xJBtpU7gHOBv0r1fs1L/wYbEUOa9xN/752J4Ly+w4XPpP1eDryd
OHZaORK4NC2vBZ6d8Pgx6XYf0SP6fZrB9UyavYxdid4dwH8AX0vL9zD5+6GCZpXdAPWMO4lvmtsR
H7zZD4oBmh/GrwF+Buwyxf7W5pQVyVW02uZXU9QbJ3pY2S9Jm03yPI3XNwAcQnwArW9bWsm+b9cT
va1vEkMurQJQti0Tn3c2cAnwWmBV2t+mmXq/Sfe/ZfL/7WuIv/fbiGD4XppfBhr+lDgeXpv296MJ
z9Uw8T3eNLW30UM8Cngn8BdpuZWp3ttPAP84oayW9nkoEayWZdr4QqbeWvysmxH2QNSwD3E8/By4
HTgxrW9HfPteTgxffIDotbyF5hDSAPBf0v0ewO8R4/BZtxMfShD/+D8jhiieo9kTmehbNPMZx7Du
8M3EfWfb+8bU3h8T39A3AQaJb+xZJ2buv52Wl9IcToHmsNO/0Rz2ecskbdmIeC9I9W9Py78melGX
EkNVrYwT790QzbzMqUSOY9P0+NPAFpnnaderiIBwMdHL2p/41p/9O2xF9OZ+S/QQdk/lE/9ej7Pu
e3xUauPmaf3rxDFzAK3dRvPMro156XDXLcC70z4hvrxsl+qtId7bfcjPnWgGGZX722Y0cxEDRPJz
nEhMHkYMX4wTCcyniKGMvwSeBBYQuY/GUNGPiQ/trYhvtP/BumcVLQQ+n/b5K5qJ1huJpPVxxLfU
b2Xa9zHi2/KpxBDFk8QH2Fas+y29VXshhta+R3xg3jvh9W+Ttvk1zbzFGcBnU/ksYjjs9ExbTiaC
zePk+xURWD8CrKYZpCCGrd5OBKnJ/IYY7vqX1IblxEkKLxAJ/O8R78Vdk+xjsuG7E4j39AXgp8D/
JnJg3yLyCDcRCfIbiaGy7xB5Mojgla33YfLf4y2J4NTokbx/kvacSfQuFhAB67+n19Z4DbcSw6x3
pPXngFOAm1PdFUTQvaO5y3Vef5lnt0maQiP522mbEN9IIQLExAAwHT8iPwk+kz5IBKJW1hK9t8lc
SjOZL5XKHoh62W7Et9uNiB7Neyav3pZufyP9MjF0NHEYrV3duohPmlIZF2BJyreWOLvohx3a35uJ
azGyfkh5V7ufy0vzNtdRzgWsklTY2cRpss8SF7sdn8qHgf9HXFPxC+IDd15muzrwP1OdZ4kE77bp
sRpxDUzWKM1ex8HEOP0a4CdEEvtlmbrrM4S1GPibzPOtJJLUq9M+hzN1NwP+LrVhjEjo551JJRXi
WVjqV48S12hsReQl/om4+BDig/4hIjB8kriWIetk4oN6eyJP88FJnic7VPYikTDelsjpHEX704JM
TAjvkF7DzkQS+rPErAIAf0ucMXcYke/5EPmnV0uSpuE+YrqOYZpXXQO8nPjQbUyFsYwYimk4jThV
FfJ7ID+idd7jLJoX/8H69UCuYN0eyPOs+0VwNREAN0qP7T/F/qTC7IGoX/0ZETTWpNsfEBfOjROn
yDY8n+63yJRlH//3CY9NZm/g/xKnzj5DnD677aRbTO1p1u1VPJ/a8wpiuOqxae5faskAon60O3Hd
wfuIoZ1tiOsYpntSya+IHkvDxsQFbw2XEtcs7EkMM/01xf4H1+cMsp8T17fsOVVFqSgDiPrR5sSH
8M+J/4F3ET0QWL8g0qrOw8S3/rcSyfGPENOPNGxBXAT3PHHldJFTctd3+vq1xIWbfw/sRASzw2jO
6itN21QB5PPEmGp29s05xJWhDxNX1A5mHjuHGD9+iJh6ouGgtI9HgAsz5bOJieceIebm2T3z2Pz0
HA/TnEFV6oQVxNlJjavb/4A4q2qc/KuWJ1vP1n+GSIpfRpwd9UvWzYl8kJje5FmiB/SFnH1NZWL7
Jtvmg8T/3d3EUNcn8EujuugNxFkc2QDySWIWT4hpDBrnme9HzIr5MmIen0dpflNaTnPepJtonhZ5
OjE5HMSUD42ZV+cQY7eD6dZYliRVyBDrBpCHiFMHIU57bMz5fw7N326AmKfmUKL7/P1M+UnEvD6N
Ooek5VnEBHsQp0lemtnmH9J2kqQeUaQ7uwMxrEW6bwSTnYlue8NKYtbMieWraE4FvgvNLv6LxBDA
tpPsS+oHD9KcqTh7O3myjaRum+5cWM5yKXXeq8tugLQ+igSQ1cTQ1ZPE8FRj2uxVxC+CNbyS6Dms
SssTyxvb7EZMwTCLOLXx6VRey2yzK/FDPC+xxx57jD/2mKe6S9IMuR+Ym/dAkQDyVeIMqUXp/oZM
+dXEaYO7ED8tuZzooTxL5DqWE79DcNGEfd1J/GrZbal8KfG70YNEIv6PWTe/8juPPfYY4+N2gjpt
4cKFLFy4sOxmSOttYGAh4+MLy27GBmdgYKDlj4FNFUCuAY4grmp9AvgfxFlX1xHz7ozS/MW4Fal8
BZHPOJ3m8NbpxCRwmxFnYd2cyi8nfif7EaLn0UiU/4KYruHutP4xYjI4Scp1xBFlt6D/TBVAWiXt
jm5R/vF0m+ge8ufk+Q3NADTRFUz+05+aQaOjo2U3QWrL0NBo2U3oO15UpFxz5+YOeUo9y2O2+wwg
yjU2dlbZTZDactZZHrPdtiH8IuG4SfTOGxgA31ZJAwMD0CJW2ANRC/WyGyC1pV6vl92EvmMAkbRB
WLy47Bb0H4ewlMshLFWNx+zMcAhLktRxBhDlmj+/XnYTpDbVy25A3zGAKNfwcNktkNTrzIFI2iCY
A5kZ5kAkbfDOO6/sFvQfA4hyeU69qqZWq5fdhL5jAJEkFWIAUa56vVZ2E6S21Gq1spvQd0yiK5cJ
SUlgEl2F1MtugNQW83bdZwCRtEFwLqzucwhLuRzCUtV4zM4Mh7AkSR1nAFEu58JS9dTLbkDfMYAo
l3NhSZqKORBJGwRzIDPDHIikSpkzJwJCOzdof5s5c8p9nVVnAFEuz6lXmdasid5EO7dly+ptb7Nm
TdmvtNoMIJKkQgwgyuVcWKoa58LqPpPoymVCUmXq1vHncT41k+gqoF52A6S2mLfrPgOIJKkQh7CU
y669yuQQVu9wCEuS1HEGEOVyLixVjTmQ7jOAKJdzYUmaijkQST3HHEjvmKkcyDnAg8ADwNXAbGAO
cCvwMLAUGJxQ/xHgIeCYTPlBaR+PABdmymcD16byO4Hdp9FWSVKHFQ0gQ8B7gNcC+wMbAycBZxMB
ZG/gtrQOsB9wYrqfB1xCM6JdCiwA9kq3eal8AfB0KrsAWFSwrSrA8WRVjcds9xUNIM8CLwAvB2al
+58AxwJLUp0lwPFp+TjgmrTNKPAocAiwE7AlsDzVuzKzTXZfXwKOKthWSdIMKBpAfgH8HfBjInCM
ET2PHYDVqc7qtA6wM7Ays/1KYJec8lWpnHT/RFp+EXiGGCJTFzgXlqrGubC6r2gA2QM4ixjK2hnY
AjhlQp3xdFMFfexjZbdAUq+bVXC7PwS+TeQoAK4HDgOeBHZM9zsBT6XHVwG7ZrZ/JdHzWJWWJ5Y3
ttmN6OHMArYmej4vMTw8zNDQEACDg4PMnTv3d99GGuOirre3Hmo90x7X+2sd2t8+e+yu7/NBnXq9
/NfbS+sjIyOMjY0BMDo6ymSKnsZ7APDPwOuAXwOLiTzG7kRQWUQk0AfT/X7EmVoHE0NT3wD2JHoo
dwFnpO2/BlwE3AycTiToTyMS9Men+4k8jXcGDAzUGR+vld0M9akip9fW6/VMYJi55+k3k53GO53r
QP4KmA+sBe4F/pxIiF9H9BxGgROI/AjAucC7iXzGmcAtqfwgIgBtBtxEBBOI03ivAg4kgtJJaZ8T
GUBmgP9YKpPXgfSOmQogvcIAMgP8x1KZDCC9w8kU+9ycOfGP0s4N6m1vM8dz5FSibA5E3WEA6QNr
1sS3rHZuy5a1v82aNWW/Uknd5BBWH3A4QFXjMds7HMKSJHWcAUS5HE9W1XjMdp8BRJJUiDmQPuB4
sqrGY7Z3mAORJHWcAUS5HE9W1XjMdp8BRJJUiDmQPuB4sqrGY7Z3mAORJHWcAUS5HE9W1XjMdp8B
RJJUiDmQPuB4sqrGY7Z3mAORJHWcAUS5HE9W1XjMdp8BRJJUiDmQPuB4sqrGY7Z3mAORJHWcAUS5
HE9W1XjMdp8BRJJUiDmQPuB4sqrGY7Z3mAORJHWcAUS5HE9W1XjMdp8BRJJUiDmQPuB4sqrGY7Z3
mAORJHWcAUS5HE9WmcYZiO5BG7d6m/UZGIjnUWEGEEk9Z4DxGFtq57ZsWdvbDOD41XRsCOHXHMgU
HE9W1XjM9g5zIJKkjjOAKJc5EFWNx2z3GUAkSYWYA+kDjierajxme8dM5UAGgS8C3wdWAIcAc4Bb
gYeBpalOwznAI8BDwDGZ8oOAB9JjF2bKZwPXpvI7gd2n0VZJUodNJ4BcCNwE7Au8hggMZxMBZG/g
trQOsB9wYrqfB1xCM6JdCiwA9kq3eal8AfB0KrsAWDSNtqpNjierajxmu69oANkaeAPw+bT+IvAM
cCywJJUtAY5Py8cB1wAvAKPAo0SPZSdgS2B5qndlZpvsvr4EHFWwrZKkGVA0gLwK+BlwBXAv8Dlg
c2AHYHWqszqtA+wMrMxsvxLYJad8VSon3T+RlhsBak7B9qpNtVqt7CZIbfGY7b5Z09jutcBfAHcD
n6Y5XNUwnm4zbnh4mKGhIQAGBweZO3fu7w6mRre239eht9rjuuuTrXfreIU69Xr5r7eX1kdGRhgb
GwNgdHSUyRQ9C2tH4A6iJwLweiJJ/nvAkcCTxPDUMmAfmsHl/HR/M3Ae8Hiqs28qPxl4I3BaqrOQ
SKDPAn4KbJfTFs/CmkKRM03q9Xrmn2zmnkfK4zHbO2biLKwnieGlvdP60cCDwI3A/FQ2H7ghLX8V
OAnYhAg6exF5jyeBZ4l8yABwKvCVzDaNfb2TSMpLknrEdK4DOQC4jAgKjwHvAjYGrgN2I5LlJwBj
qf65wLuJfMaZwC2p/CBgMbAZcVbXGal8NnAVcCBxNtZJaZ8T2QOZgufUq2o8ZnvHZD0QLyTsA/4z
qmo8ZnuHkymqbc1kplQNHrPdZwCRJBXiEFYfcDhAVeMx2zscwpIkdZwBRLkcT1bVeMx2nwFEklSI
OZB+MNDFP7N/C3WAOZDeMVkOpOhcWKqQAca79884808jqUc4hKVcjierajxmu88AIkkqxBxIH3A8
WVXjMds7vA5EktRxBhDlcjxZVeMx230GEElSIeZA+oDjyaoaj9neYQ5EktRxBhDlcjxZVeMx230G
EElSIeZA+oDjyaoaj9neYQ5EktRxBhDlcjxZVeMx230GEElSIeZA+oDjyaoaj9neYQ5EktRxBhDl
cjxZZRsYaPdWb3ubbbYp+1VWm79IKKnnFBlWcjiq+8yB9AHHk9UPPP5mhjkQSVLHGUCUyxyIqqde
dgP6jgFEklSIAUS5arVa2U2Q2nLeebWym9B3TKL3AZPokooyia62mQNR1XjMdp8BRJJUyHQDyMbA
fcCNaX0OcCvwMLAUGMzUPQd4BHgIOCZTfhDwQHrswkz5bODaVH4nsPs026o2mANR1XjMdt90A8iZ
wAqgMfJ9NhFA9gZuS+sA+wEnpvt5wCU0x9QuBRYAe6XbvFS+AHg6lV0ALJpmWyVJHTSdAPJK4K3A
ZTSDwbHAkrS8BDg+LR8HXAO8AIwCjwKHADsBWwLLU70rM9tk9/Ul4KhptFVtcjxZVTM8XC+7CX1n
OgHkAuBDwNpM2Q7A6rS8Oq0D7AyszNRbCeySU74qlZPun0jLLwLPEENkkvQSS5ZMXUedVXQyxbcB
TxH5j1qLOuM0h7Zm1PDwMENDQwAMDg4yd+7c342HNr5J9/v6wECsN6/W7fz6Ntv0zut1vR/Xaz3W
nmquj4yMMDY2BsDo6CiTKXodyMeBU4mewabAVsD1wOuIT5YnieGpZcA+NHMh56f7m4HzgMdTnX1T
+cnAG4HTUp2FRAJ9FvBTYLuctngdyAzwmg5VjcfszJiJ60DOBXYFXgWcBHyTCChfBeanOvOBG9Ly
V1O9TdI2exF5jyeBZ4l8yEDax1cy2zT29U4iKa+uqZfdAKlN9bIb0Hc69Xsgjbh/PnAdcQbVKHBC
Kl+RylcQvZbTM9ucDiwGNgNuInoeAJcDVxGn8T5NBCBJUo9wKhPlcjhAVbNwYdzUWZMNYRlAlMsA
IgmcC0sFzJ9fL7sJUlsaZxSpewwgyjU8XHYLJPU6h7AkSS05hCVJ6jgDiHI5nqyqcS6s7jOASNog
OBdW9xlAlKter5XdBKlNtbIb0HdMoiuX14GoajxmZ4ZJdBVQL7sBUpvqZTeg7xhAJEmFGEDUQq3s
BkhtOe+8WtlN6DvmQJTL8WRJYA5EBTgXlqrGa5e6zwCiXM6FJWkqDmFJklpyCEuS1HEGEOVyPFlV
41xY3WcAkbRBcC6s7jOAKJdzYal6amU3oO+YRFcurwNR1XjMzgyT6CqgXnYDpDbVy25A3zGASJIK
MYCohVrZDZDa4lxY3WcORLkcT5YE5kBUgHNhqWq8dqn7DCDK5VxYkqbiEJYkqSWHsCRJHWcAUS7H
k1U1zoXVfQYQSRsE58LqPgOIcjkXlqqnVnYD+o5JdOXyOhBVjcfszDCJrgLqZTdAalO97Ab0naIB
ZFdgGfAg8D3gjFQ+B7gVeBhYCgxmtjkHeAR4CDgmU34Q8EB67MJM+Wzg2lR+J7B7wbZKkmZA0QDy
AvB+4NXAocD7gH2Bs4kAsjdwW1oH2A84Md3PAy6h2SW6FFgA7JVu81L5AuDpVHYBsKhgW1VIrewG
SG1xLqzuKxpAngRG0vIvge8DuwDHAo1zIZYAx6fl44BriMAzCjwKHALsBGwJLE/1rsxsk93Xl4Cj
CrZVUh9YuLDsFvSfTuRAhoADgbuAHYDVqXx1WgfYGViZ2WYlEXAmlq9K5aT7J9Lyi8AzxBCZusC5
sFQ1XrvUfdMNIFsQvYMzgecmPDaebqog58KSNJVZ09j2ZUTwuAq4IZWtBnYkhrh2Ap5K5auIxHvD
K4mex6q0PLG8sc1uwE9SO7cGfpHXkOHhYYaGhgAYHBxk7ty51Go1oPmtxHXXXd+w12u1Wk+1p6rr
IyMjjI2NATA6Ospkil4HMkDkJ54mkukNn0xli4gE+mC63w+4GjiYGJr6BrAn0UO5iziLaznwNeAi
4GbgdGB/4DTgJCI3clJOW7wORJJmyExcB3I4cApwJHBfus0Dzgf+mDiN901pHWAFcF26/zoRHBqf
+qcDlxGn6z5KBA+Ay4FtU/lZNM/oUhc0vplIVeFcWN3nlejKVa/Xf9etlapgYKDO+Hit7GZscLwS
XW1zLixVT63sBvQdeyDK5bxCqhqP2ZlhD0QF1MtugNSmetkN6DsGEElSIQYQtVAruwFSW5wLq/vM
gSiX48mSwByICnAuLFWN1y51nwFEuZwLS9JUHMKSJLXkEJYkqeMMIMrleLKqxrmwus8AImmDsGTJ
1HXUWQYQ5XIuLFVPrewG9B2T6MrldSCqGo/ZmWESXQXUy26A1KZ62Q3oOwYQSVIhBhC1UCu7AVJb
nAur+8yBKJfjyZLAHIgKcC4sVY3XLnWfAUS5nAtL0lQcwpIkteQQliSp4wwgyuV4sqrGubC6zwAi
aYPgXFjdZwBRLufCUvXUym5A3zGJrlxeB6Kq8ZidGSbRVUC97AZIbaqX3YC+YwCRJBXiEJZyORyg
XpSGU9rmZ0Rxkw1hzepuU9RLpvpnbPWw/4wqi8deb3EIq4+Nj4+3vC1btqzlY1Iv8tql7jOASJIK
MQciSWrJ03glSR1XhQAyD3gIeAT4cMlt6RuOJ6tqPGa7r9cDyMbAZ4ggsh9wMrBvqS3qEyMjI2U3
QWqLx2z39XoAORh4FBgFXgC+ABxXZoP6xdjYWNlNkNriMdt9vR5AdgGeyKyvTGWSpJL1egDx9KqS
jI6Olt0EqS0es93X66fxHgosJHIgAOcAa4FFmTojwAHdbZYk9Y37gbllN6KIWcBjwBCwCREsTKJL
ktbLW4AfEMn0c0puiyRJkiSpk7xwU1XzeWA18EDZDZH62cbEUOEQ8DLMOaka3gAciAGk63r9NF51
lxduqopuB9aU3Yh+ZABRlhduSlpvBhBleeGmpPVmAFHWKmDXzPquRC9EkqRJeeGmqmoIk+hS6bxw
U1VzDfAT4DdEDu9d5TZHkiRJkiRJkiRJkiRJkiRJkiRJktRpvyzxuY8ADutgvekaBi7uwvNIzoWl
DUKZk0AeCfxRB+tNlxNiSlIbnkv3A8CniDmRvguckMq3AL4B3JPKj03lQ8D3gX8EvgfcAmw6yfOc
ATwI3A9cDewO/JSYcPI+4PXA24A7gXuBW4Ht0/M06t2b6i0G3pHZd6MXtRPwb2l/D6S6rcxLr2kk
PRes2wPZDvgisDzdGgHsYODbqS3fAvbObHs98HXgYWDRJM8tSRuERgB5B7CUCCTbA48DOxK/tLhl
qvMK4ud6IT7YXwBek9avBf50kudZRfxSI8BW6f484AOZOoOZ5T8H/rZFvStYN4A0XsNfAuem5QEi
+OXZDvgxEcSyzzufZgC5Gjg8Le8GrEjLWxLvCcDRRJCBCCCPpcdnEz8s5u/BqKVZZTdA6qDXEx+a
48BTwL8CryO+UX+C+OnTtcDORIAB+BHRK4H4Nj80yf6/m/Z/Q7o1DGSWdwWuIwLXJsAPW9RrZTnx
G98vS89xf4t6hxKv7/G0PpZT52jWnU15S+DlRLC5EtiTeK+ynwO30QxmK4j3Y9V6tFt9yByINiTj
5H9In0L0PF5L/Hb2UzSHqn6TqfdbJv9S9SfAZ9N+7qb5LT7rYuAiolfzXmCzFvt6keb/30ZEsIH4
edY3EB/ai4FTW2zf6rVmDQCHEK/5QCK4PQ/8DREo9gf+04Q2Tnw/8l6jBBhAtGG5HTiROK63A94I
3EUMNz1FfCAeSXPYpx0DxDBQHTgb2JoYXnqO5vAY6bl+kpaHM+UT640CB6XlY2kOje0G/Ay4LN0O
bNGeu4jXN5TW52Ta2bCUyNs0HJDTxqmmPl+fXpP6lAFEG4LGmUdfJoaZ7ie+YX+ICBz/DPxheuxU
InE+cdtW6w0bA1elfdwLXAg8A9wIvJ1mEn0h8C/Ad4hA0Nhftt7hwOeIU3tHiOGoRhL9yFR2L3ES
wIUt2vMz4L8RSe8R4jcxGu1vPOcZ6XXfTyT/35vKP0kM6d2bXtd4zrZTvR+SJEmSJHWR45vSS32G
5umvDZ8GlpTQFojrSmZPKDuFGJaSJEmSJEmSJEmSJEmSJEmV9P8BQh51mDboMAEAAAAASUVORK5C
YII=
"
>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+YFNWd7/H3IIIkIiPRIL/HK5iEvSRDiGii0WZ1FbOJ
mpt7BbO6TsJmjewGr9kfETe54LO7MZiNrujKvRtNQBOIJmp2fURUlE58sgqrMogiEV1bZRBwkSEa
owsy94/vt+iatrunf0xXdU19Xs/TdNXpqurTTU1965xv1WkQERERERERERERERERERERERERERER
ERERGTjeBTYAncATwCf7efsZ4J4+ljmtAe8bhRwwskj5m3VscxnwhTrWr8cI4NJ+XK4/1PNdSgQG
xV0BicRbwDSgHVgAXB1DHWYCn6pj/RZ/RK2nyvJKt1nP+vU4EpjXj8v1h7i+C6mQAkX6jABe9+kW
4LvAJuAp4Hwv/0fgWz59FvALX3YZ8H+Bfwd+Dfxhke2PBH4ObAQeBaYCbcAlwOVYy+aUgnWOBh4E
nga+T/4svs3fZ7nXcXyJ+mbo3aK5EbjYp3PAYl9+HXBc6D1/Bqz3RxDEPgA8EKpLueB0rS+3BjjK
t/1E6PXJBfNhwXZPB570+t0CDPHyb3m9NgH/L7ReFviOf5Zf897vMuz3fLmgNTnJ1z3OyxYD7/f6
P+F1OMfXDS93DdYiLPUdfwd4Bvs//26Z+owC7va6dAInFVnmr7DPvRFYFCq/G3gc+76/Eip/E/g7
396jwAfLvL+IlLEf+4N/FujGWhdg3R8PYAetDwIvYX/Mw7A/yJnAFuBYX34ZsMqnJwGvAEPpfaC+
gXyQmenvC7AQ+HqJ+t0IfMOnzwIOkA8U7wIzytT3GN4bKG4A/tinX8RaUQAXhZZbAZzs0xOAzT69
BPimT38mVJdCB4ALfPpb/p4ADwMf8+lvA39WZN0fAv8DOAx4GfsuwQLiZT59ZGj5W4HP+vRa8gfj
s7EAW8oS4Is+PdjfbyIWfAKHAMN9+ihgq08XLpeh+Hc8EttHAkeUqc/twHyfHhRa9g1/PpN8UBzk
7/dpnw++j2Fer2D+APkTlsXA35R5f6mRWhTp8DssOHwEmAXc5uWnYAfMHmAX1nKY4ct/BTsI3YAd
bPHl7vDp54H/AD5c8F4nh7a/FjtDDw5Epc7OTwZ+4tP3A3tCr72EnWEGyxXW9wT67rpY6c8/IZ8n
OQMLUBuAf/E6vh87MP3Il1lVUJewA9iBD18+OLO/GfgS9rd1vte3mBbgQ9h3+7yXLQdO9enfBx7D
zvJ/H5gSWvcuf34SC6alPApcCfy1L/c27/0/GIR1RW7E/r/HYEG40m6+vb7dW4DPY/tOKTOBpT59
APhNwetn+mMD1sL5EPkgehn5VsN4rLUG8F/AvT79BOW/D6nR4LgrIJF7DDtzPBo7wIYPCC3kD7of
BV4DxvaxvQNFymrJJZRa57d9LNeDtZjCJz3DyrxP8PlagBOxA02ldSkl/L3dhbWeHsa6SkoFmnBd
Ct93KHAT8HGgy7d3WGi5d/z5Xcr/Da/E/r8/iwW9S8gH/cAfYfvDx317Lxa8V6DwOz7M6xu0+E4H
/ifw5z5dSl/f7dXAPxeUZXybJ2FBaW2ojvtCyx1Ax7SGUIsifT6M/b//J/AIMNvnj8bOptdj3Q5f
x1ohZ5Pv+mkB/pc/Hwf8N6yfPOwR7OAD9gf+Gta18Ab5lkWhX5HPN5xJ726Xwm2H63uq1/dl7Ix7
CNCKnYGHzQ49/5tPP0C+GwTy3UW/JN9dc3aZugzCvgt8+Ud8+m2sVbQU62IqpQf77trI500uwnIQ
h/nru4HDQ+9TrWOxA/8NWKtpKnYWH/5/OAJrnb2LnfFP9PLC/6+X6P0dn+51fL/P34ftMx+jtIfI
X0l1CO/tprof+LJvE+wk5Whfbg/23X6Y4rkNaSBF33QYRj5X0IIlIXuwBOEnsW6HHiyRuAvrgvgL
YAcwF8tNBF08L2MH5yOwM9T/ovdVPIuAH/g2f0s+4XkPljw+Fzvr/FWofldhZ78XYV0LO7AD1RH0
PusuVV+wLrGnsQPjkwWf/0hf523yeYX5wD95+WCsG2teqC4XYEHlJYr7LRZAvwnsJB+MwLqbPo8F
o3Lewbqpfup1WI9dLLAPS6Q/jX0X68pso1y32/nYd7oPeBX4eyxH9Susn38Vlqi+B+viehzLY4EF
qfBy36D4dzwcC0JBC+PyMvW5DGstzMUC01f9swWf4UGse/RRn38DuBBY7ctuxoLro/lN9vr8cV5N
JiIuSML2tyHYGSZYICg80JfzIazv+jdYACr0IsWT0X1pw7oyaml1/z12wFKLXQYEtSikGUzAzlYH
YS2Ur5RfvJe/xro02ku8HvUZ5t1Y8Gq2M9sc1q3zcMz1EBGJ3BqsK6O/tVF7i6KedWtxFta1GH7c
WbDMi5RPMvenK4vUZ0HZNUREGuRh7Gqc32H92V30Dhod5JPMYAfvS4DnsOTojaHXBgH/gCXfX8Du
fwgf7Edgl4BuB7YBfxt6ra91S/kS1u/+G1/vT0OvZfx9gjzMduA87N6O57AcwhWh5RdhrbLlvr2n
gen+2m1YTuAt7Hv6yz7qJSIyoKzFulQKp6F4oPhXLEk+HjsAn+WvfRVL5I7Fkt9rsYNrcLC/G7uS
aRh2Jc468gf2vtYt5TPkb2Y8FUuQBzdDZrAk9Dex/M2fYFeq/Ri7KmgKduAPrlJahAXMWVhS+dv0
Tvq+yHuvBhMRSYVqA0V4vKnbsRwHWOskfEb/B+RbBaOwK6bC9xdcQL6/v9y61bib/CW7GSwQBPcd
DPdtnhBa/nHyQ24sovdVVkEgCShQSM2UzJa02RGafgu7TwFgNDYkSeDl0PRE4FDsEtPAoNAy5dYt
52zsZrrJvr33YZepBnaTT4oHdzzvDL3+u1D9C197Cwtsgyh+U6RIxRQoZCD5LfmbtcDGgarUq9jV
V4Hw9CvYPQ8foPhBt9y6pQzFEs4XYvchvIu1KBo1Qm6zXYUlCaLrvGUg6cTu8xiGjRHU19VQ4aHL
78C6fYI8QzhR/CrWrXMt1gU0CLub+tQK1i1liD/+Ews+Z2N3pTfKTvJ3gItUpdJAcQh2iVsweuRI
7C7K57A/oNbQsguwESi30HvHn47d5bkVuD5UPhTrK96KjUszEZHaXIfdh7ETuznwR7z3zl0K5oOy
72NDSGzE+v7vLFj+j7ED+2ZsmPafkm+x9LVuMW9gweUO394FWMuisH7l5kt9lmLLX40lxvdQehRf
kbp8Hbva4l99/hryScBvYOPRgyXQOrH+3DZsVMzgjG09+TGDVmFXZ4ANm3CTT88mP4qoiIgkxDjs
pqaZ5FsUW7ArQcDOqoLx6BeQ/10BsDFaTsKSfc+GyudgY9oEy5zo04Oxa9FFRKRJVNL1dB120084
iTeK/BUWO8kHjTHYTUKBbVi/bWF5F/nhq8eSv2JkPza+fS1j84g0ozfJj54bfpxcbiWRZtLXVU+f
xW5K2oBd112MRmwUKe3wvhcRaW59BYpPYTf0fAa7JvsIbDiAnViX0w6sWykY6rkLu+M1MA5rSXT5
dGF5sM4EbIiCwfT+TeeDjjvuuJ4XXnihwo8lIiJV2kjpwTUrFv5x9WvI5yKu4L3J7CHY0AQvkE9m
r8NyES28N5kd/DziHEons3uk/y1cuDDuKohURftsY1CmZ6jaG+6CDX0Hu6xvLjZ8cfDrZJu9fDOW
b5gXWmce9gM4w7BAsdrLb8FaKVuxO1HnVFknERFpoGoCxS/8AdY1dEaJ5b7tj0JPYD/FWOgd8oFG
IpbL5eKugkhVtM9GT3dmp1x7e91dkiKR0j4bvUaNK9MI3o0mIiL9raWlBUrEBLUoRESkLAWKlMtm
s3FXQaQq2mejp0AhIiJlKUchIiLKUYiISO0UKFJO/b2SNNpno6dAISIiZSlHISIiylGIiEjtFChS
Tv29kjTaZ6OnQCEiImUpRyEiIspRiIhI7RQoUk79vZI02mejp0AhIiJlKUchIiJ15SgOA9YBndjv
YF/t5YuAbcAGf5wdWmcB9vvXW4AzQ+XTgU3+2vWh8qHA7V7+GDCxjzqJiEiE+goUbwMzgXbgoz59
CtADXAtM88d9vvwUYLY/zwJuIh+hlgJzgcn+mOXlc4HdXnYdsLjOzyRVUH+vJI322ehVkqN4y5+H
AIcAe3y+WBPlXGAlsA/IAc8DJwKjgeHAel/uVuA8nz4HWO7TdwKnV1x7ERFpuEoCxSCs62knsBZ4
xsu/BmwEbgFavWwM1iUV2AaMLVLe5eX48ys+vR/YC4ys5kNI7TKZTNxVEKmK9tnoVRIoDmBdT+OA
U4EM1o10rJe/CnyvQfUTEZGYDa5i2b3AvcAngGyo/GbgHp/uAsaHXhuHtSS6fLqwPFhnArDd6zMC
eL1YBTo6OmhrawOgtbWV9vb2g2cXQb+l5ovP+xUNVQuuNIu7/ppP3/zMmTOpRU9PT1PUv9nnOzs7
6e7uBiCXy1FOX0ePo7DuoG5gGHA/cBXW/bTDl7kcOAH4IpbEXgHMwLqU1gCTsOT3OmA+lqe4F1gC
rAbmAVOBS4E5WO5iTpG66PLYBshmswd3HpEkaGnJ0tOTibsaA065y2P7ChRTsUTzIH/cBnwXS0a3
YwHgReASLIcBcCXwZSzAXIYFF7DLY5dhAWcVFjTALo+9Dbt6ajcWJHJF6qJAISK0tIAOBf2vnkDR
TBQoGmDRInuIJIX22cbQoIBS0lVXZeOugkhVMpls3FVIHQUKEREpS11PKaf+XhEBdT2JiEgdFChS
Lxt3BUSqEtwTINFRoEi5iy+OuwYi1Vm2LO4apI9yFCKSKMqrNYZyFCIiUjMFipRTf68kTzbuCqSO
AoWIiJSlHIWIJIpyFI2hHIWUpDFzJGkWLoy7BumjQJFyGutJkkZjPUVPgUJERMpSjiLl1N8rIqAc
hYiI1EGBIvWycVdApCq69yd6ChQpp7GeJGk01lP0+spRHAb8Avtd6yHAvwALgJHA7cBE7Petzwe6
fZ0F2G9mv4v9LvYDXh78ZvZh2G9mX+blQ7Hf4P449pvZs4GXitRFOQoRUV6tQerJUbwNzATagY/6
9CnAFcCDwPHAQz4PMAU70E8BZgE3hd54KTAXmOyPWV4+FwsQk4HrgMVVfDYREWmwSrqe3vLnIcAh
wB7gHGC5ly8HzvPpc4GVwD6spfE8cCIwGhgOrPflbg2tE97WncDp1X8MqZX6eyV5snFXIHUqCRSD
gE5gJ7AWeAYY5fP48yifHgNsC627DRhbpLzLy/HnV3x6P7AX69oSEZEmMLiCZQ5gXU8jgPux7qew
Hn9IAmUymbirIFKlTNwVSJ1KAkVgL3AvlpTeCRwD7MC6lXb5Ml3A+NA647CWRJdPF5YH60wAtnt9
RgCvF6tAR0cHbW1tALS2ttLe3n7wQBd0oWi+uvlsNsOiRc1TH81rvq/5hQubqz5Jne/s7KS7265B
yuVylNPXVU9HYd1B3cAwrEVxFXAWloBejCWyW/15CrACmIF1Ka0BJmEtjnXYVVDrsYCzBFgNzAOm
ApcCc7DcxZwiddFVTw3Q0pKlpycTdzVEKpbNZg8e8KT/lLvqqa8WxWgs0TzIH7dhVzltAO7ArljK
YZfHAmz28s1YgJlHvltqHnZ57DDs8tjVXn6Lb3crFnyKBQkREYmJxnpKOV2TLiKgsZ5ERKQOChSp
l427AiJVCRKzEh0FipTTWE+SNBrrKXrKUYhIoiiv1hjKUYiISM0UKFJO/b2SPNm4K5A6ChQiIlKW
chQikijKUTSGchRS0qJFcddApDoLF8Zdg/RRoEi5q67Kxl0FkapkMtm4q5A6ChQiIlKWchQpp/5e
EQHlKEREpA4KFKmXjbsCIlXRvT/RU6BIOY31JEmjsZ6ipxyFiCSK8mqNoRyFiIjUTIEi5dTfK8mT
jbsCqVNJoBgPrAWeAZ4G5nv5ImAb9vvZG4CzQ+sswH4DewtwZqh8OrDJX7s+VD4UuN3LHwMmVvcx
RESkUSrJURzjj07gcOAJ4DzgfOAN4NqC5acAK4ATgLHAGmAy0AOsB/7cn1cBS4DVwDzgv/vzbODz
wJyC7SpHISLKUTRIvTmKHViQAHgTeBYLAKU2ei6wEtgH5IDngROB0cBwLEgA3IoFHIBzgOU+fSdw
egX1kn6gsZ4kaTTWU/SqzVG0AdOw7iGArwEbgVuAVi8bg3VJBbZhgaWwvIt8wBkLvOLT+4G9wMgq
6yY10FhPkjQa6yl61QSKw4GfAZdhLYulwLFAO/Aq8L1+r52IiMRucIXLHYp1Cf0I+LmX7Qq9fjNw
j093YQnwwDisJdHl04XlwToTgO1epxHA64WV6OjooK2tDYDW1lba29vJZDJA/uodzVc3D81VH81r
vq/5TCbTVPVJ6nxnZyfd3d0A5HI5yqkkmd2C5Q92A5eHykdjLQm8/ATgi+ST2TPIJ7MnYcnsddhV
U+uBe+mdzJ4KXIolsc9DyexIKDEoIlB/Mvtk4EJgJr0vhV0MPIXlKE4jH0Q2A3f4831YEAgORfOw
1sdWLMm92stvAT7g5f8buKLCzyZ1y8ZdAZGqBGfHEh0N4ZFyHR1Zli3LxF0NkYppn22Mci0KBQoR
SRR1lzaGxnoSEZGaKVCknPp7JXmycVcgdRQoRESkLOUoRCRRlKNoDOUopCSN9SRJo7GeoqdAkXIa
60mSRmM9RU+BQkREylKOIuXU3ysioByFiIjUQYEi9bJxV0CkKrr3J3oKFCl38cVx10CkOsuWxV2D
9FGOQkQSRXm1xlCOQkREaqZAkXLq75XkycZdgdRRoBARkbKUoxCRRFGOojGUo5CSNNaTJI3Geope
JYFiPLAWeAZ4Gpjv5SOBB4HngAeA1tA6C7Dfv94CnBkqnw5s8teuD5UPBW738seAiVV+DqmRxnqS
pNFYT9GrJFDsAy4Hfg84Cfgz4CPAFVigOB54yOcBpgCz/XkWcBP55sxSYC4w2R+zvHwusNvLrgMW
1/GZRESkH1USKHYAnT79JvAsMBY4B1ju5cuB83z6XGAlFmBywPPAicBoYDiw3pe7NbROeFt3AqdX
/UmkRpm4KyBSlUwmE3cVUqfaHEUbMA1YB4wCdnr5Tp8HGANsC62zDQssheVdXo4/v+LT+4G9WNeW
iIjErJpAcTh2tn8Z8EbBaz3+kMTJxl0Bkaro3p/oDa5wuUOxIHEb8HMv2wkcg3VNjQZ2eXkXlgAP
jMNaEl0+XVgerDMB2O51GgG8XliJjo4O2traAGhtbaW9vf1gMzTYedI8/7nPwZtv2nw+APQ1b5cb
Vr58hiOPhLvuiv7zaV7zmUzGx3pqnvokdb6zs5Pu7m4Acrkc5VRyH0ULlj/YjSW1A9d42WIskd3q
z1OAFcAMrEtpDTAJa3Gsw66aWg/cCywBVgPzgKnApcAcLHcxp6Aeuo+iD1FdX67r2CVO2v8ao9x9
FJUEilOAXwJPke9eWoAd7O/AWgI54Hyg21+/Evgylm+4DLjfy6cDy4BhwCryl9oOxVor07DgM8e3
GaZA0QcFCkkD7X+NUW+gaBYKFH2o5Q8om80ebI428n1E+ktLS5aenkzc1RhwdGe2iIjUTC2KAURd
T5IG2v8aQy0KEWlKI0fagb+aB1S/zkjdlVUXBYqUCy6bE4nDnj3WOqjmsXZttup19uyJ+5MmmwKF
iIiUpRzFAKIchSSN9tnmoRyFiIjUTIEi5ZSjkKTRPhs9BQoRESlLOYoBRP29kjTaZ5uHchQiIlIz
BYqUU3+vJI322egpUIiISFnKUQwg6u+VpNE+2zyUoxARkZopUKSc+nslabTPRk+BQkREylKOYgBR
f68kjfbZ5lFvjuIHwE5gU6hsEbAN2OCPs0OvLQC2AluAM0Pl030bW4HrQ+VDgdu9/DFgYgV1EhGR
iFQSKH4IzCoo6wGuBab54z4vnwLM9udZwE3kI9RSYC4w2R/BNucCu73sOmBxDZ9DaqT+Xkka7bPR
qyRQPAIU+9mPYk2Uc4GVwD4gBzwPnAiMBoYD6325W4HzfPocYLlP3wmcXkGdREQkIvUks78GbARu
AVq9bAzWJRXYBowtUt7l5fjzKz69H9gL6IcLI5LJZOKugkhVtM9Gr9ZAsRQ4FmgHXgW+1281EhGR
pjK4xvV2haZvBu7x6S5gfOi1cVhLosunC8uDdSYA270+I4DXi71pR0cHbW1tALS2ttLe3n7w7CLo
t0z7PFS7vJU1S/01n675avfX8L5azftBlmw2/s/bTPOdnZ10d3cDkMvlKKfSy2PbsGAw1edHYy0J
gMuBE4AvYknsFcAMrEtpDTAJS36vA+ZjeYp7gSXAamCeb/dSYA6Wu5hTpA66PLYPtVwCmM1mQ39M
jXsfkWK0zzaPcpfHVhIoVgKnAUdhl8kuxE4D2rEA8CJwib8GcCXwZSzfcBlwv5dPB5YBw4BVWNAA
uzz2Nuzqqd1YkMgVqYcCRR90TbokjfbZ5lFvoGgWChR90B+dJI322eahQQGlpHB/r0gSaJ+NngKF
iIiUpa6nAUTNeEka7bPNQ11PIiJSMwWKlFN/rySN9tnoKVCIiEhZylEMIOrvlaTRPts8lKMQEZGa
KVCknPp7JWm0z0av1kEBpQn10BJJZ2JP6F8RGfiUoxhA1N8rSaN9tnkoRyEiIjVToEg59fdKnKy7
tLpHtsrlaWmx95GaKVCISGxa6LE+oWoea9dWvU6Lcmp1SVKYVY6iD+rvlaTRPts8lKMQEZGaKVCk
nHIUkjTaZ6OnQCEiImVVEih+gP0e9qZQ2UjgQeA54AGgNfTaAmArsAU4M1Q+3bexFbg+VD4UuN3L
HwMmVvUJpC7V/ki9SNy0z0avkkDxQ2BWQdkVWKA4HnjI5wGmALP9eRZwE/nkyFJgLjDZH8E25wK7
vew6YHENn0NERBqkkkDxCLCnoOwcYLlPLwfO8+lzgZXAPiAHPA+cCIwGhgPrfblbQ+uEt3UncHo1
H0Dqo/5eSRrts9GrNUcxCuuOwp9H+fQYYFtouW3A2CLlXV6OP7/i0/uBvVjXloiINIH+SGb3oBHi
Ekv9vZI02mejV+vosTuBY4AdWLfSLi/vAsaHlhuHtSS6fLqwPFhnArDd6zMCeL3Ym3Z0dNDW1gZA
a2sr7e3tB3eaoDma9nlorvpoXvPl5qPaXyFLNhv/522m+c7OTrq7uwHI5XKUU+md2W3APcBUn78G
S0AvxhLZrf48BVgBzMC6lNYAk7AWxzpgPpanuBdYAqwG5vl2LwXmYLmLOUXqoDuz+1DL3afZbDb0
x9S49xEpRvts8yh3Z3YlLYqVwGnAUVgu4f8A3wHuwK5YygHn+7KbvXwzlm+YR75bah6wDBgGrMKC
BMAtwG3Y5bG7KR4kREQkJhrraQDRuDmSNNpnm4fGehIRkZopUKRcPqkokgzaZ6OnQCEiImUpRzGA
qL9Xkkb7bPNQjkJERGqmQJFy6u+VpNE+Gz0FChERKUs5igGkJaL/zSOPhNeLDrIiUh3ts82j3juz
JSFqiaNK8kmctM8mg7qeUi8bdwVEqpSNuwKpo0AhIiJlKUeRcmrGS9Jon20M3UchIiI1U6BIuYsv
zsZdBZGqaJ+NngJFynV0xF0Dkepon42echQiIqIchYiI1E6BIuU0bo4kjfbZ6NUbKHLAU8AGYL2X
jQQeBJ4DHgBaQ8svwH4bewtwZqh8OrDJX7u+zjqJiEg/qjdQ9AAZYBoww8uuwALF8cBDPg8wBZjt
z7OAm8j3hy0F5gKT/TGrznpJhbLZTNxVEKmK9tno1ZvMfhH4BLA7VLYFOA3YCRyD3W//Yaw1cQBY
7MutBhYBLwEPAx/x8jlY8PlqwXspmd0AunlJkkb7bGM0MpndA6wBHge+4mWjsCCBP4/y6THAttC6
24CxRcq7vFwikY27AiJVysZdgdSpd/TYk4FXgaOx7qYtBa/3+ENERBKq3kDxqj+/BtyN5SmCLqcd
wGhgly/TBYwPrTsOa0l0+XS4vKvYm3V0dNDW1gZAa2sr7e3tZDIZIH8lhOarm7devuapj+Y13/d8
psnqk8z5zs5Ouru7AcjlcpRTT47ifcAhwBvA+7ErnK4CzsByFouxRHarP08BVmDBZCzWZTUJa3Gs
A+ZjV07dCyzBchhhylE0gPp7JWm0zzZGo364aBTWigi282MsWDwO3IFdxZQDzvdlNnv5ZmA/MI98
t9Q8YBkwDFjFe4OENIiNm5OJuRYildM+Gz0N4ZFy2Wz2YHNUJAm0zzZGuRaFAoWIiGisJxERqZ0C
RcoFV0OIJIX22egpUIiISFkKFCmncXMkabTPRk/J7JTTNemSNNpnG0PJbCkjG3cFRKqUjbsCqaNA
ISIiZanrKeXUjJek0T7bGOp6EhGRmilQpJyNmyOSHNpno6dAkXIdHXHXQKQ62mejpxyFiIgoRyEi
IrVToEg5jZsjSaN9NnoKFCIiUpYCRcpp3BxJGu2z0VMyOyU8UVU1fecSF+2z0UpKMnsWsAXYCnwj
5roMOD09PUUfa9euLfma/uAkTtpnm0ezBIpDgBuxYDEFuAD4SKw1SonOzs64qyBSFe2z0WuWQDED
eB7IAfuAnwDnxlmhtOju7o67CiJV0T4bvWYJFGOBV0Lz27xMRERi1iyBQh2LMcnlcnFXQaQq2mej
1yxXPZ0ELMJyFAALgAPA4tAyncDHoq2WiEhqbATa465EOYOBF4A2YAgWFJTMFhGRXs4Gfo0ltRfE
XBcRERERERHpi25ylCT5AbAT2BR3RUTS4hCsm68NOBTlhaT5fRqYhgJF5Jrl8liJnm5ylKR5BNgT
dyXSSIEivXSTo4hURIEivXSTo4hURIEivbqA8aH58VirQkREBNBNjpJMbSiZLRIp3eQoSbIS2A68
g+XXvhRvdURERERERERERERERERERERERERERERERERE4vNmjO99GvDJflyuXh3ADRG8j4jGepJE
iXMgw5nAp/pxuXppUEcRkSLe8OcW4LvYmD9PAed7+eHAGuAJLz/Hy9uAZ4F/Bp4G7gcOK/M+84Fn
gI3ACmAtWLuFAAACx0lEQVQi8Co2aOIG4BTgs8BjwJPAg8AH/X2C5Z705ZYBXwhtO2gVjQZ+6dvb
5MuWMss/U6e/F/RuURwN/AxY748gUM0A/s3r8ivg+NC6dwH3Ac8Bi8u8t4hIogSB4gvAA1jA+CDw
EnAM9qt9w32Zo7CfeAU7gO8DPurztwN/VOZ9urBf/QM4wp8XAl8PLdMamv4T4B9KLPdDegeK4DP8
BXClT7dgQa6Yo4GXsWAVft+LyQeKFcDJPj0B2OzTw7HvBOAMLJiABYoX/PWh2I9X6bdIpKTBcVdA
pAanYAfHHmAX8AvgBOwM+WrsJzMPAGOwQALwItbKADs7byuz/ad8+z/3R6AlND0euAMLUEOA/yix
XCnrsd+APtTfY2OJ5U7CPt9LPt9dZJkz6D3y73DgfVhQuRWYhH1X4b/3h8gHrc3Y99FVQb0lhZSj
kCTqofjB+EKsJfFx7LeVd5HvYnontNy7lD9J+kPgn3w7/07+rDzsBmAJ1kq5BBhWYlv7yf+dDcKC
CtjPen4aOzgvAy4qsX6pzxrWApyIfeZpWBB7C/hbLCBMBT5XUMfC76PYZxQBFCgkmR4BZmP779HA
qcA6rJtoF3bgm0m+u6YaLVj3TRa4AhiBdQu9Qb5bC3+v7T7dESovXC4HTPfpc8h3aU0AXgNu9se0
EvVZh32+Np8fGapn4AEsrxL4WJE69jUkdyWtIEkpBQpJkuBKn7ux7qGN2BnzX2EB4sfAJ/y1i7AE
duG6peYDhwC3+TaeBK4H9gL3AJ8nn8xeBPwUeBw74AfbCy93MvB97JLZTqwbKUhmz/SyJ7Fk/PUl
6vMa8KdY8rkT+02GoP7Be873z70RS8Jf4uXXYF1xT/rn6imybl/fh4iIiIiIiEgd1C8paXYj+ctK
A/8ILI+hLmD3ZQwtKLsQ604SERERERERERERERERERERERERkYr8fzcrsQH/70SCAAAAAElFTkSu
QmCC
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>If we just plot a scatter, there's not much of a relationship between income and the amount funded. However, deep down we know there is.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[395]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span><span class="mi">5</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;annual_inc&#39;</span><span class="p">],</span> <span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;funded_amnt&#39;</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s">&quot;Plotting Annual Income against Funded Amount&quot;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">&#39;Funded Amount&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">&#39;Annual Income&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[395]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
&lt;matplotlib.text.Text at 0x1379d70d0&gt;
</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX2wPHvtCSTHkA6oaP03hQwoAIiRVARUSkiigp2
VBZXUdddy09X7LoqKK6iKAJKUxcC0kGqFKlBOiSEBFInmfv749xxhkggkGRS5nyeZ55M7ty58947
Azlz3ve8LyillFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSqmLEA+M
KsLjvQc8XYTHKwsmAdNKuhFl0DzgzpJuRBGpA7gBq5+fq5QqAP3HpZRXApAOnAaOAlOAMPMxw7xd
SB3++odrBPBLnv3uA/5xyS29sHDgDBJQlBbnu35xwAE/taOs6UPhg+kR/PUzmFc8kIF8/j23joV8
3ZIQD5wEgkq4HfkZwYXfC6VKhAaFSnkZQF8gAmgDtOPSs3mWomrUJboJ+AMJtqqUbFP+VNLXRJ2f
ATyAfP49t9Ul2qKLVwfoABwH+pdsU5QqezQoVOrcDgMLgKbneMyCBIsJwDHgUyDSfGyp+fMUkAp0
At4HOiOZl5Pm41OBF8z7ccBB4FHzeIeRbIJHReB7IAVYg2QYL5RpGA58BCwH7sjzWALwGLDJbOd0
ILiAbYnn7G70EXnaMhkJRlOAdUCXC7QzP/HA88Ay5DouRK6DRxdgBZBsvt5wc3sU8BkSFCQAE/EG
oyOQ6/G6+bzdwJXASPMYx4BhPq8RDPwfsB/JHL8HhOTT3vrAIiAROAF8brbFow2wwTyXr4Gv8L7/
McAPZptPIu91jTzXwnPNR5jX5FVz371Ab599RwB7zNfZCwwFruDcn8GC8n19z2v4vudu4F5gJ3Jd
3/Z5zIpcwxNmu27Ic+wo4GPkc3YQuSbWAj73XIYBPyOZ1eF5HpsKvItkz0+b51AV+cwmA9uBVj77
N0bOPRn4Dejn81g8l3ZNGiOfo0t9L5QqVhoUKnU2TwBRC7ge+UOe10jkD04cUA/pqvX8p9/V/BmF
BIqrkD8OK5HMSwXz8bzd0VXM/asjf2zewRtUvIP8Aalivu4wzt8VWxvohgQfX3N2oON57VuAXkBd
oAVnB37na8uFutHXAC2RQOcLYAaX3o13m9muyuYxHje310b+sE8GKiF/yDeaj72FXOe6wNXIuY/0
OWYHJBiuAHyJXJ82SFB3B/I+hpr7vgQ0MM+nARKoPXOe9r4IVEP+8NdCxlBitv074BPkunwJ3Ij3
OlqQwCjWvGVwdmCV95p3AHYgQfIr5nNBhjpMRoLESCTw2Gjue67P4LmcK5tbkKETNyCZ9RbAYOSz
BXCP+Vgr8/Gb8xxrKpCNXP/WQE/g7gI+91yGIQH312YbKud5/Bbki0Il83VXAWuRa/IN8oUBwIEE
5wuAy4BxwH+Bhubjl3pNtgNjKNh7oZRSqgQlIMFXsnn/bbwZtMXAXeb9/yH/sXs0Qv7AWCn4mMIp
nJ0pTM/znGPIH3+beeyGPo+9cI7j+XoayaKBBA4uzs6A7EMySB4vI9mLC7UFzr4OcOHxUSeB5ub9
SeQ/Ni6Os8cULgb+5vP7fcB88/4E4NtzHMMGZCGZMY97zGN52rrT57HmyHt1mc+2ROSPuAUZk1nP
57HOSPatIG4E1pv3uyFZMF+/IJnQc2nF2Rkk32s+Atjl81gocg6VkaAwGRgEOPMccwQFG1OYZh4j
Gcn05n39cx3LjWRcPb4CnjDvL0LeA4/r8P77qAJkcnb29TbzORd67rl0QQLqCPP3jcDDPo9PAT7w
+X0ssNXn9+bIeYN8uTuS5/hfAM+a9y/lmjyZz75KlRqaKVTKywAGINmcOsgfjaxz7FcN6VL0+AOw
U7ixe0nIHxKPdCQDeZl5bN+AKW+AkdcwJEPnOW48f+1KO+pzP8N8rQu1pSAeB7Yh3dLJSIaxUgGf
m1d+bazFuYOzSkiGJ+9749sVeyzPMUG6J/O+zmVIwPUr3iBpPvmfSxWkG/4g0nU+DW93d3XgUJ79
D+DNyoUiwUqC+dwlyHXLbwym73VJN3+GIwHdrcgXlsNIl/Tl+RzjXAwkIxZj3tpdxHPztsnzXlXj
7M/uHz73ayPv1xG81/h9vEH6+Z57LsOBH5EvdiD/BvJ+7o/73M/M87vvZ6w6fy182m9uL6i81yQs
vx2VKi00KFTq4h1GgkaPWCAHCTjO1aWUXzdTQaqZT5jHruWzrVY++4JkJxog2cIj5q0zkhksin/v
aZz9x62qz/2uwHikiy4aCSxSKPoCkz+Q7sa8EpGsaB2fbbFcOIg+l0QkSGiCN0iKxjt2NK9/ArlA
MySguxPv9T7C2YGpp12e9/8xJNvcwXzu1cg1u5Tr9iPSBVsV6Tb+j7m9IJ+1/JzvPb+QI8i5evje
P4B86aqI9xpH4c0sn++5eTmRLtoeeD/3jyFd/y0uor0eh5F/Z77vQW28wX1hrklh3gulipUGhUpd
vC+BR5DgIxwJCKYj2bUT5k/foOUoUBPJingU9I9+LjAT6Xp1Il2jd5L/HxZPtqQx8gexJRKoOJGp
TQprI97uyQbImENPWyKQADYRGUf3DPkHUQWR3/X5ArgWCT7tSFDRErlWXyNj+8KRP+KPIEUfF8uN
BFRv4M1c1UACrnPxZOpSzf3G+zy20mzbWLO9A4D2eZ6bgQTQFfB2UV6syuaxw5DgOM18XZAvLHk/
g+dyrmt+rvf8QsfwHOdr4EHkmsQAT/nsdwT5rL6OfHasyL+bbgV4bl43Ip893899Y6Sb1jOm9mKC
7NVIdu8J5JrFITMTTDcfL8w1Keh7oZTfaVCo1MX7BOkeXIp0Y6Yj3W6Y919EqlyTkezPImTs0lG8
3VV5B6qfL3swFsmgHEUqnb9ExhnmFYIESm+Zr+O5JZjtzVtw4vvaBW3Lv83XPoaM0fINuBaYt53m
a2ZwdpffhQbn530sb5s8v/+BBLiPIV3dG/Bmg8YhwdBeJCD4r9nO/F7/fO15EqlQXoUEbD8hGb1z
eQ4pWElBChS+9Tl2NhJAjEI+E7cjXbue9/ANJLhIRMaCzj9Pu853DlYkCD6EXJeuyFhMkHGweT+D
+R0/r3O95+f7vPi28T9I5fgmZIzit3n2H4Z8gdiGjKOcgTfrdqHn+hqG/Ls8iPdzfwwZFzwUGW96
rs95ftcyG6k2vh75ovc28mXMMya1MNekoO+FUuWaDfnP+3vz9wrIf7I7kW+L0T77TkAGU+/g7G/m
bYEt5mOTfbYHIwN5dyH/gdcu+uYrVWq8jDfQUWXTav463k0ppQLGo8i39jnm76/grVB7Epn+AWQM
z0YktV4H+abuSbuvwVsFOQ/v/Fz3I/NPgQy09qT4lSoPLsdbEdsByVzoxLxlSzckA2ZHgsE0Ss+k
4kop5Vc1kQlFu+PNFO7A+5+iZ1A0SJbwSZ/nLkAmAK6GzPHkMQSpVPPs41mOyc7Z1YRKlXXtkCy4
p1v0yfPvrkqh0Uh34WnkS+/1JdscpZT6K7ufXuffyMBr30HnVfBOD3EMb4BYHekC9jiIDDR2cXYV
4SG8FX018E4fkIN3wLbOFq/Kg3WcPU+hKnv+g7cSWCmlSiV/FJr0RQbTbiD/6q+CzA6vlFJKKaWK
iT8yhVci45/6INWRkUgl5DGk2/go0jXsqcI6xNnzsNVEMoSHzPt5t3ueE4vMLWVHKjXPyhLWr1/f
2LNnT1Gdk1JKKaVUcdqDTHnkN/7IFP4NCfLqIuMAFyGl/XPwVt8NB2aZ9+eY+wWZz2mIFJgcReYA
64hkHO8EZvs8x3Osm5GS/7Ps2bMHwzAC7vbss8+WeBv0vPW89bz1vPW89bz1vC/uxrkn6S9W/hpT
6MvTTfwSMjnpKGROs8Hm9m3m9m3I+MD7fZ5zP7KAuhOpPl5gbv8YyT7uQubnGlKM7VdKKaWUKnf8
HRQuMW8g3bvX5rPfP81bXr/iXQLJVxbeoFIppZRSSl0kXdGknIuLiyvpJpQIPe/AoucdWPS8A0ug
nndJKOqF6kszw+yjV0oppZQq1SwWC/g5TtNMoVJKKaWU0qBQKaWUUkppUKiUUkoppdCgUCmllFJK
oUGhUkoppZRCg0KllFJKKYUGhUoppZRSCg0KlVJKKaUUGhQqpZRSSik0KFRKKaWUUmhQqJRSSiml
0KBQKaWUUkqhQaFSSimllEKDQqWUUkophQaFSimllFIKDQqVUkoppRQaFCqllFJKKTQoVEoppZRS
aFColFJKKaXQoFAppZRSSuGfoDAEWA1sBLYB/zK3TwIOAhvM2/U+z5kA7AJ2AD19trcFtpiPTfbZ
Hgx8ZW5fBdQu4nNQSimllCrX/BEUZgLdgVZAC/N+F8AAXgdam7f55v5NgFvNn72BdwGL+dh7wCig
oXnrbW4fBSSZ2/4NvFycJ6SUUkopVd74q/s43fwZBNiAZPN3yzn2HQB8CbiABGA30BGoBkQAa8z9
PgNuNO/3Bz41738LXFN0TS8fgoODsVjCsViisFjCsFiisViCsFgize2R5u+hPr+Hmvt6blFYLME+
xwjBYokwb6Hm71Fn7RseXo0xYx6kYsVYnM5o83XDsFhiqFevKVFRVWnb9mo++ugjqldviM0Wg8MR
RefO17Fr1y5GjLiPmJgaVKvWkKZNOxIVVZUmTTqyfv16AHbt2kW7dnFERVWlffvu7N69u0iuV2Zm
5p+vXbNmY2bM+KZIjltcZs+eTWxsE6Kjq3P77aNJT0+/8JOUUkqpEmBFuo9PA6+Y255Fgr5NwMdA
tLn9LeB2n+d+BNyEdB3/5LO9K/C9eX8LUN3nsd1AhTxtMALV0KFDDQgzIMqANww4aMA9BlQwYIUB
ewzoZkC4AS3M31cYUNl8XgMD9hmwxIAqBtxqQB0D6hqw2YCt5vOiDLjXgAMGfGtAqAHdzdf52vx9
ivn6fzMgwoC9hsUy2XzsMgP+Y8BBw2J51ggPr2Y4nf0M2GtAUwMeN587zYiMrGIkJCQYVarUNSwW
OSer9XWjWrX6RkZGRqGv2ciR95uvLecdGlrVWL58eRG8G0Vv7dq1htNZ2YD/GZBghITcZAwZcldJ
N0sppVQhID2qfuWvTKEb6T6uCXQD4pCu4Lrm9iPAa35qS8D56quvkKGZlYCHgBpAGPAE0BmoB7yN
JHGbmL93Bh4FnMjHpA7y1t0LNABOAS8Bzc3nvIAkft9B3uZBQA+gPTKC4Adz3xHm6//D3H8LhvGg
2baGwN1ADQzjWc6cOUNGxr+BUOQj8or53DuA1sycOZOMjAgMQ87J7X6EtDQn27dvL/Q1mzPnB/O1
5bwzMu5h7tz5F3hWyVi4cCHZ2SOQ612bzMzJzJ37Qwm3SimlVFlj9/PrpQBzgXZAvM/2j/Bm/Q4B
tXweq4kUpBwy7+fd7nlOLHAYOaco4GTeF580adKf9+Pi4oiLi7vE0yhbgoODSU8/glySdCTICgF2
+uy1j79+R9gLpHF2EnYfEijlAHvy7JuLvCW1ke8B+4CmyFtSBViEjApwIENAM81jpSEfDSuQhdQN
JSNB4z6gk7nvcfM4LtzuA1SpUgWX67j5/DDgDC7XcaKioi7yCv1VeHgkSUn7gPoAOBz7iIlpUejj
FofIyEgcjk3k5nq27CM8vPDXQCmllP/Ex8cTHx9fom0415i+olYJiSBOIWmnhcBzwFbgqLnPI0hK
aSiSdvoC6ICkhX5GUlMGUsX8IDKucC7wJrAAuB9JQ90HDEHGGg7J0w4zGxt4NmzYQJs2XZBYuQKS
xfsKiaX7ITH4e0hA5kAu5xFgDhLcuYFxSOD3i7lPNBIUDkOCvmlIwBeJZPuWIcXmWVitWbjd9yLD
Phsh9UHTkCD1YcLC5gMHyMhw4nZXAnoRHPwN113XmP/9bzlZWaOwWObjdp/EMIYRGrqMjh3D+emn
WQwfPoZZszaSltaHsLC53HRTOz799P1CX7M5c+YwZMhosrJG4XDs57LL1rF58ypiYmIKfeyilpqa
SsuWnTl6tDlZWfVxOj9hypQ3GTz4lpJumlJKqUtksVjAP3Ga9zX98BrNkWjAat6mAa8ihSKtkGBv
H9Ivecx8zt+Au5Bg8iEkkAQZVzgVCS7nIQEiSGppGlLFnIQEhAl52hGwQSGAxWJHLrW72F7DZrNj
tVqx2WxYLFCxYiWGDr2NkSNH8s0335KdncW0adNISkqmSZMrGDduHDt2/E7jxlfQt29fpkyZwuLF
i4mKimbAgP4MHDiQdevWMW/efCIjI6hatSrbt++gdu1Yhg8fjt1uxzAMpk+fzrZt22natAm33nqr
5x9Soa1du/bP1x4xYkSpDAg9UlJSmDp1KsnJp+jVqyedO3cu6SYppZQqhPIaFJYWAR4UhiIx9Evm
li3AVUhB91yki7g3kIEkbMOQup4D2O3HiY2thtMZzt69u8jIeALJBs4hJmYC+/ZtK5IuW6WUUkoJ
DQqLV4AHhQ4kofom0l38IFJQ0gSZCjIX6QZ2IwUfYUhmsRIwGodjIdWqLSYpKZu0NO+0L1FRnfjh
h/+jS5cu/jwdpZRSqlwriaDQ34UmqgRs2rQJ6XFPByYC2cAtSDBoBVYiwzDXI2MBt5r3ewBLgCBc
rn6cPNme7Ow/kLGAFYA0XK6DVKiQd/YfpZRSSpU1uvZxADh69CgSFIYhVcfpyNQwvm//i0iX8iny
G3dosVjo378/YWFXYbc/TlhYFwYN6kPjxo2Ls/lKKaWU8gPNFAYACQptSPexBakevg74HKkm3oxU
CtcEpgAPYbePIienITJv+GgcjgVUqeJi2rSPWbRoEVu2bKFRo78zcODAIivsUEoppVTJCaS/5gE7
pvC+++7j/fe/AGYiKwBuAq5EVg5MBAYiwSBAKlCRp5+eyOLFa0hMPEZERDStWjXhpZcmUbFixZI4
BaWUUiqgaKFJ8QrYoHDQoEF8991KZO5BjzbITECZyPjALebP97BaJ+ByncRqDazRBQsXLmT58hVU
r16NkSNHEhwcXNJNUkopFaBKIigMrL/6AerOO+9EVgj5zdxyEFkeOhwYj6xwUhupSn6czp3bXFRA
eOrUKe6+exzt21/LPfc8SEpKSpG23x9effXfDBp0Py+8YPDYY7Pp2rU3LperpJullFJK+Y1mCgPA
1KlTGTnyXmQsYRNgBzLdzAmk8CQFCQhdgI2QkFB++20l9evXv+Cxc3JyaNOmK7//3ozs7JsJDp7B
FVds59dfl2Kz2YrtnIpSbm4uTmcELtcOZLVEN+HhV/LFFxPp169fSTdPKaVUANJMoSoW06ZNQ8YQ
LkHGD76OLBbj6R6NQrKGtwIO7PaYAmf7tm3bxt69iWRnfwD0IivrQ/bsOcb27duL+jSKTVZWFm63
G1lVEeSfRe0ymfFUSimlLpVWHweAiIgIJCM4A/jI3JoDvIVUF3+GrGSSAmRitSbTqFEjAHbs2MH3
339PSEgIQ4cO/UuhiXyTcSOZRwADw8gtUxXJoaGhtGt3FevXP4LL9QSyxPZiunV7taSbppRSSvlN
2fnLXXgB23388ccfc/fdY4BIZH7C1UhhSTCSFWuOLDu9E7gDp3MbXbtW4emnH6V370G4XEOx2ZKI
ilrOpk2rqFKlyp/Hzs3N5corr2Pz5qpkZg4iJOQbWrVKZPnyH8tUoUpSUhK3334vK1cup0qV6kyZ
8iZXXXVVSTdLKaVUgNLq4+IVsEFhu3bt+PXXzchKJQ2RzF5rZG7Cp4HDwH+R6uOHgYGEh/ejWjU7
u3Y9CdwGgNV6H/36HeeNN16jTp06HDlyhI8//hjDMDh2LJnt2/fRrFkDevTogtPppGvXrjidzhI4
Y6WUUqps06CweAVsUBgTE8OpU6eR6Wc8IwZuAv6HZA+TkAKLLGTeQhtWa20qVEgmMXEm0NZ8zpvA
64SEnGbUqNt4991PMYz6gAWHYz/Lli3g5puHkZJyGYaRQ+XK6axZs1iXwVNKKaUukhaaqGJxxRVX
IEvcPYwEfQuApcAKoBLwT2QOw41APaA9bvdOTp8+Yz7nIDLh9RvAEDIz3bzzzk8YhgV4ENiAyzWM
Xr1u5siR/qSm/sLp0ys4cOAqnn76BT+frVJKKaUuhQaFASA2NhbIBb4HqgP3A9OR6Wk6m4/ZgA1A
N2Sd5Cyysh5EgsFmQBwwDvgQWAT8DvwKPIEEjddx+nQWOTk9zFe1kJ3dnZ079/vjFJVSSilVSBoU
BoBFi1YC0Uj3cA0gHQnu9gGzkClqwoChwDRkbOHlwO1m+nogMsdhfaAKMh4RZHxiI2Tew7epUaMC
Tud/gGwgA6fzE7p08XQ9K6WUUqo006AwACQnJyFZwbuAz4GXkUCuAXAGuB3YD+wFGgNfICue3IBh
uM3nZCLjEBOANeaRtyGZxL7UqJHA+vXL6NrVTVBQZYKCqtCzZwwTJz7hp7NUSimlVGFooUkAsFhC
kW7jzsBKZN3jn5HxhBZk/sIW5t5vAQuBZ5D5C38EfsVuH0+7dru55547GDv2Mez2GrhcB3nmmae4
5Zabzlr9JDExEYvF8pc5DYvCmTNnSE1NpWrVqmVqyhullFLqYmj1cfEK4KAwBOn+jQK2AxHIOsgd
gd7AFcA/kG7fa5Cxgm6kUtkC3Am8gt1eGZcrg+TkZBISEoiNjS2WwC8/kya9yD//+U9stjBq1arB
okXfU7NmTb+9vlJKKeUvGhQWrwAOCp1IQNgUmYbGIxJYDtyMjDNMQwLDZsBPQCgSEC4GHiAm5n1O
njzox5Z7LViwgJtuGkd6+i9AFWy252nffhkrV/5UIu1RSimlipNOSaOKhcViRwK+dcB6c+tHSDbw
A+AEcBQpGgkHRiLZRBsyJU0QFstLfPDBG35uude6devIzLwJqApYyM29n82bfy2x9iillFLljQaF
AcAwMoHuwBSkezgcCfbcwFSgNlJ9XAdZ/3gR3rWMfwJyGTiwF7fccrNf2+2rTp06OJ2/IJlMgMVU
r167xNqjlFJKlTf+SEuGAEuQhXaDgNnABGTek6+QiCQBGAycMp8zASmVzUVmR/7R3N4WiWJCgHnA
Q+b2YKQqog2yPMetSDmtr4DtPrbZgnC7RyJZwVxgD7LecTBSadwXOIRMQ+Myt9dAAsUdREdHc/To
HoKDg0ui+YCssdy372CWLduGzVYHt3s9P//8PR06dCixNimllFLFpTyPKQxFBq3ZgWXA40B/ZHmN
V4AngRjgKWTulC+A9khk8jMyIZ6BzIUy1vw5D1l3bQEyG3Mz8+etyMR6Q/K0IWCDwquvvpqlS9ch
cxBeATyKFJOcQrqOo809mwD7efXV59m3by8JCQn06NGDhx56CLvdfs5j+5Pb7WbFihWcOnWK9u3b
U6VKlZJuklJKKVUsyvOYwnTzZxAyUC0ZCQo/Nbd/Ctxo3h8AfImkrBKQCfM6AtWQgW6eSfI+83mO
77G+RfpIlWnp0uXIWzACSbYuReYdDEHibhuSFZTk6vjxz/Luu9OYN28Rjz/+HA5HFBZLNBaLE4sl
AoslFIslEosliMjIqnTqFEdMTCxWawTBwRXp3XsAtWo1xumMwemsTIUKNXnkkafIyckp1HlYrVb2
7/+De+99jMaN23LPPQ+SnZ191j6zZ88mNrYJ0dHVuf320aSnp+dzNKWUKts2btxIs2adiYqqSrdu
fTh06FBJN0mVcf4KCq3IwrrHkFLWrcjSGMfMx4+Zv4NMqOdb4noQiVzybj9kbsf8ecC8n4MMjKtQ
pGdQpuUi8fQ1yNyEtZCE7RpkHGEIUp3cCwkaNyNzFYYjhR07kVVPooHnke7lOUAlTp+OZPXqzZw6
9TmGsYXs7M4sXLiBgwerk5kZTWbmPJKTF/PhhyuYNOmfhTqL+Ph4Ro8ez+HDn5Cc/Auff76TRx6Z
8Ofj69at47bb7uHAgbdJSVnJzJnJjBo1rlCvqZRSpVFSUhLdu/dh69YxpKb+yooV7ejRox9ut7uk
m6bKMH8FhW6gFVATWVy3e57HDbyVDarIOZCg0A3UQyambomsXvJ/yNuSiASJ75j7dEZ6+Y8gMfdd
SNdzU2QYqNs8ziHgAeRtrQNMRuLy34HxQDugIenpLzFjxg+FOos5c+aRkfEAcBVQl4yM15k58/s/
H1+4cCHZ2SOAHkBtMjMnM3du4V5TKaVKo7Vr12IYTYDhQA1yc5/jwIHDmi1UheLvgWIpwFwkHXUM
SUMdRbqGj5v7HEJSWR41kQzhIfN+3u2e58QCh5FzigJO5n3xSZMm/Xk/Li6OuLi4wp1NmZGLXPoQ
JGDb5/PYXqSn3oIM/dyHFKGAFKQ4zPvZyOV2Im9dFNKzbwC7fI63z3wda57X2Ud0dFShziImJhKH
Yx8ul/eYkZHeY0ZGRuJwbCI31/t4eHjhXlMppUqjyMhIcnMPIv9/O4AkcnLOEBERUcItU5cqPj6e
+Pj4Em2DPwYwVkIikVNIRLEQeA7pq0xCFuJ9Cumb9C006YC30KQBEn2sRqqR1yDBpW+hSXPgPqTA
5Ea00ORPMlg1HKiIXHIrcBsSP09FgsbLkTg7HrmMR4BZSKB4LzAfCQytyPjEq4CvzZ8rgZ5IPdCH
QAYOR2tcrt+BvlitlQgJ+YyFC7+jS5cul3weJ06coEWLTiQnd8Hlqk5w8MfMnPkZvXv3BiA1NZWW
LTtz9GhzsrLq43R+wpQpbzJ48C2X/JpKKVUaud1u+vS5mWXLkkhLiyMs7Bvuu28gr776j5Jumioi
5bX6uDlSBGI1b9OAV5Exf18jGb4Ezp6S5m9If2UOMu3MQnO7Z0oaJ1J9/KC5Pdg8bmsk6hliHtNX
AAeF0Uh3bwayioknlZaBd94/j2rI5d3HuXr0bTY7VqsVu91GmzZt6NHjGjp16si6dev45Zdl1KtX
j2HD7mTdunX88ccBMjMzqFq1GoMGDaRp06aFPpekpCQ+/fRTTp8+Q79+fWnTps1Zj6ekpDB16lSS
k0/Rq1dPOnfuXOjXVEqp0ignJ4dp06axd+8+2rZtw4ABAzyBhCoHymtQWFoEcFBoQaqL3cik1ZuR
nvtQpFgVMbD5AAAgAElEQVT7FBIcJiMZRYAxhIR8wfbtm4mNjeXQoUOEh4cTExPj/xNQSimlAkx5
npJGlZDcXE/lcV+kh/4XYDRQGUm6JiK978HAWs+zgN/IyrqeBx54AqvVSq1atS4YELrdbr766ite
euklfvzxx/Puq5RSSqnSRYPCcm7btm1IRnAKMlH1bcgax/9EeuNDkK7iW4B+yLzf7YEoDOM+NmzY
wvTp00lNTT3v6xiGwaBBdzBq1Gv8/e9JDBx4P88++2KxnZdSSimlipZ2H5dzW7ZsoUWLa5GCkC1A
J2SI5gfmbQXyMWgJrAIuM3/vBZzEYtlKaGgDoqN3s379MipXrnzO11m9ejXXXHM7aWlbkazjMYKC
GnD8+EGiorQCWCmllLoY2n2silyTJk2AVGTewG1IPc5cZHWTLcjnLQzoghSYxJv7zgOWYhgbSEub
x/HjfXj22fwnn05OTsZmq4MEhACVsdsjSElJKYazUkoppVRR06CwnLPZbEgVcUu8cw62Ac4gxSa5
wCikO/kBZEqZMGSu8SrmfXC5OrB//5F8X6dt27YYxhakoDwZq/VlKleuQI0aNfJ9jlJKKaVKD+0+
LucyMzNxOmOQ+H84UBf4A/gPkFXAo1QEUomMDOWWW25h0KCB9OnT56w9jh07xoQJE/jyy5lkZ2dy
xRWtmDt3OlWrVmXKlCkcOXKUq666ksOHD1/y9Anbtm3j229nEhwcxB133EH16tUL/FyllFKqLNEp
aYpXQAaFc+fOpW/fwchbPQbvpNRXIgUlHyJZwzHI6iaLgSAkazgTCRwzzH2uBJYSHBzDxIkP8Pe/
PwXA4cOHadasA8nJPZCq5o8IDjb48cfveeihv/H779FkZLTGan0Xu/1ysrOvu+iJVlesWMF11w0g
K2sEVmsqERFz2bhxJbVq1brwk5VSSqkyRoPC4hWQQeHYsWN5553ZwBvATebW+5CFZl5AFom5AXgE
mTP8BiQwTEbmLqyHrHlc1XxOCvArdvsB0tJSCAoKYvz4Cbz22mkM423z+DOA52nUyMbhwxGcObMU
WfVkBLAV6cZOxOGow/HjB4mOjr7geXTq1JPVq+8E7gTAZnuSMWNcvP3264W5PEoppVSppIUmqshF
RUUjYwrr+mxtiAR3mNuzzN8tQH1zezqy+kklZGxhuLlPAyALi8VOeno6ACdPpmIYDXyOXxdwcfr0
aQyjjnncVGTxGs+4xorY7eGcPn26QOeRkpJ61jnk5tYlMVGLWJRSSqmiokFhOde37w1IMDcW2INM
O/MvZDm7P5BuYjvQDvgRWZEwGAkKX0G6jhcDS5CA8C0slso0a9bqzwzfzTf3JSjo/5Cs4x7gMez2
bAYPHogsTT0bWcZ6HfAJcAib7Vlq1ape4EKUwYP7Ehr6FLALWEdo6KsMGdKvUNdGKaWUUl7afVzO
nTp1ipiYGsCNwBzke4ATyR6mATYkU2jzuR+ELIlnN3/mmEcLwmrNpHv36/niiw/PmrPw44+n8Oij
f+f06VSCgoK4//67efXVF1m+fDl33fUQJ04cpWXLFpw4kczhw3/QsmUbvvzyPwUOCnNzc3niiaeZ
OvW/OBxBPPPMeO6//94iuEJKKaVU6aNjCotXQAaFR48epVq1RsAPwJPIuEFPhs0zBc3dwEeAnZtv
7ssbb7xB/frNycraiyyNl4bT2Yh1634y5z1USimlVHEqiaDQ7s8XU/63adMmJPs3AFn/eBgwDqlC
/i+yzN1WZD7CLBYtWsbJkycJCqpMVpanACQMh6MGycnJ/j8BpZRSSvmFBoXlnHdFkSCkAvg08BLS
hZyLrF5SC1n/uCUnT2awf/9+wsNzOHNmMoZxBzALu/0IzZs3L4EzUEoppZQ/aKFJOSeZQpDCka5A
JnAYmU8wGgkIQSp7awFu9u7dy5Il82nRYgZOZ30aN/6AJUvmExkZ6e/mK6WUUspPdExhOXf48GFq
1GiEFJE8jWQEqyFJ4heB+UiwuAgpRjFwOCw0a9acvXv3UatWHT7//D1atmxZQmcAbrebWbNmceDA
ATp27EinTp1KrC1KKaWUP+iYQlXk4uPjkephG/AxUlyyHAkGs4BrkXGF2eYzmuFy1WTDhuXAr6Sk
/Exc3PXs3r2FihUr+r39breb/v2HEB+/j5ycjthsr/LKK0/zwANj/N4WpZRSqjzT7uNy7vPPP0fe
Zs98g+OAL4HWSBcyyByCociqJSORCavTgChgJG53U1avXu3nlov4+HiWLNlGWtpysrLeJj19KY8+
+hgul6tE2qOUUkqVVxoUlnM9evRAKovdQAwyP+GLwHqk6CQYWfP4JnOfh4GTyMomywEXubkHS2w8
4YkTJ7BYLkcKZUDGPto4c+bMOfc/efIks2bNYv78+WRlZfmrmUoppVSZp2MKy7mdO3dy+eUtkZEC
1wAtgG+RiayDgP7Id4PjwN+Bt5Gq5DTgSkJDj9K5czg//jgLq7V4vkMkJSUxYsQDrF69hlq1Ypk6
9a0/K533799PkybtSE//EuiCzfYa9ep9w++/r/eMt/jT7t276dSpOy5XUwwjhZo1c1i9ehERERHF
0m6llFKquOjax6rILViwABlTWAtIQoK+iUgmsBay5N0RoA+wHalOHg0kU6nSMiZPHsqCBTOLLSA0
DIOePQeycGFlTpxYyIYNd9CtWy9OnDgBQO3atZk9+0sqVx6N1RpB8+YL+Pnn2X8JCAHGjHmc5OSH
SE1dwOnTK9i793JeeeX1Ymm3UkopVd5ooUk517FjRyQo3AvsACoik1V7bEMKTr5GvpBkIKufNMJm
S2batFm8887H2O2hxMbW4Pnnn6Rp06ZF1r6kpCR++20zLlc8YMUwGuJ2z2TFihUMGDAAgGuvvZZj
x/ZhGMY5g0GPhIQDuN3dzN8sZGV1Zc+etUXWVqWUUqo880emsBZS4bAV+A140Nw+CTgIbDBv1/s8
ZwKwC4lievpsbwtsMR+b7LM9GPjK3L4KqF3E51BmrVixAghHxuINQ8YNvgbciixv97T5+P3Af5Aq
5eXALo4dq8/SpZvYuDGJdevG8N13zenQ4Wq2bdtWZO1zOp243dnIOEaAXNzuI4SHh/9l3/MFhABd
u3YkOPgtwAWcIjR0Cldf3bHI2qqUUkqVZ/7oq65q3jYi0cevyIR4g5FKh7z9e02AL4D2SFnsz0BD
pEJiDTDW/DkPeBNYgEQ0zcyftwIDgSF5jhuQYwojIiI4c6YCEl87zZ8tgKeQwpMXgH8gcfsM4B5k
LsNEYC1SiRwPtDKPOI6QkE9ZuvR/tG/fvkjaOH78RN5773vS0m7H6fyFFi0yWLZsIXb7xSWyT58+
Tb9+Q1ixYgmGkctdd93De+/9u9i6vpVSSqniUhJjCkui0GQWMrDtKuAMkrbyNQFJZ71s/r4AySru
R2ZYbmxuHwLEAWPMfZ4FViNd4keAy/IcNyCDwujoaFJSOgILfbaGIBlBT7BkINm1IKTIxG7+dAMO
4P+QYBHgEeTyzsFud2CzBeFyuXA4rPTt25cpU9656MIOwzCYMWMGK1asoV69WO69916Cg4Mv7YSB
U6dOERQURGho6CUfQymllCpJgTB5dR1kgrxVSFA4DunTXAc8BpwCqpuPexxEMoYu877HIXM75s8D
5v0cIAWogLdPMsAtQ9Y97oj0ugcjcxAuRC7rQOAosibyB0AHYDoyd+FbSEDoMm8fIFnGWeTkVCQn
ZzZgIytrKLNm/U529j3MmfPlRbXOYrEwePBgBg8eXOgzBQmElVJKKXVx/NmvFg58AzyEZAjfQwa6
tUJST3kzhqoIpKSkIG9zXyQY/Ax4ErgCSbq2AJ5HsoRrgeeAY0jsXg152wYB7yNdzA5gJpJtfAlo
jvT4P09ubhQLF37vr1NTSimlVBHyV6bQgUyO9znSfQwyMZ7HR4AnmjiEFKd41EQyhIfM+3m3e54T
CxxGzimKc2QJJ02a9Of9uLg44uLiLuFUyqJQZMLqO5HAcAKSUPXYi2QBKyLjCSOQuqBsIBLpuZ+A
BImrkYrlIGCPzzH2AXbCwqKK80SUUkqpcik+Pt5cmrbk+KOv2gJ8ikyS94jP9mpIhhBze3tgKN5C
kw54C00aIAPfViPVy2uAuZxdaNIcuA8Za3gjWmgCQFhYGOnpuUhmbziSpP0WmYbmbiQYnIa8TYOQ
Sa1rAwlIT34NpEZoJLJ2cgYSc1cGdiO9/3bgc4KDg/jgg9cYPvxOf52eUkopVS6V10KTLsBSYDMS
2AH8DbgN6To2kDTTvUi/pefxu5B01kN4qyTaAlORMtp5eKe3CUYim9ZI8DkEiWp8BWRQKB+q5kgA
1x95yyOQuDvNZ896yLBMF94EcmugG/AhNlsGUVGR9OjRg+xsF5mZmdSvX4+goGB2795N3bp1GTz4
Frp27eqvU1NKKaXKrfIaFJYWARwUgowrdCFzEc5Fpqb5A+lazkXGHB5Gan7cSGAYhKybHInFshPD
CANcWCx26tatzZQpk+nWrRtFKTc3l9dem8z33y+iRo3K/Otff6du3boApKWl8fTTL7B27Raio52k
p2djszl49NG7uf766y9wZKWUUqrs0KCweAVwUOhEgrxByDzhzyLjAf8B/BOZ/cdAhmFejvTqVzX3
24hMJWlFkrRbkF778dhsL7Jy5c9FNl8hwNixjzFlyirS08djs20mKupDtm9fT6VKlejatTfr11cg
M3MoUrO0GniK0NCJzJjxEX369CmydiillFIlSYPC4hWgQaEVGXLZDu+8303MR8ch4wa7IwvHXIVk
Cs8gxSWVzf1uRcYhpiPZwxHm8TIZNmw3n376fpG01TAMQkLCyc7e9+drh4YOYfLka4mLi6NlyzjS
0xOQANdA5iufAuwiLu5rFi+eXSTtUEoppUpaSQSFutRDwBiBLnWtlFJKqfxoUFjuGUjV8JNIMckA
ZJ7BV5AZgiKBW8yfS5HK4yigFzJ70CRgPrIk3jxkWby5QBo22wuMHTuqyFpqsVgYPXoMoaEDgVnY
bM8TErKM/v37U79+fVq1akJIyB1IhfRwpA5pK6Gh4xk//t4ia4dSSikViAqSlvwfcE0BtpV2Add9
bBgGVqsNGVMYBEQjxSQRyByEIMvd5SCrAh5FvidkIgXdwUjRSThSjJIDZGKxOKhbtzZTp75Z5NXG
nkKTH35YTPXql/HSS89Qp04d4OxCk5iYUNLSsrHZ7FpoopRSqtwpbWMKnUhp6mJkjWGPSGRuwCuK
r1nFIuCCwtzcXOx2BzIlzUpgJ5Ix3AE8A4xHgsIwJEhMRMYKLkDmG78RyR4+CNwAWGjU6DF+/32N
n89EKaWUCiylbe3je5E5AqsDv/psPw28XZyNUkXDZrMhQd8gYAUyN/hIoBKyfrGBFI90Q74DzEYm
o440jzAeqVZ2AENwOOyMGvUwa9eu5cyZM7Rt25bIyEiUUkopVfYVJAJ9EJmDpKwLuEwheL5pNEG6
gJ8CBpqP3INMVr0UaIhMPTMa2IRUKIOsg/xfJMO4ieDgOLp06caqVduw2aoQFHSA5ct/olGjRv47
IaWUUioAlLZMocebwJVAnTz7f1YcDVJFLQhIRpaHruuzvREyeXU4cMrc1gD4GskcRiDT03QyH6uL
y5XGypVppKdvAxxYLG8ybNj9rFr1sx/OQymllFLFqSBB4edI2epGpNrAQ4PCMiEEmfNvLzJP4WfI
aoKvIcGgE1nNZAXwb2Rs4ZVAReQtjwUOEBw8kWrVGpCQcC3SnQyG0Yc9e/7t17NRSimlVPEoSFpy
O9L/WNb7XgO0+9gGVEG6hRsj1cQ2oAeSJfwC+W5gQZbBqw4cN7c1BbYQEeGkZ8+e9OrVlUce+YC0
tEVABHb7ROLitvPTT9/5/byUUkqp8qy0Tl79G1CtuBuiiosb6IJkBbOQLN+jSIz/PRIIVkSCxruA
E8DDSDHKL0AoTz31IN988xl33303t93WmaCgWEJDY6lXbwGfffau/09JKaWUUkWuIBFoPNAKqT7I
MrcZQP9ialNxCdBMoRUZHwgyz+AN5s/rgC+Rt9Vt7tMa2IpkECsCS4Ca3HFHb6ZNm/bnMY8dO0Za
Whq1a9c2K5yVUkopVZRK2zyFHnH5bI8vumb4RYAGhRZkXKETmZQ6FCk+cSCB3yGkEOVH5K1OQ7qZ
r0Syi2tp0KAGu3Zt9nvblVJKqUBVWruP4/O5qTIhFOkWTkeGhq5ElqmzIyMDrka6kLuZ+4chFcez
kXnL7yA1NQ2QFVJeeeV16tdvQ+PGnZgx4xt/nohSSimlilFBgsIzyITVp5HuYzeQWpyNUkXJgXQV
RyMVxw2RbuKnkAziIiRz+J65/15kFUML0o38G1dccTkAr7/+Js8//xl7977Djh3PMWLEQ/z000/+
PBmllFJKFZOCBIXhyICzCKQPchCg1QVlhgt4GckY7vXZvhMZW5gBNAMmI8UlTYBJyOxDA4ANdOnS
GoCPP55OWtobQGegF+npE5g69Wv/nIZSSimlilVBgkJfbmAW0LsY2qKKRRASGKYDjyErF44E3kGm
pslBpqG8B1neLggJEN3AECCHEydOsGDBAvN4v5vHAovlBHa7hcTExAK3JjMzk4MHD5KTk1P4U1NK
KaVUkSnIAMabfO5bgbbIQLTOxdKi4hOghSYhyPjBXPPm+R5gM3+34J2nMAuZvuYeJHD0zGmIed9q
7utCPgJLALDbbVx7bU++++6/hISE5NuWb775lmHDRgFOnE4b8+fPpEOHDkV3skoppVQ5UVoLTfoh
S170BXoiYwsHFGejVFGyItm/qkAC0l08EWiJ1AsFA08CKcA+YBuy/N21yMxDLyBdzyHA6+Z+m5GC
lb8BseTk3M6SJW7+/vcX8m3F/v37GT58DBkZ8WRkHOHkybfo3XsgLperyM9YKaWUUhevIMvcjSju
RqjilAtcAbRHVisBGAf8A2iDBIljkS8j1YFbke7jICAKKUpJQTKF95jPb4B8P9iLVDZ/Q0bGsyxb
9la+rfjtt99wONoiU14CDCQraxyHDx+mdu3aRXOqSimllLpkBckU1gK+Q5a6OAF8C9QszkapomTH
W1HsmXt8MZL9+wHJFC4yt2eZ+12OdBGfBhKRADEIWGbudwZYhQSbPwK1sNsX07Bh/sFd7dq1yc7e
bB4P4Dfc7tNcdtllRXCOSimllCqsggSFU4A5SBqpOrI22pSLeI1aSBSyFZkY70FzewXgJ6QM9kdk
zhSPCcAuYAeSkvJoC2wxH5vssz0Y+MrcvgrQ1NOfspFM3x9AC+B6YAxSSH43kgm8ExlL2ACZ4Hqh
ebMjiWIXUpncGxlLWB/JML4HrCMs7BDVq8/l1Vefz7cVzZo14+GH7yU0tCWRkX0JDe3BRx+9T2ho
aNGfslJKKaUuWkEGMG5CBqBdaFt+qpq3jcj0Nr8CNyKVDInAK8igthhk8rwmwBdIf2cN4Gdkcj0D
WZNtrPlzHvAmsAC4H5lX5X6k/3MgUjrrK0ALTZzIZc9CLlF3YDeS9ZsLHEUuWyLQHFnv2AocBBpS
tWo09evXJzQ0lOjoaOrWrUvFihU5c+YM4eHhNGnSBIfDQZcuXQgLC7tgezZt2kRCQgLNmjWjfv36
xXHKSimlVJlXEoUmBbEISSXZkNTRHUgf46WahVQx7ACqmNuqmr+DZAmf9Nl/AbLERjVgu8/2IcD7
Pvt0NO/bkW7uvIxABBhgM8BuQJgB0ebPSJ+fTvMWav4ea0ATn8eDzfsRBgQZEG5YLOFGVFRNY/z4
J4zatZsZUVHVjJtvHmZs3brVqFGjkQHhhs0WY0yYMNF44omnjQoVahmVK9czJk9++4JtXrZsmdGg
QWsjMrKq0avXTUZiYmKBz3fWrFlGrVqNjaioasbQoXcbaWlphbl8SimlVImQv9+lTx2ky9gzpnA2
EFuIY+1HJsJO9tlu8fn9LeB2n8c+QqbFaYt0N3t0NdsF0qVc3eex3Uj3tK+Sfn/97tSpU2ZA6DCD
uh8N2G8GfWMMOGDADDPYizXgDwMWGlDBDBJXGzDXfPxnA5aYj1UyYK8BywyIMeBlA/4wgoKGGg5H
tAGdDNhpwFoDKhtBQY0M2GHAeiM0tIExffpX+bZ5//79Rnj4ZQZ8a8ABw+F4wOjU6doCne/atWsN
p7OyAf8zIMEICbnJGDLkrqK6nEoppZTfUAJBYUHGFCYg09JcZt4GIAPULlY4UqTyEFLB4KvURsRl
2YcffogkTg0k2XsdUBE4DryN1AvdDPQCDpu/9wSGIsMyDwN9gFuQoZ/dgAeQ+L0mcBXwOPJdoRbZ
2RNxuSx4l9NrBzxLdvblSPFKa9LTn+Krr37It81Lly4FeiAL59TE5ZrM2rW/kJGRccHzXbhwIdnZ
I8zn1yYzczJz5+b/WkoppZTyKsiUNPWQOUzq+OxvAP0v4nUcSEA4Dek+BjiGdBsfRbqGj5vbDyHF
KR41kQFuhzi76tmz3fOcWCSKsSNzqZzM24hJkyb9eT8uLo64uLiLOIWyp3379kgNThxSg4P5O8il
qoVMNbMPmYfQgry1+5DlraPM3/cC15jP24d3JAHmceuZ9xORKXD2AVf6PO6di9Bq3UelSlH5tjky
MhJJJnsmyz6I1WolKCjogucbGRmJw7GJ3FzPln2Eh+f/WkoppVRpER8fT3x8fIm2oSADGDcjXbi/
IX+pQSKFJRfxGp8CScAjPttfMbe9jBSYRHN2oUkHvIUmDczXXI1UL69BqiR8C02aA/chYw1vRAtN
2L17Nw0btkQuWxcks9cSWeIuFBgFrEBqf3KQJO5vwHLz9/uB9chE1aORGHwe8jEYC+zHZpuPw9GV
rKzWhIR8QsWKDg4ePGXufwrp4U/BZrsfqzWNsLA5bNiwgjp16pyzzS6XiyuvvI5t25ykp7cnNPRz
nnvuQR5//OELnm9qaiotW3bm6NHmZGXVx+n8hClT3mTw4Fsu5fIppZRSJaYkCk0K8mJrkADtUnUB
liLBpScqm2Ae92skw5cADEaiCJClMu7CG6ksNLe3BaYi86nMwzu9TTCShWyNBJpDzGP6CrigcPny
5XTp0hOojGTxHJw9lBMk62cgQeIZn+2heFdCOYUkdKF+/QbExtbCarVx5ZWdGTVqFHPmzCExMYlr
r72GrKws+vS5E5frduAybLa9tG27k379rsXhsHPHHXdQo0aN87Y7KyuLqVOncujQYbp0uYqePXue
d39fKSkpTJ06leTkU/Tq1ZPOncvaaoxKKaVU6Q0K70QmpluId/ZjkBRSWRJwQeHGjRtp3boLUsw9
Dkm6jkISr3uQmPtlpK5nBvAY0i1cBwkI45FY/lpatLiCXbsOYLE4aNQolvj4uURFnbtr9tVX/83E
iRMxDGjRoh3z539D5cqVi/NUlVJKqXKltAaFLyGB4W683ccgE96VJQEXFL7zzjuMHfs3JNPneas7
IwUjQUivvm/NUEOke7kG8BmQBlTCYrkcuz0Rl+tXwE5Q0L0MHepgypR3833tnJwcMjMzCQ8PL/Lz
Ukoppcq7kggKC1JocgtQF1kaQ5Uh8+bNQ1Yo8dTyZCH1PAORGXzeRgLGaKQg/DgS++9Gsoj7gapY
rZ1xuTyBJGRn3866dU+f97XtdrsGhEoppVQZUpApabYgq42oMqZx48bmvbbI0Mx2yBDOjubP1kAr
4GHzvgXpVo5Avgs0xem8mkqVEgkOPo5UFhs4HHNo1uxyv56LUkoppYpXQTKFMchqI2vxjim82Clp
VAlISjqJzEv4DBLspQMbgOlIZnAdsvRdFaQYfDoyP+EXwIuAneuuO87UqbPp1WsQ27c3wWIJoXJl
ePPNn/1/QkoppZQqNgUJCp89x7bAGpxXRs2bFw88h0wPAzIH+QBkqpnayKiAF/EOD81AppC5CkkQ
16FOnUhiYmJYufJnNm7cSE5ODq1atSI4OBillFJKlR8FCQrj8/zeFbiNgs9TqEqIw2FBViLx2IPE
8ynIWMJIZCafq5Gu4RlIYvhrZHnrND7+2M6cOd9SsWIl+vfvx7hx4/4MCBMSEvjiiy8xDINOnTqy
fPkK1q5dS2pqKjVqVGf06NF071409UgZGRl88sknHDt2nK5du/DHH3+QkLCf2NhaHD8uS10PHXob
devWLZLXU0oppQJNQata2iCB4GBkuYpvkTWKy5KAqz6Ojq5OSsppZC7vaKTa2ImMJ+yNBISJSHCY
iRSX5yBzgB8EfkDGI64H7gESqFZtI1u3ruXo0aN07BhHRsZg3O6TuN2zgJFIcDkdcGK3Z/PWW/9i
zJjRFEZmZibt28exZ09lMjNbYrH8B5stGpdrMPApFksNbLZ2OJ1fsWrVYpo0aVKo11NKKaVKWmmb
kuZyJBC8FVncdgYwHokoyqKACwqt1hAMw4YEfE8ii748h3QNO5CAsCYwHCk+eRyZG9wzXPQupJs5
HumCHorNNpSXXmrDmjW/8c03jTGMJ5HvCl3wziX+L2R+w1mEhYVy5kxSoc5j+vTpjB79IWfO/A/5
yP4OdEJWMjyBdIMfw2L5gBtv3MjMmdMK9XpKKaVUSSuJoPB81cfbkQxhL2Riu7eQNJAqIwwjC5lG
xoasc3wCCQId5h4VkTWPDeA6JFPo2/16OXAEyS7uASA3tz7JySmcPJmKYdQCViFLT9fzeZ5nBiMr
GRmnKWwwnpKSQm5uHbz/Nmojcyi6gcvM9p3BMOqSlJRSqNdSSimlAtX5xhQOQjKFS5H1hWfg54hV
FU6HDh1Ys2Y7ktxdhSxKkwl8gsT6byOB1dVI93AE8CjwATK34StIwXl94A3gOMHBX3HDDbOoUqUK
ixaNwzCqAKlIlrEe0v38PBKEVuKaa9p4vu1csh49emCxPI10Z7dEVkFshQSsk5HJtk8QGjqJ224b
V6jXUkoppQJVQf5ahyMlq7chZaqfAd8BPxZju4pDwHUfSzBWHZmM2gnsRbJ/TiTpazP3dCPfD3J8
nusxDJAAACAASURBVG1FprBZjYwrPAg05Y03XuChhx5k7NhHef/9JHJzpyKZxitxOHaRm5uL252N
1RpCz57dmT79k3yXw7sYixcv5u67HyYx8TitWrXm6NFjHD16mAoVLiM19SRWq52HHrqPiROfKHQQ
qpRSSpW00rqiyRngv+atAnAz8BRlLygMUA2RIBAkkxeCrG5yFCkIsSHjBaORFUzSke7lz5AJr9ua
z61JVFQHGjVqCMDWrXvIzR2OfF4twDO0aTOZVasWFstZdO/enT17NhXLsZVSSilVsBVNfJ0EPgR6
FENbVBGTDN1aYDGSGXwNCQIPI2P+HgAmAUlIFrExEGbucx9wDJhrHm072dkb/1wlpX375oSE/Bdw
ATmEhHxO+/Yt/HNiSimllCpygdTPFqDdx8FIkJeJjMNrg0xNA1AVWe/YgQSJbuAKpKs412dbOHa7
i48+epfhw+8EZN7A66+/mTVr1gMWWrVqyk8/zSIsLMxv56eUUkqVV6VtSpryJgCDQivSVZyDdBUn
AO8gPf8RyJQzi4A7kWlk9iNT02QhxSkrkICyPw0bHmHnzt/OOr5hGCQk/H979x0eZZX+f/w9KRMy
SQihBqQ3kaZIEUUwFAs2dBXUVQRcdVlxLWt3lWW/P8uqi2WXFRWxoKtYEF0QURSiFKVIkw4RkCIt
lAAJqfP74z5jBgwYIMkkk8/runLNM8+U55yZKHfuc+5zNuD3+2nSpInm8omIiJSQ8rYkjVR4fuBi
LMgbBcwG/oBNDY3G5gwexKaIeoDG2LKUmUB7rMYoFriHfftyfvXuHo+HJk2a0LRpUwWEIiIiFdyx
gsIDwP6j/GSUftOkZLwP9MW2tfsvtn1dIGM6C/sVmO3u52G7l4wEPgMCmcFUzjmnc1k1WEREREKg
OOmdx7DKhLfd/euxdU4eLa1GlZJKOHzswYZ/dwOTsGzhcmxx6WpYEYoHywaeiRWWNAY+whaz3kxk
ZB2qV9/EwoWzqF+/Pn6/n507dxIdHU1SUlKx25Kbm8v27dtJSEhg//79JCcnExX128Xvfr+fbdu2
ER8fT0JCwnH0XkREpOIqr8PHlwMvYtnBDGA0tm6hVAgebF7hH7BNarzY9tX7sYKTPCwo/BaL9ydi
fwN8D2wkP38+O3duY9q0r8jIyODccy+kYcNW1KnTkBtvvJX8/N/e5Gb27NnUrt2QZs3OpFq1OjRt
2o46dRozb968Y75u27ZttGvXlaZN21GjRl3uu++Rk94dRURERIpWnKDwIHADlnKKxCKHA6XZKClJ
kVjQ9z02hPxvbK7geqCbe84urDr5H0AnbD5hPpCIVSjDH/4wjB49erNgQTLZ2TvIzd3KhAkrefHF
l4559aysLC655Cr27h1LTs4OYCa5uZHs3v13LrroSnJzc4/62htuGMrq1SkcOrST3NwNjB79MRMn
TjzhT0JERESOrjhB4e+BAdjY4nZ3/PvSbJSUlGhspL870Madu47CfYPvwIpOGmIZxR+xLe6WA72B
FCyQbIvfP4IlSzwusIsEEsjMHMTMmQuO2YKffvqJ/Px4rOAFoDPQFmhMdraHrVu3HvW1CxcuIC/v
Nte2mhw8OID5878/vo9AREREiqU4QeF6bAi5pvvph61tIuVePhbHB7KEYIUk2cC1wJdAfWx3Ew/2
VXfGMouLsKDQA8zE9jb+xr1+NeAnJmYGLVs2OmYLkpOTycvb5V6Du9ZK4BAFBfupVavWUV9bv34j
bMkcgDx8vm9o0uTY1xMREZETU5yg8FSsZHW5u98eeOQ4rvEaFpn8EHRuBLZC8iL30zfosYeAtcAq
4IKg8x3de6wFXgg6HwO8585/ByhqOIwHCwhbAl2xrOHtwO/cY6uwrGEj91h3LJN3PbAGW88wsE1e
FcBHXNxAEhI606JFGg8+eO8xr56YmMioUc8TG9udmJg+wGl4vbXw+Ybw6qsv4fP5jvrat956kWrV
/krVqhcSH38GnTvHMGTIkBP9IEREROQYilPV8g1wH/AS0MG9ZhmF45G/pTs2B3Ec0M6d+xtW6fDs
Ec9tDbyDpatOwVJZLbA1VOZh0cw8YArwL2AqcBsWxdyGLbJ3JZYGO1IlrD6ugg0hn40VkuRhVcde
7GuMAtKwryFQQ5SOzTlMBja55/0FmzHwPh7PP3noodvp1asX3bt3x+v1Fqsta9euZcWKFeTm5hId
HU3btm1p1qzZb75u165dzJ07l4SEBLp160ZkZOTxfAQiIiIVUnmtPvYBc4Pu+7ENb4trJrCniPNF
dbQf8K57/w3AOmyLjbpYyipQrjoOuMIdX07hvm0TsMlwAlgQmInF1lFY4UgPrBL5ABb0JWCJ3zew
r7YK9vFvAxpgQ9DPY3H6m/j9N7FgwUJ69+79q4Bw5MgXqF27KTVrNuLhh0dQUFDAN998Q/PmHejU
qQdjxrxD69atefbZVzjzzG60adOVxYsXH7MHNWvW5JJLLqFHjx4KCEVEREpRcYLCnUDzoPtXAz+X
wLX/DCwBxmLpK7CqiM1Bz9mMZQyPPL/FncfdbnLHecA+rHpCyMeCvFgs6FsAJGGLVmdgQeIj2DDx
nVhW8StsKPkBLFuYjM0j/BL7aP/HF1/MYPbs2cEX4u2332H48NHs3PkR6emf88ILU3j44eFcfPFV
pKWNICNjPtOmVaNTp17Mnt2BjIzvWbHiNlJS+rJr165S/yRERCT8jB37Oqee2oWWLTszZszYUDen
witOUHg7VpLaClvA7m7gTyd53dHYCspnYAHmyJN8PylSNFALuBBLwtbHlqSZgQWKPuB+LK6+i8JY
+v+w4ebRWJzdDOiCBZAZwA28/fbbBBs/fhKZmQ9jX2krMjMfY/z4CcBFv1w7J2cUWVm7yM8f7q55
I35/u99cr1BERORI77wznjvueIw1a/7B2rVPc9ddT/LWW/8NdbMqtN/eUsImnfUG4rAgcn8JXHdH
0PGr2HYbYBnABkGP1ccyhFvc8ZHnA69piAWsgTHS3UVddMSIEb8cp6SkkJKScoLNryg82Ne1Hhsa
9gA/uds8rABlPzaEfBD7WhKxaaSJ7nVVgt5vLVawkkbNmucedqXq1avi8XyP39/RPWc9VasmkJ6+
4YhrR7jr1gZyKSjYRGJiYon3XEREwtvYse+Rmfk40AuAzMwnefXVtxg48PrQNuwEpaamkpqaGtI2
HCsovCfouKgKjSOLRI5HXQqHoK+ksDL5f1ihybNYKqkFNo/Qj6WoznL3B2KFJoHXDMIqj6/Gxj+L
FBwUVg4FWBBWgBV4dwJewQq2wUbtOwP9gY+xpWpGAuPduQHYEPQ9WAH5ROBM4uJW0rHjnQwbdje1
aiUxdOitbNmyFb9/lntOAT5fFmPGTGHo0HtYvfpSDh3qSGzsOLp27cPcuSkcPHg1Pt83dO16Kmef
fXZZfSAiIhImfL4qWHFkQDrx8bFHe3q5d2Sy6u9//3uZt+FYVS0jsGDsVCxy+J97/qVYYHZDMa/x
LnAetsbhdqzyOAUbZ/Rj6ag/uscAHgZuwlJZdwKfu/MdsYlxsVj18R3ufAzwFlYZnY5VHm8ooh2V
sPq4KjYEfBXwOrbm30zgaWw2wHnYx9wFGIoFf9nY7iZR7vhyLJvYAo9nHJdd1pvevc/noYeeITPz
dqKj11KlykTy8tqRlTUFiCEi4j569FjFjBmTOXToEK+//jo//7yNHj2606dPHz755BMWLPieJk0a
c+ONNxZrD2QREZFg8+fPJyXlYjIz7wA8+HwvMH36ZM4666xQN61EhKL6uDgXm4ltRxEYNk7AgrLu
pdWoUlIJg8JqwGPYtFCwpWX+gw0J18CGcatiMfR32NzDz7C/A253x7djS0k2JTp6PjExGzhw4CCQ
isXpEBHRmoKCYcAwd52PqFLlNurVq43HE83pp7fhyScfoWXLlr9q4759+/jhhx+oXr06rVu3LuFP
QEREwtmSJUt45ZU38Pv93HLLIDp06BDqJpWY8hoUrgZOx9JHYBHFEixyqEgqYVAYiX1dD2NDwmlA
U2xuX5T7OYAlhV8GLqFwVH4XNnXzHKwI5XNsJaC/Y4UoywkUgHs8KURFRZKbOxWb2nk6NtIfSAyv
pmrV51m2bD4NGhROGV28eDG9el1CQUEDcnI20b//ZbzxxujAfwgiIiKVVnldp3AcNlw8AosI5lK4
LqCUa5HYmoPPYwHhR9i64+uxyuRobA3yD4GNWKAXCJxXYcUmHbEh5FFAY+BMbCHrwdhU0I+oUmUZ
HTuCz9cCr7crNh9xMbZs5JXAg2RnX8aHH354WOv69x/Cnj1Psm/fd2RlrWbChO/4+OOPS+ODEBER
kd9QnKDwcWAINta4G4sGnijFNkmJ8WBB3h4gBxseBhs67kHhmuJXYwFiYMfBu7F5iIdXGNtzAJ7D
Ese9SEi4k08//YDZs6cxd+5kbr31aqKjizdH8Kef1mLL1QDEk53dmzVr1hxnH0VERKQkFCcoBEv7
fICVqKZjS8BIuefHtrTrg9XjTHDnt2JFJ3nASmxNwsBuJgux9cpvxOYUfovVGP0RyzZuwSqYl+Hx
ZDJt2of07NmTiIgI2rZty7333kuVKh9hdT9XARPxeJ4kJmYS/fv3P6x1LVu2w+N5y91LJyZmCu3a
tUNERETKXnHGqv+MTQzbga1PElDR/vWuhHMKvdjyko9j2b9ILEu4yx3nYdm/VtgQ8Vgso3gIW9h6
Ox6PF48njoSEKtx445W8/fYk9u8/QM2aibz11mj69Onzq+uuXLmSv/71CZYsWYrHE8UZZ7TliSf+
+qtCkzVr1nDeeX05cCCS3NydDBv2J0aOVBJaRESkvBaapGFrlqT/1hPLuUoYFAaKSXzY3MKzsLUJ
M7AMYAIWAHqBFViQ2AhIwOv1M3DgFezbt5fmzVvQt+9F9OjRo8TbmJ2dTVpaGtWrVyc5ObnE319E
RKQiKq9B4QzgAiyqqMgqYVAY544ux/YwHotlBnOwoeFzsaHhgdh6htcC8UAeUVEJ5OXFA22BM4iN
fZNRox7jppsGH3c7li1bxrZt22jfvj21a9c+yV6JiIiEv/IaFL6G7Vv2KRZNgE1AO5kdTUKhEgaF
0dga46+7M5OwNb/rAbODnlkDW7j6Z6xCOQfbzeRHbElKD7CExMSL2Lv3Z4rL7/czbNg9vPHGe3i9
LcnPX87kyR9w3nnnnWTPREREwlsogsLilIn+5H687idQ0irlXjTQDHgPGzI+BfvqlmNTRGtjNUQH
gX9iU0bHAw9iQ8lNKPx9bEJm5r7junpqairjxk0mK2sFWVmJwOdcddUN7Nq16WQ7JiIiIiWsOEHh
iNJuhJQWD/AMtph0PSzrF4MVmbTE1h9fjm1n1xNYiu0suBVbgeggNvTcBq/3Ifr0ufS4rp6Wlobf
3w1b7xDgAnbv/pmcnBy8Xu9J9k1ERERKUnGWpJlRxM/00myUlJQcbEeSGdhSMgMoXF4mD9vizo9V
KM8B1mBbVN+Dx5OL15tNZOTviYpqT0TENNasSWPKlCnFvnr79u2BL4HN7sw4GjRoqYBQRESkHCrO
WHWnoOMq2OJzecB9pdKi0lMJ5xTGYPsdb8aGhXsADbCh5FRsh5It2FAyWOYwH9ueLhfIIz4+kdzc
VmRnvwRsJDLyBoYMuZprrrmGHj16MH/+fKZMmUKrVq0YOHDgr9rwzDPP88gjw4mISCImJpfRo0fi
8/lo27YtzZo1K9X+i4iIVFTltdCkKPOBziXZkDJQCYNCD7YcTRVsWckF2DzDqtiQcQaWKayLrThU
4B4fgs0x/Bn7m2A3VoByMbaP8j+JiKhKUlIM6en7sF+F5Zx2WiOWL5932N7FmzZtolOn7hw8WJvs
7O3k5x8kPv4s8vLmMWbMv7j++uvK4JMQERGpWMrr3sfVg35qAhdhUYWUe1FALLAOywzOwtYlvBdo
jQV5Mdh+xucBtYAs4H7s97AetrNJPeB6LIDcDgyioCCL9PR0974zgLWsXLmJ0aNHH9aCYcPuJz19
MAcPvkZeXi5+/yr27/+UrKxUbr55KJmZmaX5AYiIiEgxFScoXAh8736+xdYu+UNpNkpOXlZWFlZQ
0g5IcmfPwILAdUB3bCFrD7b0TF8s7vcC37jn52FfeQFWdHIz8BXw/4BM99rA7IJEoCPLly8/rB1p
aRvJz+8FbATaY39XALQhIiKBnTt3llifRURE5MQdKygM7G/cGFubpAnQAjgfSzlJORYTE4PND5wP
LHNn38MCvHbYVtZp7jkdgZeBTVggOARIwYLIzdguJ14sQTwP+BDbDSUSeNu990pgJhdccMFh7Tjn
nE7ExLyMzVf8HljkHplITIyfevXqlWCvRURE5EQda6x6EdDBHU/ACkwqsko1pzAzM5O4uCQKv+IY
LOArcLdeLKg75B6PdLe5FO56Eu1+/EGvrQIU4PHk0b37ucyaNY+Cggggi8GDb+T118cc1o4DBw5w
ySUDmDv3W3JzD+HxROD1JhAbG8Vnn31Ely5dSukTEBERqbjK6+LVAE1LtRVS4rZu3YplASOB77CM
nw8YRGGByQBgHDANuAkbCv4KyxD+DvgvsIjY2ARWrZpPZmYme/fupVatWtSoUYNq1aqRk5PD0qVL
adasGUlJSUc2g/j4eFJTP2XXrl1ERUXh8/nYuXMnycnJREUV99dPRERESpv+VQ5T+fn57igS6IVl
+lpgAWGWe2yie7wWhVvcxQKrgH8DG4AC8vJiWbRoEf369fvVdbxeL506dfrV+WAej4datWr9cr9+
/fon2i0REREpJceaU9ge2O9+2gUd78ciCynHLO3sBd4F9gBfYwUmgd1NBmGZwwJsSZlcd9+DFZHE
AmOAKeTmHuKbb7458hKABZ/33/8odeu2pGnTM3jvvfdLtV8iIiJSOo6VKYw8xmNSzn333XdYYBfI
7p0JdMWWnpmEFZ38CfgPFiRuxzKIrbAM4VpgNLAeqE1ERNF/Pzz66P/jP/+ZQWbmBGAnN900kFq1
atKrV69S6pmIiIiUhuIsSSMV0KpVq4AD2N7GADuBH7Bg7xR37g1sEesnseLyVtj+x7WBN4HZ2FBy
BgkJCUVe5913J5KZ+TyWTO5FZubdvP/+J6XQIxERESlNZREUvoaloX4IOlcdq25YA3yBLZgX8BAW
uawCgtc36UhhVPNC0PkYLO21FquoaFSyza+Y4uPjsaHgs7Dt7Vq5+5Oxj8mPVRZHYR9dAbAVmIJl
By9z71QV6ElCQgLTp09n6tSp7N+//5frxMXFudeZyMgtJCbGl2rfREREpOSVRalzdyxlNQ5LJwE8
Dexytw9gqys/iG2z8Q42ye0U4EusOsKPLZB3u7udAvwLmArcBrR1t9cAVwLXFtGOSrUkzfz58+nS
pSsW9OVgS8kAxGPZwQIsI5iBLUwdDdzqbj8B7gZuweL59jRtWocdO6KJiEjA59vEd99Np1GjRkyd
OpXf/e5GsrKGERW1k4SEiSxdOlfFJCIiIiehvG5zd7JmYpUOwS7Hxidxt1e4435YZUQuNrFtHZbq
qoutljzPPW9c0GuC32sC0LtEW19BNWrUCAv8AOKw4DAO+AvwKPZ7lo4lZKdiH/krWJy+AbgLm2vY
GNjPjz+24MCBBWRkpLJt20Bat+5KYmIyd9/9KHFxccTEvECTJrNp27Y9bdp0pkWLM5k9e3bZdRj4
6quvaNr0dBIT69Kv3+/Zt29fmV5fRESkIgvVnMI6WAoKd1vHHdfDFtQL2IxlDI88v4XCiXGnYFtx
gK27sg8bnq7Uxo8fj2X9WgALsNg8CXjJnc929/thxScNgJFYBXI1IBlL3Aa2pruEwj9YLiAzM5uM
jI9ZtepKdu3yk509n3Xr9jBrVmMyMuazbt0jXHjhFWzcuLFM+rt69Wouv/xa1q9/goyMeUydWoX+
/QeXybVFRETCQXkoNPG7HylBDzzwAJYZfBabT3gGliFsiiVj47EAcDWwAitE6Q/c4I5/wuYePocF
gy9iswDysIxiXffah7EgMwO/fxt+/yigPvA7PJ7eR13KpqRNnz4dv/8KLHhtQE7OKKZPn0JlmjIg
IiJyMkK1ePV2LBW1DYsudrjzW7CUVUB9LEO4xR0feT7wmoZYtUMUkAjsLuqiI0aM+OU4JSWFlJSU
k+pEeWbBUB62v3HAenduHYW7neRjO5m8hI3Qf4plF7sCHwOvYx/3Yuyr8mLL2yRgH/U+bBi6JhY8
BvZKLgA2kJiYWGT7duzYwR//+BeWLFlOmzan8sorz1G3bt0T7m/VqlWJiFiP/X3hATYQG5sQmJMh
IiJSrqWmppKamhrSNpTVv5iNscXxggtN0oGnsAKTahxeaNKFwkKT5ti/9HOBO7B5hZ9yeKFJO2zR
vWuxuYaVvtDk3HPPdXP64oEh2HDxe+62LhaX52OLWS/FCkumY/H5Kiz4Wwu0ce8RixWsXI/HsxSP
ZzkFBTfj8UwgIsJDQcHVREb+h4iIeHJyBuPzzad16yzmzJlGdHT0YW3Lzc2lbduz+PHHXuTlXUtU
1Ec0aPA/Vq78npiYmBPq76FDh+jU6Tx+/DGZQ4faExv7JiNHPsrQobec0PuJiIiEUigKTcriYu9i
k9ZqYpHIcKy89X0sw7cB24R3r3v+w9hGvHnAncDn7nxHbGG9WKz6+A53PgZ4C+iABZrXuvc8UqUK
Cps3b05a2gZgGDa8uwz7uP+Lfe2dgEXACGwB6/rAIawi+X/uXfxAFRISYqhRoxYNG9anS5ezaNKk
MbGxsfz443patmzBnj17SE/fTZ8+vcnKymLWrNmccko9Bg8eXGSQt2zZMs4++0oOHFjj2uInIaE9
M2a8QceOHU+4z5mZmbz++uvs2LGTnj3DOxMsIiLhLVyDwvKiUgWFDRs2ZNOmrVjNzYdYgXYq9pVn
Af+HBYQHgdOwpOyXWEz9KXA2lsh9D9hERMTVeL1TOP/8c9m9O4uWLRtx8cW9GDNmPAUFfv7yl5vp
27dvsdq2bt062rfvQVbWeiymz8Xna8HcuZNp27ZtiX0GIiIiFZWCwtJVqYLCW265hVdfHYsNA0dh
ydce2LKQB7AlaG4H/u0e34MNEx/AArUcbF7hO1jyti02vJwP3EFk5Jfk578BPAP4iI29nw8/HMvF
F1/8m23z+/1cckl/UlMzyMr6HbGxk+jaNYIvv/zkqNvpiYiIVCahCApDVWgipWzhwoXY8G81rPr4
POBvWMXxK9jQ8VNYQch0LDO4BxgEfADMxyqW/djcwgjgW2wjmknk59fAtsZrBFxEVlYEzzzzcrGC
Qo/HwyefvMsLL4xi4cIFnHFGT+666w4FhCIiIiGkoDBMLV++HMsSglUEDweuB2YBj2O7C34BfINN
78zHdjBZh2UJL8SWp1mKLQN5kTt/KfBHbEOaH7EC8uMXHR3NvffefUKvFRERkZKnoDBMRUdHk519
ABsO3o0FhrWxzGAnYAZWWDIQKz5JxIq4U7GK5JXAGGz5mT14vc9SUFCVvLzngd+7q8S610YQG/sA
9903tox6JyIiIiVN43VhqlatWtgcwS7YHMGa7pEId/wUFig+R+FOhKvc8XLgZaAltj5hHaKiYmjY
sD6HLyPZhOTkn+jT5xMmTHitWEPHIiIiUj4pKAxTe/fuxRLBT2NrDf4ZW8j6NWynktnA37HAsZp7
1XQsY1iAbYFXDatePoXs7JrEx0fg890D/ADMwut9jCuu6EVe3h5efXUsa9euLbsOioiISIlS9XGY
qlOnDjt2HALuA16gcLvpHGxJmsuxOYUPYeuB78aGmpOxDGI2MBT4KzY38VYgjejor8jNBYjD44nC
70/HhqA9REa+xaJFs2nXrh3Bli1bxrZt22jfvj21a9cu5Z6LiIhUfFqSpnRVqqCwfv36bNmSjg0d
Pwzc7x4ZiW0G8xC20cy12KLWa7Ft78CCwNZYgUkGVo3cxz12DTb38BEsuGyKVSS3BUbSo8dXfP31
FMCWnhk27B7eeOM9vN6W5OcvZ/LkDzjvvPNKrd8iIiLhIBRBoYaPw9TBg5nYcjL1sUWpL8KGixsA
VYCd2JIyfqyoJAHbRCYSqIFtd3czNgTdJOidW2JZRLBCk1rYUjUAzdi9e98vz0xNTWXcuMlkZa1g
374ZHDjwFldddUPJd1ZEREROmoLCMJWcXAcL6H7CqolvB+Zg295twiqQ/4QFdTHY0HGgGP0AFjSe
hg0334btHPgN8G88nl3AFmx7vM1Y1nA4cB+DBl39SxvS0tLw+7th8xQBLmD37p/JyckplT6LiIjI
iVNQGKZycnKxtQfbYLuOXApMxIaDAa7CFrJejs0tBFuI+n7gCmzHk5uwIeJvgbbExvZn1KgnaN16
MdACK2IZgG09/Q+GDOnJPffc9Usb2rdvj2UpN7sz42jQoCVerxcREREpX7ROYZjy+wuwmD94HqXf
nasDdAA+cuc7YBnBwJqF/YCqwCVERm4mKmoOnTt3YMCAAdxyy83k5+dx550/YPMLI7FFsWOAyMAc
CAC6dOnCiBH38MgjrfF6axIbW8DkyZNKs9siIiJyglRoEqY8Hi+WKYzFMn49sTUJl2HZv0hsd5M2
WHZwIfA1NmzcEMsiZmNFJ22AFUAkiYlVOOWUZFasuJrC4pXRwHC6dOnA3LmBrGOhPXv2sGvXLho1
aqQsoYiISDFo72MpQYGikTisOng90Bc4H/gnFvB1xQLHRsBZ7nU1sN/BQ+7+LKwSeSfQnn37qrFv
31qsgCXgFCCetm1bFtmSpKQkkpKSSqxnIiIiUvKUKQxT9hdGHNAcKyj5o3tkPhYYggWEm7DFrB/E
9kD+JzasnA7UwwpKAs4HYvB45uL3V8PmEkYB15CUlEVa2nIFfyIiIiVA6xSWrkoVFCYlJbF3bya2
/EwbYCoWJA4CJmGZwvrYsPCVWGVxoO4oF9sneSfwLrbQ9UIsKPQRHZ1Bbu5grIgkm8jI7WzY7bHe
rQAAFx5JREFUsJL69YOzhyIiInKitE6hlJiDBwuwBad9wFJs6ZlErJI4B9vK7idsK7uZWDYxDStG
+Qu2BM0krIgkETgH2Efnzk35/POPqVp1PLGx6cTH72XSpPcVEIqIiFRwCgrDVG5uJrAO256uI7Zl
3RJ37mFsvqEPGzbOx+YQerDK5FrANqw45TagJkOHDmHLlp+YN+9revbsya5dm1mzZgHp6Vvp27fv
r66fnZ3N5s2bybU98URERKSc0/BxmLK0cwyQhM0PjMG+7oeA6tieyHlYdfEhLHsYj2UQc93504DA
QtXRXHPNVbzzzutERBz7b4lPP/2Ua665kYICL16vn//973169OhRCr0UEREJTxo+lhIUhf0uebHF
ozOwXU2eAR7AhonfBfZiO53EY+sUZgA/YwUq1YBobAu8C3n//amMHfvaMa+6Y8cOBgwYxMGDk8nK
+pl9+8Zx2WX9OXjwYCn0UUREREqKgsKwlYdl/27EikY82FBwLrAPC/j6ueeeiQWRd2C/EtWB67B9
knOwQhM/fv9eZs/+/phXXblyJdHRpwJnuzMX4PcnsWHDhhLrmYiIiJQ8BYVhLRL4HAsEAaZjw8lx
wG5sizuwKuMCrJoYbI7h18B+LDCchWUcE2jZstExr9iwYUOys9cAW92ZdeTmbqNu3bol0SEREREp
JaEOCjdgpbGLgHnuXHVsteU12Ka81YKe/xCwFlgFXBB0viPwg3vshVJtcYWSC+zAhoIvxIaNP8Ey
g/nYgtXnAadiGcH7sAWtWwLfA1OwHVDSgU9ISIjkrrvuOOwKfr+fUaNG06FDCt269WXjxo0MH/4A
sbEdqVr1Uny+bjz//D+pXr16WXRYRERETlCoC03WYwHd7qBzT2PVDU9jUUwSViLbGngH6IxtofEl
0AKbHDcPmzA3D4tk/oUtzBeskhWaBHYzqQlsBN7DAsBawNVYlfF4bE6hH1vPMBrIxD7iVdhahlZ8
EhmZwaJFC2jXrt1h1xk58gWGD3+VzMyRwE58vruZMWMycXFxrFu3jtNOO42WLYve6URERESKVlkL
TY7s8OXAm+74TeAKd9wPq4zIxTKM67BUV12sEiKQaRwX9JpKLAJoBTTD9j8eBDTF1hychAWJvbCP
LhYLCHPc8UJsODlQqNKdgoJY+vYdwAcffHjYVV588Q0yM1/GErfXk5l5F+PGjadNmzb069evRALC
3bt3c/HF/UlMrEvz5h2YOXPmSb+niIiIHC7UQaEfy/gtAG5x5+oA293xdncfbM+1zUGv3YxlDI88
v8Wdr+QKsCBvBRYYtsM+5lQsW9gAmOGedylWjBILfIatX3g5sBJ4GfgKv9/Pli0vM3jwn5kzZ84v
V4mKCmQXAw7wGyvWHLfLL7+OL7+sRUbGfNLS/kbfvr9T4YqIiEgJC3VQ2A3oAPQFhgHdj3jc737k
uHmxhOo+bBj5CWzuYAfg70AjLDt4DjAW290kA6ta3g+8hAWOFwOXYUPJncnKupVPP/3sl6sMH34n
ERHXA2OAx4FRzJo1l4KCghLpRXZ2Nt9+O4Pc3H9h2/JdgcdzAV9//XWJvL+IiIiYqBBf/2d3uxOY
CHTBsoPJ2JYadbFKCbAMYIOg19bHMoRb3HHw+S1FXWzEiBG/HKekpJCSknKSzS/PPBTOFYzCpm8G
rHW3UUBb95gPOIhlDKtgAWVr9x5pBBa6jo5eT1JS+1/e6fTTTyc62kN29kz3HrNYs+ZyVq1aRevW
rU+6F9HR0URFecnJ2QQ0wTKbG0hMTDzp9xYRESkvUlNTSU1NDWkbQllo4sPWTNmPpbK+wFJYfbBy
16ewApNqHF5o0oXCQpPmWNQyF1tkbx7wKSo0cRNUA7uaRLvjIVg2MDAvMAcbtX8XC/oSgPOxjzkR
uBmYD3wHtCUmpgm1ai1g6dLvSEpKAmDJkiWce25/DhxY7a5RQFxcS779duKvilJO1LPP/otHH32O
rKyBxMYu4LTTDjJnzjS8Xm+JvL+IiEh5E4pCk1AGhU2w7CBYyuq/wJPYkjTvAw2xdNUArEQWbNPe
m7AI5k5sET6wCuY3sElxU7AA8UiVMCiMwWLmfHccgQWCBdhUzO3YMLMfGx7Oxb6KSGzx6XTsK0jm
0ktb0atXTwYPHvxLQAiQl5fHGWd0Y+3aM8nJuRqv931OPXUpCxfOJCqq5BLR06ZNY+bMWdSrV5ch
Q4YQExNTYu8tIiJS3lS2oLCsVbKgMNId1cQKQbxY0OfHsoGfuXN/xOLx2sC/3fnA/L0soCGxsV5G
jx7IoEGDfnn/OXPm8NhjL3DoUDY33ngFX389j8WLV9ChQxueffZxqlULXl5SREREjoeCwtJVyYLC
wFfrA/6MZf5GYhXFmVg20I8Vdz+FFZo8AczGilGqAK8AS/F4RrJmzWKaN28OwPz580lJuZjMzMeB
qvh8D/Lyy09www2/L7P+iYiIhLNQBIWhLjSRUhODDROfBfzDnUvBMoLRwP3AM9hI/Znu8a3AaCxY
jMfWObyKmJiVpKam/hIUvvjia2Rm3g/cCkBmZiJPP62gUEREpCIL9ZI0EhIe4FUsaHwSmzeIu/8G
8H8E/3Fy6NAhPvnk0zJtoYiIiJQtBYVhKxurIJ5L4Z7HlwFVgZ7YMjQ3Y8vNdAIewbKEg91rDmJb
3f0N+JavvprLggULALjttpvw+Z7GFrYej8/3Jx544E9l1jMREREpeZpTGKY8Hp87yseWdwxUI1+B
7QT4EzALuBcr3v4KW/YxDgsIc7Ft8eKAzcTENGXs2GFcf/31gBWaPP74Cxw6lMPQodfTv//VZdY3
ERGRcKc5hVKCAtvcgVUbVwG+x4aKM7B5g//FFq+uCSRha35nuNfGY/MPtwNNyM5eTevWrVmxYgUT
JnxETIyXMWOeo169emXYJxERESktCgrDkGVEA8PHA4C3sKBvCJYRLMACwVrY0PIdWAB5KxY0zsHW
MZyOBY8XkpAQRVZWFueeewHZ2YOJiMjgqae6sHjxtzRo0AARERGp2DR8HIb8fj8REQnYpi/52BzC
jdiugfnYHshbsOHh2kB/LDj8AuiKzT1cBLztXvsUvXt/zYEDecydOxAYCEBk5AMMHZrLqFHPlmHv
REREwl8oho9VaBKG7BcpH9s0ZieWEE52j0ZicwyvwOYOfuAeP4RVJG9zr4vDNpLZS0zMO9x00w3s
25fhHjP5+U3YtWtfWXRJRERESpmCwrDlwYaDG2HrEt6LFZKMx/Yzfsad74LNLbwcCxBPA94ENhMb
OxSvtyGDB/fkuuuuY8CAS/H5HgTWAgvw+Z7h2msvK+uOiYiISCnQ8HGY8ni8WLWxB9uyLh04ACQA
Y4BzsYxhW+Bb97y3sF1NtpCQUIXZs7+iXr161KhRA4D8/Hzuv/8R3njjv0RHexk+/D5uu+2PZd01
ERGRsKdt7kpXJQsKo7FEsAd4EeiMBYNTgQuBz4HG2JZ3s9yrlgH9gDw8nv28/fYofv977VIiIiJS
1jSnUErEgQMHsKrhGtgQ8YdYIJiMVR2PA24AumN7IW/EgsPATiY34Pf3YubMmWXfeBEREQkJLUkT
hpYtW4YtO7MbWIJVG28DWrvzEUAe8AIWDLZw52OBK7FdTB4iOblqmbddREREQkNBYRiqWbMmNp+w
KrZe4XKsgKQFNq/wJ+AdLAj0Y0FirHvOQ8AXxMaOo1+/aWXfeBEREQkJBYVhqHnz5tgSM1HY0jN+
bOh4OeBz5ya7Zx/CAsj92NqEZwFeoqMjiImJKeOWi4iISKhoTmHYigWuBtKwJWRqYsHhpcAKbNHq
/VhAGA3c4163GdjF/v3/j/79h5R1o0VERCREFBSGoYKCAizYuwErHIkCrsd2K5kE/AdY7+4PB1oB
HbB5hTaP0O8fwLp1K8q66SIiIhIiGj4OQ7t378YKSd4BemG7m0wAugENgcVYsJgNPAJUARYCXiAD
qIrH8z7Nm7cu+8aLiIhISCgoDEO2tlEOthZhPSzYa4ntb9wNG1KOw4aTf8T2N34WCxjrU7VqE7ze
vXzwwdQQtF5ERERCQUFhGNq4cSMWCO4AemCZwVZAXywIjMN2MvnMHf8B+A74hieffITzz+/Naaed
hs/nC0XzRUREJAQUFIahU045BcjFhoizsHmE32LDxYuxIeJrsIAwH/gayKROnao8+OD9IWmziIiI
hFY4bXN3EfA8EAm8Cjx1xOOVapu7U09tw5o1P2KVxTWButiSM1lAU2wx67bALqwKOYt16xbTrFmz
ELVYREREArTN3YmLBEZhgWFr4DpsJeZKa/Xq5TzwwJ1YwLcemIMFhAA/4vNBq1YZtGgRyU03XUZ6
+kYFhCIiIpVYuGQKz8b2ZrvI3X/Q3f4j6DmVKlMoIiIiFZcyhSfuFGBT0P3N7pyIiIiIFEO4BIVK
AYqIiIichHCpPt4CNAi63wDLFh5mxIgRvxynpKSQkpJS2u0SERER+U2pqamkpqaGtA3hMqcwClgN
9Aa2AvOwYpOVQc/RnEIRERGpEEIxpzBcMoV5wO3YFh6RwFgODwhFRERE5BjCJVNYHMoUioiISIWg
6mMRERERCQkFhSIiIiKioFBEREREFBSKiIiICAoKRURERAQFhSIiIiKCgkIRERERQUGhiIiIiKCg
UERERERQUCgiIiIiKCgUERERERQUioiIiAgKCkVEREQEBYUiIiIigoJCEREREUFBoYiIiIigoFBE
REREUFAoIiIiIigoFBEREREUFIqIiIgICgpFREREBAWFIiIiIkLogsIRwGZgkfvpG/TYQ8BaYBVw
QdD5jsAP7rEXgs7HAO+5898BjUqr0SIiIiLhKlRBoR94Fujgfj5z51sD17jbi4AXAY97bDTwB6CF
+7nInf8DkO7OPQc8VfrNrzhSU1ND3YSQUL8rF/W7clG/K5fK2u9QCOXwsaeIc/2Ad4FcYAOwDjgL
qAskAPPc88YBV7jjy4E33fEEoHfpNLdiqqz/ManflYv6Xbmo35VLZe13KIQyKPwzsAQYC1Rz5+ph
w8oBm4FTiji/xZ3H3W5yx3nAPqB66TRZREREJDyVZlA4DZsDeOTP5dhQcBPgDOBnYGQptkNERERE
fkNRQ7hlrTEwCWgHPOjO/cPdTgX+BmwEZgCnufPXAT2AP7nnjMCKTKKwILNWEddZBzQr6caLiIiI
lII0oHmoG1EW6gYd3w28445bA4sBL5ZJTKMwcJ2LzS/0AFMoLDS5Dcs8AlwLjC+1VouIiIhIiRoH
LMXmFH4M1Al67GEsq7cKuDDofGBJmnXAv4LOxwDvU7gkTePSarSIiIiIiIiIiIiEUH9gOZAPnHnE
YyW50PUgYI37uTHofBNs6HotNjQdHfTYv9z5Jdh6i+XNRdhnsxZ4IMRtOZbXgO3YdxZQHStWWgN8
QWGFOoT+ey8pDbC5ssuBZcAd7ny4972Ke//FwArgSXc+3PsNEIkt2D/J3a8MfQZbYmwp1vfA0mKV
oe/VgA+Bldjv+lmEf79PpXBjikXYiiB3EP79BuvHctfmd1w7K0O/y1QroCX2j2dwUBiYfxiNDRmv
o3D+4Tygizs+cv7hi+74GgrnH1bH5i9Wcz9pQKJ77H1ggDseDQx1xxe79wb7D/27E+teqYnEPpPG
2Ge0mMJCnfKmOxZUBweFTwP3u+MHKCw+CvX3XpKSsQp8gHhgNfYdVYa++9xtFPbfzrlUjn7/Bfgv
8D93vzL0GWA9v14qrDL0/U3gJncc5a5dGfodEIEVfzYg/PvdGPgRC9zAgrdBhH+/Q+bIoPAhDs9+
TQW6YkUsK4POXwu8FPScs9xxFLDTHV9HYbEK7vnXYl/QTgqX7unq3gPgZexLCVjF4XMjQ+1sCtsK
Vtn94FGeWx405vCgMPjzTHb3IfTfe2n6GOhD5eq7D5gPtCH8+10f+BLoSWGmMNz7HLAeqHHEuXDv
eyIWJBwp3Psd7AJgpjsO935Xx/6wT3JtmgScTwXrdygXrz5ZJbXQdY1jvFd1YC9QUMR71Qt6r8Br
6p9wb0pecF+hsE8VRR1sSBl3G/iPKtTfe2lpjGVL51I5+h6B/ZW8ncIh9HDv93PAfUHXgPDvc4Af
C4gXALe4c+He9ybYP8ivAwuBMUAc4d/vYNdiu5RB+Pd7N7bm8k/AVne9aVSwfpeXoPBoC11fFsI2
+YvxnCPXeSzOa8pKeWrLyfJTdv0JxecWj23ReCew/4jHwrXvBdjQeX1szdGeRbQlnPp9KbADm2N1
tPVhw63Pwbphf/T0BYZhU0aObE+49T0KG9160d0e5NejNeHY7wAv9m/4B0dpS7j1uxlwF/YHfj3s
/+s3FNGWct3v8hIUno8tXn3kz6RjvGYLNk8hoD4WHW/h8Ixd4HzgNQ3dcWB+R3oR79XAnduNjc8H
Pqf67vzRrr+F8qOoPm0+ynPLo+1Yqh0snb7DHYf6ey9p0VhA+BY2fAyVp+9gf+l+ik2sDud+n4Pt
5rQey5z0wr7zcO5zsJ/d7U5gIjZfKtz7vtn9zHf3P8SCw22Ed78D+gLfUzjEGe7fdydgjmtHHvAR
No2rsnzfZW4G9g9HQEkudF0dm/tRDZsPEDgGm6QZmDv4EkUXmnSl/BWaRGGfSWPsMyrPhSbw6zmF
T1M43+JBfj05N1Tfe0nyYGt2PnfE+XDve82ga8UC3wC9Cf9+B5xH4R+8laHPPiDBHccBs7G5ZpWh
799ghZJgO289TeXoN64tg4Luh3u/T8dWkYh17X0Ty4qHe7/L3JXYGHoWFnF/FvRYSS50PcSdX8vh
v8jB5dzvcXg59yh3jSX8ermc8qAvNvF1HTaptbx6F5uDkYN910OwX/IvKbqMP9Tfe0k5FxtGXUzh
8g0XEf59b4fNsVqMLVNynzsf7v0OOI/C6uPK0Ocm2He9GPtHM/D/osrQ99OxTOESLHOUSOXodxyw
i8I/BqBy9Pt+CpekedNdozL0W0RERERERERERERERERERERERERERERERERERERERERERERERKQ8
uAJb4/HUEFx7A7b2WHHPi4hUCOVlmzsRkeNxHTDZ3Za1o+0pGk77jYuIiIiUe/FYVq4hsDLofAqQ
Cnzgzr8d9NgGbJux77FdVAIZxhHAPUHPW0bh3qITgQXu3C1Bz1lP0RnBwPnG7vqvuNd+DlRxz2mO
7W6w2LWliTv/DLaDwVJgQFB/vsb2xE7DtscaCMxzz2vqnlcL21d3nvs5p4i2iYiIiISd67E9PMH2
lg1sMZkC7AXqYXuGzqEwQFqP7UMK8CdgjDv+G4cHhT9QGBQmudtYdz5wvzhBYS7Q3p1/z7UZbLup
fu7Y6977Kmz7Kw9QG9gIJLv+7AHquOduwYJYgDso3DP7HaCbO24IrCiibSIiv0nDxyJS0VyHZQNx
t8FDyPOwfbT9WDaucdBjH7nbhUecP5o73Xt8CzQAWhxHG9dj2TywjGBjLMNZD/jEnc/B9nTvhgV2
fmAHlh3s7O7PB7a7567Dso5gGchAH/pg+7Avcu+dAPiOo60iIgBEhboBIiLHoTrQE2iLBU2R7vY+
93h20HPzOfz/cdlFnM/j8D+OA8O8KUBvoCtwCJgR9FhxHNmO33qt54j7gfmJwe9TEHS/gMI+eICz
sMBRROSEKVMoIhXJ1cA4LEvWBBsuXQ90P8H320Dh8POZFM7xq4oN3R4CWmHB4cnwAAeAzRQOH8dg
w8czgWuw/x/XAnpgGc8jA8Wj+QIbTg444yTbKiKVlIJCEalIrsUKQIJNwIaQ/RSvAjj4eROw7OMy
bM7hand+KpaJWwE8iQ0hF+d9izoOvj8QC+CWALOx+YITsaHmJcBXWNZzx2/0J/ixO4BO7vXLgVuL
0VYRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERkaP7/4ubM74H
i8gVAAAAAElFTkSuQmCC
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>There are several outliers skewing our data. Lets limit our scatter plot by annual income.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[396]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span><span class="mi">5</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;annual_inc&#39;</span><span class="p">],</span> <span class="n">loan_2</span><span class="p">[</span><span class="s">&#39;funded_amnt&#39;</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span><span class="mi">100000</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s">&quot;Plotting Annual Income against Funded Amount&quot;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">&#39;Funded Amount&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">&#39;Annual Income&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[396]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
&lt;matplotlib.text.Text at 0x116dbd810&gt;
</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYVNX5xz93Znf6zBZ2WXrvVaVKFxEVC6jYG3ZFNCoa
BUUUNWpiiRqNRvMzxlhJYkEUJTaMipRQ7Ir0KghKXcrO9/fHObN7d9mlKGLhfJ5nnr1z7invPffC
fed9z/secDgcDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4
HA6Hw+FwOBwOh8Ph+EXzFnDOHuzvz8B1e7C/XwI3AI//1EL8AnkZOP2nFmIP0QBIA4G93NbhcFSC
+8fkcJQxH9gIrAOWA48CcXtO9rMzGrD9i2oI8E6FehcBN39vSXdOAliPUSB+Luxo/voAi/aSHL80
BvDDlechbP8MVuQtYBPm+c98uvzAcX8K3gJWA6GfWI6qGMLO74XDsVdwSqDDUYaAI4EkcADQke9v
rfP2lFDfk+OAhRjlquinFaWUn3pOHDtGwMWY5z/z+eAnlWj3aQB0Br4Gjv5pRXE4fv44JdDhqJyl
wASgdSXnPIxyOB9YATwGpOy5Sfbvt8BaoCvwIHAgxrKy2p7/G3CTPe4DLAausP0txVgLMlQDxgHf
AVMwFsSdWRLOBB4B3gVOq3BuPjAcmGXlfBoI76Isb1HeLT6kgiz3YJTP74BpQI+dyFkVbwFjgP9i
5vFVzDxk6AG8B6yx451py3OAv2OUgPnAtZQpn0Mw83GXbTcH6AacZftYAZzhGyMM3AEswFiG/wxE
qpC3MfAGsApYCfzDypLhAGCGvZZngWcou/95wEtW5tWYe127wlxk5nyInZM/2LpzgcN8dYcAX9lx
5gKnAC2o/BncVfzjZ8bw3/M0cAHwBWZe/+Q7F8DM4Uor1xEV+s4B/op5zhZj5iSwi20r4wzgPxjL
6ZkVzv0NeABjHV9nr6EG5pldA3wK7Oer3xJz7WuAj4CjfOfe4vvNSUvMc/R974XDsUdxSqDDUZ6M
wlAXOBzz4q7IWZgXTB+gEcb1mvlPvqf9m4NRDCdjXgbvYywr+fZ8Rfdyka1fC/NyuZ8yJeJ+zAuj
yI57Bjt2rdYHemGUjWcpr9hkxj4eOBRoCLSjvKK3I1l25hafArTHKDZPAmP5/m65k61c1W0fV9ry
+pgX+T1AAebFPdOeuw8zzw2B3phrP8vXZ2eM8psPPIWZnwMwStxpmPsYs3VvA5rY62mCUcyu34G8
twA1MS/6upg1kFjZnwP+DzMvTwGDKJtHD6MI1bOfTZRXpCrOeWfgM4xS/HvbFszShXswSmEKo2jM
tHUrewYrozJr7a4shTgCYzlvB5yAebYAzrfn9rPnB1fo62/AFsz87w/0B87dxbaVcQZGwX7WylC9
wvnjMT8MCuy4k4GpmDn5J+YHAkA2RhmfABQClwBPAE3t+e87J58CF7Jr98LhcDgce5H5GGVrjT3+
E2UWsjeBs+3x65j/yDM0w7xQAuz6msBHKW8J3FihzQrMyz5o+27qO3dTJf35uQ5jJQOjKGylvIVj
HsZClOF2jHViZ7JA+XmAna9vWg20tcc3UPXatj6UXxP4JjDS9/0i4BV7PAL4VyV9BIHNGMtXhvNt
XxlZv/Cda4u5V4W+slWYl7aHWVPZyHfuQIx1bVcYBPzPHvfCWLn8vIOxdFbGfpS3EPnnfAjwpe9c
DHMN1TFK4BrgWCBaoc8h7NqawA22jzUYS27F8SvrK42xqGZ4BvitPX4Dcw8yHELZv48ioJjy1tWT
bZudta2MHhgFOmm/zwQu851/FHjI930Y8LHve1vMdYP5MbesQv9PAqPt8feZk6urqOtw/GQ4S6DD
UYaAgRhrTQPMS2JzJfVqYlyEGRYCWfywtXffYF4cGTZiLIyFtm+/glRRoajIGRgLXKbft9jeNbbc
d7zJjrUzWXaFK4FPMG7mNRgLYsEutq1IVTLWpXJlrABjwal4b/yu1RUV+gTjbqw4TiFGwZpOmVL0
ClVfSxHGrb4Y4wp/nDL3dS1gSYX6iyizusUwysl82/ZtzLxVtYbSPy8b7d8ERoE7EfMDZSnGxdy8
ij4qQxiLV579dNyNthVlytyrmpR/dhf6jutj7tcyyub4QcqU8h21rYwzgdcwP+TA/Buo+Nx/7Tsu
rvDd/4zVYvtApQW2fFepOCfxqio6HD8VTgl0OHafpRglMUM9YBtGwajMRVSV22hXoo1X2r7r+srq
VlEXjPWhCcYauMx+DsRY/vbEv/cNlH+Z1fAd9wSuwrjccjGKxHfs+YCQhRj3YUVWYayeDXxl9di5
0lwZqzBKQSvKlKJcytZ+VuR3QAnQBqPAnU7ZfC+jvCKakStz/4djrMmdbdvemDn7PvP2GsalWgPj
Bn7Ylu/Ks1YVO7rnO2MZ5loz+I8XYX5kVaNsjnMosxzvqG1FohiXa1/KnvvhGFd+u92QN8NSzL8z
/z2oT5ky/0Pm5IfcC4djj+KUQIdj93kKuByjbCQwCsDTGOvZSvvXr6QsB+pgrB4ZdvUlXwL8G+NK
jWJcnadT9YskYw1piXkBtscoJlFMqpEfykzK3I1NMGsGM7IkMQrrKsw6uOupWmnaFaqanyeBfhhl
MwujRLTHzNWzmLV5CcxL+3JMkMbuksYoUH+kzDJVG6NgVUbGErfW1rvKd+59K9swK+9AoFOFtpsw
CnM+ZS7H3aW67TuOUYY32HHB/ECp+AxWRmVzXtk931kfmX6eBS7FzEkecI2v3jLMs3oX5tkJYP7d
9NqFthUZhHn2/M99S4zbNbMmdneU6g8w1rvfYuasDyZzwNP2/A+Zk129Fw7Hj45TAh2O3ef/MO6+
SRi35EaMGw17fAsmCnUNxrrzBmbt0XLK3E8VF5bvyDowDGMhWY6JRH4Ks06wIhGMYnSfHSfzmW/l
rRgg4h97V2W52469ArPGyq9gTbCfL+yYmyjvwtvZYvqK5yrKlPm+EKPQDse4rmdQZu25BKP8zMUo
AE9YOasaf0fyXI2JIJ6MUdAmYix2lXEjJsDkO0xAwb98fW/BKAznYJ6JUzGu2sw9/CNGmViFWcv5
yg7k2tE1BDBK7xLMvPTErKUEs4614jNYVf8Vqeye7+h58cv4MCayexZmjeG/KtQ/A/OD4RPMOsix
lFnVdtbWzxmYf5eLKXvuV2DW9Z6CWS9a2XNe1VxuwUQDH475YfcnzI+vzJrSHzInu3ovHI5fFUHM
f9bj7Pd8zH+qX2B+Deb66o7ALH7+jPK/vDsAH9pz9/jKw5iFt19i/sOuv+fFdzh+NtxOmWLj+GXy
AduvV3M4HI5fLVdgfpW/aL//nrIIsqsx6RjArMGZiTGVN8D8Es+Y0adQFqX4MmX5sYZi8j+BWRid
Mdk7HL8GmlMWsdoZY5lwiXB/WfTCWLiyMMrfBn4+SbwdDofjR6UOJoHnQZRZAj+j7D/BzCJmMFbA
q31tJ2AS7tbE5FjKcBImkixTJ7O9URblo/0cjl86HTFW7oyb8+odV3f8DDkP4/5bh/mRe/hPK47D
4XAYhWlvcDdmobR/kXgRZekaVlCmENbCuHQzLMYsDN5K+Si/JZRF3NWmLJx/G2ULrF02dsevgWmU
zxPo+OXxMGWRug6Hw/GzYG8EhhyJWfw6g6qjs3Yl+7rD4XA4HA6HYw+xNyyB3TDrlwZgohdTmEjF
FRg38HKMqzcTJbWE8nnQ6mAsgEvsccXyTJt6mNxOWZhIynJWwMaNG+urr77aU9fkcDgcDofD8WPy
FSYF0Y/G3rAEjsQodQ0x6/jewITav0hZdNyZwPP2+EVbL2TbNMUEhCzH5ODqgrEong684GuT6Wsw
JgS/HF999RWS3OcX+hk9evRPLoP7uHu3L37c/ftlf9z9++V+qDwp/h5lb60J9JNx+96GSQZ6Dian
2Am2/BNb/glmfd9QX5uhmA3Ho5jo4Am2/K8Y6+KXmPxYJ/2I8jscDofD4XD84tnbSuDb9gPGXduv
inq/s5+KTKdsSyE/mylTIh0Oh8PhcDgcO8HtGOL4RdCnT5+fWgTH98Tdu1827v79snH3z7Ej9vTG
7j9nZH3sDofD4XA4HD9rPM+DH1lPc5ZAh8PhcDgcjn0QpwQ6HA6Hw+Fw7IM4JdDhcDgcDodjH8Qp
gQ6Hw+FwOBz7IE4JdDgcDofD4dgHcUqgw+FwOBwOxz6IUwIdDofD4XA49kGcEuhwOBwOh8OxD+KU
QIfD4XA4HI59EKcEOhwOh8PhcOyDOCXQ4XA4HA6HYx/EKYEOh8PhcDgc+yBOCXQ4HA6Hw+HYB3FK
oMPhcDgcDsc+iFMCHQ6Hw+FwOPZBnBLocDgcDofDsQ/ilECHw+FwOByOfRCnBDocDofD4XDsgzgl
0OFwOBwOh2MfxCmBDofD4XA4HPsge0MJjAAfADOBT4BbbfkNwGJghv0c7mszAvgS+Azo7yvvAHxo
z93jKw8Dz9jyyUD9PXwNDofD4XA4HL8q9oYSWAwcBOwHtLPHPQABdwH7288rtn4r4ET79zDgAcCz
5/4MnAM0tZ/DbPk5wDe27G7g9h/zghwOh8PhcDh+6ewtd/BG+zcEBIE19rtXSd2BwFPAVmA+MAfo
AtQEksAUW+/vwCB7fDTwmD3+F3DwnhPd4XA4HD8m69evJxotxPOSeF6KevUa71K7rVu3ctFFl5Of
X4caNRrTtm1XcnJq0qxZB957770q233++ecEArl4XgLPy6Fhw0bbyXPiiWeRm1uLevVaE4vlWdmS
hMO5pFI1qFevNS+99NJ2fZ977vkEg7kEAklat+7Mhg0b6NmzN56Xg+fF7d8gwWAunpckFMonlapB
27adKSpqTH5+Xa64YgQlJSXl+q1du7avj4jvOGW/p/C8BO3adcXzPDwv157Ptd/jeF60tJ755OJ5
sQqyefZcyleWIhxO0KfP4bYscz5k21ccL2xlSvr6iBIIxMjNre2rm0MwmE2TJvvbPvxyxPC8gE/e
lG+c7a9v48aNZGUlS++TaZ/5m7nOhO98tq/vpJ2bUCVz4f8bL/1bq1YD31xk+vTLbmQLBBIEg/m2
71TpPYjFCuwzWDbPHTp0oGvXfqXj/ZoIYNzB64Df27LRGCVvFvBXINeW3wec6mv7CHAcxhU80Vfe
Exhnjz8EavnOzQHyK8ggh8PhcPz8SCZrCA4QfCGYJqiprl277rTdZZddrWi0n+ArQSfBhYJFgrFK
JAq1cOHCStt5Xo6gv2Ce4G1Bjg455JDS88cee5rC4RMFCwSvCZKCfwlmCxoKThZMVDRaqBkzZpS2
u/XWWwXVBO9bmXqqTp1mgpTgNMFCwXhBTHCf4DMr93GCOvbav1As1l3XX39zab+/+c1vbJsHBA8K
ElauBbZtjuBdwVxBNyvvcMFiwROCqG2fErwlmG+v/0DBCYJjbF//sX3HBffb9r8TFNk+o4L2Vu7/
CWoLsPV/b+vfY7+HBWfbsmdsWVyQJzjP3qfnbJ959twEO0cn2GtKCg621/WOINeOFxM8avseaesh
aCr4SPChoKXtI0dwneAOQXN7Dx8V5Av+a/vubfvIEZxkZXjFypQZ73kr8/mCXvY5aCz4UtBdcJY9
/7yt/6bgNjufUXt/n5d5Pl6ydesKLrXX8bSth5XldXv86yIHs2avD1AdYwn0gJsxiiA4JdDhcDj2
KYwS8I5A9vNnBYP5O21Xp04rwQzBekFEsK20j2TyeD3xxBNVjJcQzPGNd52ys6Ol56PRXMHXvvOX
WiVHgqcETQRSVtbluv3220vbtW7dwVdPgplWIQgINvjKz7DKhuzLvr7gz77z76hFiy6l/YZCIUEb
e+5IwVBf3VWCkO/7/VaZSPvK+liFYoSvbJ6MEldNsNRXfrxVluT7NBZkW8XpdV/5I3be61ao38Re
0zO+sqNsH0HBVl/5MVa2831lq23dpOBTX/kYO5ddfGVpGeUWwb8r1G1on620YJBPnqsEt/jqfmz7
yBJ85ys/1/Y72Fe2xcr2pOAgwWb7fYuvzrGCG+1xbRnl8lEZJf4cW75G5jks8bXrZ8cbbr//+Epg
1o89QAW+A8YDHYG3fOWPUKbQLQHq+s7VwQSQLLHHFcszbeoBSzHXlAOsrjj4DTfcUHrcp08f+vTp
8z0vw+FwOBx7lnmY5eIAc8jK2vn7L5VK2XZtMPaEpZjXRxppPjk5VbnUArZdxu08h1CobHVUPJ5i
06Z5QGHpeWhtj+diYhEhFJpHTk7z0na5uQlbt+yaAoEI6XQJxvHVCvNen4NZJp+57pDtt6zdZ599
juflEo2G2boVYAVmiX0eJgYSX/ts33cP2AKMwcRW1rF1Mtfhb5e0Y8/DrLgCWA6sAjYBUcxr+xsg
bT/zfH18BZQA32IcfUlgg60ftOewf+fZMoBFQMMK/c2xc+P5rilzn1r46qQxr/ytts43dl6g/Byu
AdZiVqOtBlK+86lK5sKz/c0D2ltZMvM81yfbQsz9n2/PZdvvCzHPk2z9Q+z43/rmqoVtJ8zclmDm
u5Y9/tTWfQlI8GuhgDJXbxSYhFmzV8NX53LgSXvcCuM6DmGekq8oWzv4AWZ9oAe8TFlgyFBM0AjA
ScDTlcjxA36nOhwOh+PH4pRTTpGxmF0h41aL6ZFHHtlpu4kTJyoWK1QgcLUCgc6CmoLrFIsdqi5d
+mrLli2VtmvRooW1Ml1trTxxvfTSS6XnH3/8CcViNeV51yoYHCjjFjxfcIGMle1ERSLHq3Hjtlq3
bl1puw8//FCelxCcaq1NCV1++eXWUlRNxnV5qLUAnSZjYUxYGWKCMwWX2+OkjMv4XmtJSgn2s+eT
MhbBEdbSFZFxUV9p+0sIOgsel7E6JmTcqnEZ9/E1tr9aMpa4XFs2yNapJmgr40ZtacfIuCqjgt9Y
i1bUtk0KWghGyVgsc2ybmraPXraOZ2UtElwrY0lLCm6yMh5h5yhPxuIXtuW/lbGcZtyzKRk3+ihB
A0FcXbt2tfIMFVxk6xTZvhrasri9h2fbOT7J9p2QsVAGZaydIwUDbHnGItnXylxT0NNeR0TGatdV
UOi7phzbR3M7fsYlPETGatrPnk/JuImvVZkbP+Nez1hIf/m0Bf6HUexmA1fZ8r/b77OA54EiX5uR
GDX9M+BQX3kmRcwc4F5feRh4lrIUMQ0qkeOH/0/lcDgcjh+FkSNHKjc3TwUFBVW6cStjxowZuvHG
Mbrjjjv09NNPa9So6/Xggw9q8+bNO2x39NFHKxyOKplMllMAM/z3v//V9deP1j333KMxY8YoLy9f
+fn5Gj58eGn52rVrt2v3ySef6Mgjj1SfPn319NNPK51OKxSKC26QWXt2vILBXmrXrp169+6js88+
W6NGXa9wOCmjOIatgvN/KnMTPiSjKEasYhCyCltvmfVzKBAI6sADu+kvf/mLVVzWqcxd2lZ5eXk6
+eSTVaNGDcViCbVt2069e/dWIBAS1LB9pwQHq6CgUIcddpgCgaAAJRIJXX/9aE2aNEk1atTIKCeq
VauWevXqrUaNGpWWAWrVqpWKimpbBcizn0aqVq2B7r33XuXn59uyLJm1cRKMK23veZ7q1q2nGjVq
KhKJ2LoIPNWvX7/cWIAKCuornU5r6NChCgazFAgE1bp1Gw0aNEhHHnlkhfq5gmxlZWWXliUSCR1/
/PFq27Zdubo9evRQq1atthuvS5euGjt2bLmyQCCgVCpHLVu2LFd+22236cQTTyqdy0zdUaOu1ymn
nKJQKCzwFIvFNH/+/O36rUqx2lNUFp37a0XSr0KpdjgcDkclzJo1iylTplCrVi0OP/xwAoGffj8E
SYTDcbZuXUxmqXo4fAo1a37Apk0emzatQdrKunUbgCOBCUAnYBjGsQXwD+B5EoltHHNMimefjbJ5
80P23BJisXZs2PANAPPmzaNRo5YYV2TI1jmQUaMOYcyYMdvJl5NTg7Vr38c43iAr62JatJhMPF5A
SclGQqEk/fp147rrriY7O5vZs2dz7733EgqFuOaaa6hXr569pjBbtmwhGAzSu/dRzJw5ldWrc4H1
GFfzQFq2fIHZs9/h2mtv4JFHnmL16tXAWcBtwJcEAj3o0KEjJ510FJddNqzK+7ds2TJOPvkc5s5d
ROfO7XnssYeIx+Ol5zdt2sSoUTcxefIsGjWqzT/+8RRSPsYx+TSh0J0MGxbnyy+XsW7dBs4441iG
DDkDz6tcJXr33XcZNOhk1q3bQPv2LXnnnTcIhUKV1t2TWHn2JT3tR2WXf1k6HA6H45fFY489rmi0
SLHYWUok2mvgwJOVTqd/arEkSUOGXGijmF8X3GVdkQOt5c1Y34wrNC4TxBGybsfnZKKSawpOV7Vq
dTR9+nQlEoWCPwn+o1ispy6++Ipy42VnV7OWwjdlXKYxff7555XKdtllVysW6yYTGfyAdVteKRNk
0VZwsqLRQ3TiiUP08ssvy/NigqMFfRUIpPTJJ59YuavLuMFr2O/5ggIZ1+nRgqiOO+54nXrqOfK8
LjKRsiNkXKftVeYWfk6xWCddeeXISuVNp9MaMuQixeMtFYudrVistu6++75y5/v0OUKRyHF2/gpk
XLsvyLiCcxSJ5CgWqyYTyTxWsVhz/fGP91U63pw5c+R5cRn37fOCLmradL/v+STsHvxK3ME/F/bK
TXM4HA7H7lNcXKypU6dq1qxZKikp2a22JSUlikSSMlGeEhQrkWijiRMn/kjS7h5btmzRiBGj1bLl
gfK8XJnUJP+WWQ/mj/S90ypv91hFMV+eV035+XU1YMAJmjNnjiRp1qxZ6tdvkNq376XRo2/Wtm3b
Ssdas2aNgsGojEu5pqCZotH2eumll5ROp/XJJ59o8uTJWr9+vSRp27ZtGjPmVrVv31tNm+6v7OxB
Pnm+ssrdegWDYeXl1RfcLpgqE/l8gSKRmJV1hcqilROCdjKpYDJ9/UmBQL4CgWzBt77yIwUBZWWd
4itbqFgsr9K5nDZtmmKx+jJRw+8K/qdQKFHqml+4cKEikUKZaN3pVpbFtu5CQUt17nygPO8a33iT
Vbduq0rHu/DCC2XWcX4leE8mvU5QmzdvVnFxsd577z0988wzmjp1qrZu3VrlM7Bt2zbNnDlT06ZN
2+lShZKSEo0fP36vKIF7OzrY4XA4HI5yLF++nO7d+7NypUinN3DAAc2ZOPF5wuHwDtutWrWKtWvX
Uq1aNbZt2wq0tGfCQBuWL19err4kli5dSjqdpmbNmixcuJBkMklhYWHFrrdrt3jxYgKBALVq1arS
bViRrVu3smDBAvLz83njjQl8+ukHmMjU7phYxhxMsowMnYCx9m+KO++8iiuuuGK7ftu1a8fEic/t
YGQPeA1YCdQgne5POp3mpJPO4qWX/kNWVhGRyGreeedVmjVrxqhR1zBq1DXcfffdjBjxSZW9rl+/
CZPN7e+Y6OEExcUbMcvwq9ta1YDamKjXDr7WHUmn03heRb1mE57nkU6XL0+n05XKsGLFCtLpOGYO
GwHz8LwQq1evJpFIsGzZMqQSyvSnbZho38aYcIIIiUSdSvuumvlAV3udCwDzHHXu3IuVK4uBzXhe
kFatmvLuu69tF5W+ceNG+vY9itmzvyIQCFGrVpz33ptIQUHBdiOl02kaNWrPggVLdlNGx87Yoebt
cDgcjp+GQYNOVXb2b2WCGLYqGj1aN998a5X10+m0hg27UqFQSrFYHTVu3E6NGrVVIHCbTK7A9xWN
FuiLL74obVNcXKz+/QcpEilQOFxNkUihYrE6CoVSGjr0iipdx+vXr1ePHocqGq2uSKRA/fsPUnFx
8U6v6eOPP1ZRUUPF45lAhrh1TYaty/V/1kq1n2C5TCDHwTIR0ocIkgqFcnTqqefulmV069atCgTi
1r1a11rpoho9erTi8S6CjQLJ8+7VAQf0Ltd20aJFSqWKFAjcai2Vbcq5g3Nz6wqG2fu0TTBABQVF
doynZXLe/dteXz9rDVwqk8fxcOXl1bPX3NO6VkcK4qpRo47t4ybrwm2jSKRapdc3adIke20LrBXv
PUFEX3/9tXUDFyoQSMnzGgj+KhPwMtnWnS9I6L777lNWVkrwR8FYeV49jRlzS6XjPfXUUzJRxt/Y
Pl5QMJhS+/ZdZaKo75aJgE7I89rq/PMv3a6Pq6++ToFAYxkXeZE8r5EGDz690vEuvfRSQSs7Z84d
vCfZ5X9EDofD4dh7NG3aUWaXjYx77mENHnxmlfXHjh2reLytTFLhtILB0erUqbdateoszwsqlaqu
F154oVyba6+9QdHoUTLJfQfIpOVIC1YrHm+vZ555ptKxhg27UpHISTIJjjcrGj1a1157w06vqVGj
doK/2DGSMkmcJVgik04Eq6BEZaJkg/Y4IJOceaNgnWKxbnroob/s8lwuXrzYKlTP2fE+l9kR5VDB
aN8cL1IqVWO79p9//rkGDz5DXbr0V8eOPdS9+wCNHn2ztmzZoubNuwgm+fr4m3r1GmCvJSETxWvS
uHheUiZK2VxbOFyojz/+2Na5VWYN5LmCI1WvXj2rAJ8p4x4eKQhXen2PPPKIzE4n/uTU+TrrrAsU
iQyWcQNvVlbWUapWrY6M4u2v21XHHnusIpFWMomxj5bnDdAhhxxT6XgPP/ywIpHTfe3T8rygPK+a
4EVfuUkf07Xrodv10azZ/jJpcu6XWct5rHJz61c63kEHHSSTrmfvrAn86UOnHA6Hw7FPs99+rcnO
fgrzzttMNPovOnZsU2X9t99+hw0bioD7gc8oKTmHL774go8//oDNmzfx7bfLOfroo8u1ef/9mWza
dAYmYnYWcB7GbZrHhg3H8b//zax0rMmTZ1BcPASzeirEpk2n8/77ldfNUFJSwrx5HwFnY7Kjrbfj
gUkMfJQ9foRDDz2CFSuWsHHjOoqL11C7dnPg35i0ugk2bjyRDz6ofDxJjBgxmlgsj0gkxdChl7Nt
2zbMq32QrdUM6ECNGtWJx8dhkjpDIPAULVuaBNgPPfQQvXv34dhjjyUWizF27GNMmjSO8847nYMO
6kDNmgUba3ZHAAAgAElEQVTcdtvtRKMBsrLuB24Cfkck8jjduh1ALJYPvGk/7xKN5rN8+Rzmzv2c
G28cxciR1zBt2hu0atWKQCABNMEkRB4DTKZBgwaYLHEd7KdLqct9+vTp3HjjGO68805Wr15t3cSz
MW70+kAvYD0zZnxCcfEZmOTNIbZtO4emTVtikldPsnPxJfAhX3wxl+LiMzGZ5V5AuptZs2ZVOsd1
69alpOQ/mGTdAM9Ss2ZDzLOa56uZDxTToUPril2wdes24HMrxzTgbUpKtlU6XocOHTCpjo+s9Lzj
+7PLv6QcDofDsfdYuXKlWrbsqHi8kaLRmjr00GP0yiuv6KyzLlC7dp3Url0PnXfeJfr22281f/58
G9l5tozrtEBwjdq377HDMYYNG65w+BxrmespEwkrwWbFYr2rTE59xBHHyyQaTtvPaTr11LPL1Xnm
mWfVtGlHhcM1rUUvz7oK49byGPdZjdbJJC9GodBANWmynzp16qcbbrhFW7duVZ8+RyoQuN3W3apo
9Ejdccedlcp2//0PKhbbX8Y1ukyxWE+NHn2zzTnYVybwpLOysvI1ffp0nXXWUEUiBUomW6h27aaa
O3euLrnkUpkI3RGCQcrKytGCBQvUtm1XQQ8ZV2dNQV0FAgdbK+NvBGcrKyulTz/9VP/+93OKxfKV
SrVRNJqnp556RgsXLlQqVSTPGyK4XKFQrt555x099thjNtq2viCqvn0HaNasWdaSeLS1qFXTAQd0
1fjx4xWNFioQuEbh8OmqWbOxXn/9dRnLqj9ZdExnnnmBQqGhpfcpFLpQ559/qWrVamBlbipjaU0q
EOgoE5E8SCbo40R16dJvu/lds2aN6tZtLuPWTgjqCWIaPvxqNWrU2vY5Sca1naNq1WqWSx6eoWHD
VvZZzVgN/6hksk6l93TBggV2rF9PsuifCzv8D8LhcDgcPx1bt27Vxx9/rC+//FL/+McTisVqC/4g
uFhQQ6HQyWrfvpvOO2+YAgF/ZOejCgar6aOPPtph/99++61atuyoZLK9YrFW8ryEwuFOCoXq6+CD
j6oysrNv36Pty7+DzPq9hjr22NNKzz/55FMKhWoLxlplISbjBn7etgvJuECjto9qyux1GwwmFQjc
InhZsVgfnX32UM2dO1dFRQ2VSnVTItFC3bv3r3IN4qGHDpbZwzYzFxPUocPBatCgjczavXmC/1M4
nKcVK1ZIkubPn6/Zs2eX9ul5KZnI2UwfR6hTp04yu11k9mJeZK+jSGa/YFM3EBip884bJklavXq1
ZsyYoW+++UaSdPzxp1plcYXMLie9lJ9fV+l0WitWrNAzzzyjGTNmSDIu3kjkcJXtdzxdubm11KTJ
/oKXS8cLhc5WmzZtrHKb2at3pSCk8ePHq2nT/ZRMHqBkcn81b36Apk+fLrMGc57MHtNLZPbyvd4q
5g/KpI5pqKuuGrHd/N51113Kzj7BjrNU8LCgscLhhObOnatEoro8r7o8r0D16zfXhg0bKr1PsVhN
wWO+OX5DgUBBpXUPO+wwmfRBLkXMnqbSCXc4HA7Hz4u6dVup/Nqz8wW3KJForP79B1olK3PuLTVv
3nmX+t28ebPeeecd3XrrrYpEChQInKBQqJ/q1m2uNWvWVNqmS5f+Mrn63rYyPa5DDjmu9HzHjgdb
RUJW0fOvu3vXKnwBwT8Fh1vF6AxlZWUpFjvRV/cbZWVFVFJSorVr1+qNN97Q+++/Xy79S0WGDLlQ
weC1pX143p3q12+gwuFcmSANU55KDdDzzz9faR9G5qU+OS5TQUGBjIUsU1ZildsimVyHmfJHdMwx
lQc4NGrUXkaJbyKzPd5jgla67LKrt6t71113KRS62NfvaoVCcVWv3lgmFUym/CYVFlYXdPGVpQUp
3XHHHSouLtbbb7+tSZMmqbi4WP/9739lrLJpX/1OMlu7jfCVTVGdOtuniBky5CyVrc/LBJbUUiCQ
rS1btmjdunV688039d577+0wPUwqVVPQ2rb/WtBbwWB+pXWbNGkisxWdUwL3NFXeIIfD4XD8tDz6
6KNq0aKF2rVrp5yc2hVe/tcJRioeb6C77rpbsVhjwTTB54rFDtQNN/xut8Zq0KCt4NXS/sPhU3XH
HXdUWvfuu+8TNJLZ0u1KQV21bt1WTZs2VV5engKBLJkAhxKZQI8rZPb8vd0qPrlWETxNJk/dS4KY
6tatq3j8ON81rlB2dlQfffSR+vY9Ws2bd9bFFw/Xpk2bqryOBQsWqFq1OopGT1YkcqZSqSJNnz5d
WVlRwbOCEwVt5HlFuvrqEVq7dq0eeOAB3XbbbXrzzTd17733Kienusz+wL1lXMhxHXxwZp/hZ2Ss
gJfJBDbUlrF2fiaYrlisiZ555tlKZTvkkAFWATvcd41flyq6fj788ENFowWCCYKFCodP1VFHnaQL
LviNotHDBXMF7ygWq6Xzzz/fKqT/J5P/b6Qgqfnz528nw+bNm5WVlSfjNl4sEy0cFxxr72VGrvdU
t27rcm1HjbrJuvfzZJJuzxcMVCDQTj17Hl7lPUmn0xo7dqxuueUWPf/880qn07roomEykcEpO35N
9et3RKXtTzjhBBl39+tOCdzDVHnTHA6Hw/HTMWzYMBmL1IWCkwRxhcM9ZJL9Pi/IVyh0iLp2PVgl
JSW6774HVFTUWPn5dXXllSN3aC2rjPz8uoI5PiXgeo0ceV2ldXNzc61sZwlOt8c1ZdKnDJdx+Sas
ham9VVCOF1wiiCsSSSg3t4Ytj8i4JwN67bXXVL16fQWDIwTPKBbrorPPvkg5OTXkefcI3lU0OlDH
HHPqDq/l66+/1oMPPqj7779fixcvVjqdtpanPJndO14SvKxIpJ4KC+soGj1WweCFgrhCoRPleYda
peMyQX9BQh988IHdGSSjuHQTDFYgkKO+fQeoWrV6ql69ke65509VyjVjxgwFgxGZSOzMPK9VMBiq
1Gr2yiuvqH79NsrJqanBg8/Q2rVrVVxcrHPOGaa8vNqqXbu5nnzyKW3cuFFZWTGZdYxRQY6qV69b
pRwTJkxQMFjNzn+OotFcVa/eUJFInjzvD4InFIs10f33P1jaZunSpdaaukIm5U1zQVxZWbk67LBj
tXr16krHSqfTOu208xSP769A4LeKx1tr6FCzm8ugQYPleTnyvKS6dOldpeXw008/lXG9p/aKErgv
7Uknub2DHQ6H42fF22+/TZ8+g4C7MPvIAlxKJPIkhYU12LhxE3XqFHHIIQdx443XEovFdqv/dDrN
e++9x5o1a+jcuTNFRUUMGXIRTz+9gM2bTwA2EI3ezGuvjaVHjx7btfe8POB64HJbciNwNyYZcgRY
BdQFggSDHiUlg4FHbd1/0rDhzSxY8AXpdAqTzHodMJ9LLz2Vjh07MmHCW6xYsYYjjjiIvLwkw4a9
zIYNz9r2GwgG89m0aT3Z2dnl5Pr444+ZM2cODRs2ZMWKFZSUlNCiRQvefvtthgw5B2gDXAWcals8
i+eNRJoDXAd8g0lY3cTK2xOjcxxOhw6reOyxxzjmmNNYtGgJ0WiCk04ayK233rBdIuQMp556Km+9
9RbdunVj7NixALz66qscddSJbN16LdCJSORWunQRxxxzBEuXLqVFixZ07NiRuXPn0rJlS5o1a7Zd
v9988w2TJ08mHo/Ts2dPpk6dSr9+p7Nhww3Ax0AHsrPPZOXKJcyaNYu//OUvFBUVMWLECPLz82nb
tiuffVafdDof2EJBweu89NJY/vvf//LII0+ydWua8847mf333w9JNGnShPHjxzNixP1s3Ph5qRw5
OV0YP/4uunfvXlq2YMEC/va3v5FIJLjoootYuHAhBxxwMJs2fQHEgW8JhxszZ84sCgsLeeedd9i2
bRvdu3cnmUyWu85Vq1YxefJk/vnPf/LEE9+wbds4rIq2L+lpPypV/lJwOBwOx0+DWTtWKLOVWsZi
9KCi0e1z2O0u27Zt04ABgxWPN1cqdZiSyeqaPHmyJk+erOzsHEFXeV4DtWzZUVu2bNGcOXN04IEH
Ki8vTwMHDtRjjz0mE8gx3ifb09o+91x1QUpduvQU3OErn2UtcgFrieolqCWoJs/LVSLRRZFIgbp1
O0x33PFHPfHEE0okDpPfRZyVFdnO0nnrrXcoFquhZLK/PC+lSOQAxePd5HlJxWI97XzmCP7s6+sR
a9HaILNV3R+VybFnklVn6l2hJk2a7NY8h8M51prYR5BSdnZO6bnPP/9chx02WC1adFYqVVOhUDPr
Eu0hs8YwR8nkAEWj1fXggw+X6/fDDz9UXl4tpVKHKJFoq+7d++uFF16w859vx4sLwjr99CEqS77d
XoFASm+88YZNnJ2wdfPkeYU2UXSuTD7GToK4otHOisW6yPOSisd72zaPywTH/FvhcF65daOvv/66
PC8hsz6xuaLR6ho/frxSqU7lno1ksoXeffddtWjRQclkZ6VSvVWzZmMtWrSotK+ZM2cqJ6eGIpE+
MlHTzWUCX5w7eE+yWw+1w+FwOH58UqkiQXdBV5k1cx8KamvAgMrXTO0OTzzxhOLxA2XStEgwVg0b
tlXbtt1k1pSZNCyx2MHq0+cQGXdtTNDCuho9GfdtW5m9Yz+XCXQIy6z3WyWT+DguyNYJJ5wo44L9
n0wk6iG2flxmvZtkkkA3tYpMPcHVgrGKxbrq/PMvUe3aTQXnyESiNlf9+q20ZcuW0muaN2+eXT+3
WGb94XkqC3y4Sibhco7gUTvG72X2JI5bhbSOTMBGTZmI2WMFg2Vcn/8VpHT99dfv8hzfe++9dt7m
WhkWCmIaNWpUuXpnnXWRsrIusYpfJuhnnaCZzPq3OYpEckqjiyXpgAN6y/MesnW3KRo9TK1atbIK
3Epb/pGM+zQhExGdCRYZqnr1WtpzmT2lv7Zz01wmOfU2mfQ/mXaSceNfJPjAjhMQNFQolCq37jA3
t4HgNpUFzgxUz54H2QTVjwhWyfPuUY0ajXTJJcMVCp1Vep+CwVEaNKjMzW+ex7+WPo/G/X7VXlEC
XbJoh8Ph+JUxZcoUOnXqS/36bbnwwssoLi7+SeTYsGED06dPZ968eVXW6dGjF1lZzYESoDnQlXr1
Iowf/9IPHn/BggUUF/fAJIgG6MuyZQtYvHgB0NeWZbFxYy/eeutNzJ7DnwOfAq/a79mYvWPbAPsD
S4GtwCWYxM+3AiU89dTfyckpBHpjEjW3x+yjK2AjZj/gacDXQA/gO1t2GzCYjRtf5NFHH6Fhw0bA
BOAKYCGLFm3jz39+sPSaFi1aRCjUFLM/7wLgYMo8hv2AuZjE1kOAl4GvgD/ZOtcDlxEI3ML++zcg
P/8ootG3CARexyRePowjj+zDjTfeuMtz/NJLLwE1gIa2pC5Ql4kTJ5ar98UXC9i2rRew2l4/QALo
Yq+jMdnZNVi2bFlpm4ULFyBl7lOQTZt6sXDhMqA1kNl3tzXG9ZoF9LdlHnAIK1euxezV3MqWF2Jc
8utt3aAd+xCfpP1sWWfgdGAE8CyRSDMWL15cWmv9+vW2LhhV6lAWLVrFW2+9QqtWfyEabUy7ds8y
adIE5s5dwpYtfcncp5KSvnz11YLSvszzeLD9lgUcBjyCY8/yfX5IOhwOxy8Kk7+s0Fqq/qdodKBO
OOHMvS7HRx99pIKCukql2ikSKdQFF/ym0v15V69erZ49D1MgkK1wOLHDYIPd5bXXXlM83lgmBUpa
weAYde7cV337HiXPG24tM1/bfV2zZFKH+N28GbfhETLWxI0ybsUiwVLF44312muvlY732GOPKRbr
IFhjrUPnCo6zVrhqMoEj+dYalS84wTeWSRETiRRaC14LZVzHffr0Lx3j66+/tsmy35WxQh4s4+Ld
LJNfbrjMnsFP2X4/tFYyrAVugXJza+3S/K1atUpnnHGBDjjgIJ133iX67rvvtqszbtw4Gavpf+x4
kwRRPfroo+XqXXPN9XbbvlYy+fkk+FLGlf4/watKJqtr/fr1pW0OP3ywsrMvt3O5SvF4Ox1xxBF2
Pv9n+8jsVRyTSWtTLNgk6KeOHXvYAJdMCp/ptl5vaw38RiZy+FDbZpNgfxmr9GUyltM8GUtwrNy9
rl+/jeAMa038TrC/Tj658iCe2267Q7FYX5n9gLcoEjlJF154Wen5gw8eqKysK+3zuFImncyte8US
uC+xSw+9w+Fw/JL505/+pEjkHJ9ysUZZWZFKFbAfk0aN2si4RrMEcQWD+XrxxRerrL9ly5YfRcYx
Y25VdnZMkUihatdupoKCevblmlTGjWvcmSEZN++FVun4jy1/wCoCUXs+oWAwV9nZMd14463lxkqn
07rwwsuUnR1XOJyvGjWa2AjZuOCJUmXPKHeZdYJjBC8pFuutc865WJ6Xp7J9jYsFvdSgQbNy44wf
P17xeL4CgaRV8MKCqLKy8pWdnVc650bZDNlPXTv+LfK8lI488kStXbu2ynnbvHmzmjc/QFlZZwuu
U1ZWP+2/fw+tXLlS//znP/XCCy9ow4YNSqfTisXyVKboxhQOp7a7l8XFxTriiONtZG9cRsEOKRiM
KRotUk5Okd5+++1ybVasWKF27Q5UJFJN2dkxXXbZ1Uqn0yosLFJZBG1U3bt31xNPPGnvqYnAzsur
p3Xr1unhhx+2imCOIKzjjhts5c3sbRxXIJCr7OykAoGYvTf3WMWwSGVu52dVq1bZWskFCxYoFstE
fYfUuHG7KiN+t27dqhNOOFPZ2QmFw7nq3XtAOWV3+fLlat26s0KhPCtTwl6fUwL3JDv+n8LhcDh+
Bfz1r39VLHa0Twn8UrFY3vfqa9WqVVq5cuX3amteukOsleQDQUrHH3/89+rrh7Ju3TpNnTpV0Wi+
TJBHS5m1cJ/JWNQKZAI+FsmkfilU2ZrAkFUsalqlIKIGDVrp66+/rnK8b7/9VsuXL1c6nda3335r
+9niuydDNGDAAE2ZMkXHHHOaunTprxtv/J22bt2q7OwCwWxf3XvUvn1XSdJ3332nKVOmaMOGDXru
ueeUlVUok7fvbcHb8rwOuvLKEVZ5CFsl3Ci32dn5MusBGwpmKhw+VYMHn1HlNUyZMkWxWBOrFB0p
6CbPy1Fubg0lk4crmeylRo3a2oTMuYK1dv7WCQr0wQcfVNrvqlWrtGTJEk2dOlUrV67U5s2btWjR
onLrHv2k02ktW7ZsOyvkxx9/rFGjRmnZsmWlZcXFxXrrrbf08ccfl6u7adMmTZkypbSPzZs36/PP
P9edd96p6667Tl9++aVWrVqlWCxfZt2nCU6CU333oUSeFyiV87PPPlNubk3FYgcrFuukFi067FCp
lqRvvvlGX3/9daU/dtLptJYuXaqVK1fq5JOHWGXeKYF7kh3eHIfD4fg18N1336lu3ebKzj5XcI9i
saa67bbKEyFXxebNm3X00ScpFEoqFErpsMOO3WHS4sowysc3vpfoMHXs2LHK+tu2bdNnn32mOXPm
7FGL4MKFC3XBBZeqffuuMq5cWSvQXJ9so2WSDkvGdWhytHleyNbNEdwgk7Q6JainCy64bOeDSyop
KVFllsCLL7640vpdu/aTCRYxlkDP66bbbrtdv/3t1VaxyxVE1L17b8EBMhHHGRm7q23b7gqH82US
VtcVDFEqdZQOP/wImZ1Xiq0cO3YLT5s2TYFAobWKZYItjpUJdjHfQ6HzdMQRx8gkkfbvytFoO3fw
z4nvvvtOTZu2Vzx+qKLRsxSPF+i9995TKBTzPbNv2+uq3BLYvfuhgrtL5yIQOEGjRt2wR+S77rox
ysqK7BUlMOvHHsDhcDgce49UKsXMme9x9933snTp5xxxxG0ce+yxu9XHzTffzsSJa9my5WvA4+23
T2LUqJv4wx9uqbT+xo0buf/+B1iwYAm9e3dj8ODBeF4Y6RNMEICAWbRp06bS9mvWrKFLlz7Mm7cI
qYQDD+zM66+PJxQKVVp/V1m+fDlNmrRky5ZtmCCAasAWe/wJJphBwP/sOYDZmECSO5Gux7wmbwfO
s+dzgT/x+uvv7JIMgUAm/vIS4PfAIqCEwsLCSuv/61+P0br1AXz77f3AVjp37spBB/WhS5eemECV
EBDh3XenYoIeWgAr7DWdyHfffUE6XQwcDQwDtlBS0o4mTfoTiSyhuDgzp5+Qm2uueeLEiYwbN4Fq
1XIpKMjnk0/m0KxZA7KyYMuWTBCHhwmm+U/p9y1burN58/N43lqkoUAHO38r6dSp0y7Nz/dh5cqV
9OvXj8WLv6F9+2ZMnDiRYDC4y+3//OcHWbCgAVu2tMcE7Qzj/POHM3DgYP7971MoKbkVWEgwuI6s
rGaEw/UJBFbwwgsvlvYxc+ZHQObfg0c63YdXX32WMWNG/6Bre/nll7nrrsfZtm0+JuDGsafYIxq6
w+Fw/Nrp0+domf1yM5adl9S166GV1t28ebPat++mSOQYwR8Uj7fWiBGjdc0111gL1YWC7opECqvc
n7dfvyN81rYrBElddtnwH3wdzZu3sVa4MwS/s1a82vZvQia9yhHWYtZMJlAjJuhgLWaF9vO8by7+
IWisPn2O3CUZjCUwYC1M02S2HztT5557bqX1b7jhBjtvNwkulufF1LJlWytzD5n0Lu0FSbsTxtM+
2V5Vq1bdVKtWYyv3UEEbBYN5Wr58uZo121+x2OEKhS5ULFagV199VX/966OKxeoKbpPntZXntRb8
QdHooapevbGCwZNlXNmrFAy2lnE/Fwu+FeynkSOvU716Te28tRPEVaNGwx9876pi48aNCgZzZba4
+4OglXJz6+xWH+ecc4HM+sWLBbcIzJrEo48+ScFgK5mgnPYKh3P05ptvaurUqdu5ehOJWoJT7Nx8
I2inLl16/eDrM/9urpbbO3jP84NvjsPhcOwLnHfeJcrOvrjUxZeVNVynn35+pXXHjRunRKKrzx24
XFlZYW3evFlPP/20Bg4cqPPOO69KBVCSotGaFZSZkapfv9UPuoYNGzbYl+hAX79HCzrL5GQbLJOv
7wGZhL9YZe0imSjOuwQtlJXVRCaf37uCtwQ1FInk6JNPPtklOYwSGFP5PIEtdMEFF1RaPxwuErzo
k/lSQVBmfV9mXeE6QVytWu2nYPAc3326WgMHniQTXPCiTOLqZwTNdPvtt+vOO/+o7Oy4PC9LnTv3
1Zo1a1RQUF8wVSZPYI7MGs5M/sQmOuCAnsrKiiorK6yiosZ2rjLb3x2ogQNPsN8zufi+EMQ0efLk
H3T/quLyyy8XNJCJyjWBTxDWtGnTdrmPk08+ReYHQJnynEjUVnZ2zPaX2VP6At17772V9tGr1wCr
9JqAoWCwlW644aYffH2nnHKKfUb3TrLovZEnMAJ8AMzE2N9vteX5wETgC+A1jI09wwjgS+AzyhL/
gLE1f2jP3eMrDwPP2PLJmIRHDofD4fge3HrraOrWnUQy2Z1ksge1ao3npptG8p///Ie///3vPPvs
s8yePRswuQA9rwZlueqqAQG2bNnCiSeeyPPPP89f/vIXcnNzqxqOrKxsoKavpDbxeGKX5f3www95
8cUXad68OZ7nkZ2dzUMPPWRlqmNrrQTeBt4Azsa8MgDGAHOAOLFYR+BxIEUgcDux2Fb69GnFjTee
T07OScTjJ3P66f2ZP/9zWrZsuUuyBQIBGjSoDxyPeYU1IRBYwZAhQyqtv23btgpzURNIY16Zma3j
4kCMTp3a06jRdJLJA0mlelGjxnMMHz4U48LOweTkAyhi5syZjBp1F1u3/g9pPTNnNuTMM4dSXLzB
jrHR9pvZziyLQKCAY47pz+zZ01m//jtKSgLAzZit8r4FzuL99z+w7TO5+JoC9Zk9ezZbt27lzTff
ZMKECaxdu7b0ihYvXsy4ceOYNm3aLs2hn9WrV2Py/WXcvykgXC6/4M6oWbMOJp9haQmJRIxIJI7J
A2kIBpcSj8eRxNSpUxk3bhxLliwB4P/+714KC78lmexEItGCtm3zuOqqK3b7eirSokULzNaC7X9w
Xz8nMps9ZmGUtB6YxRG/teVXYzJmgnmSZmKe9gaYf52Z/12mYDI4gsmCeZg9Hgo8YI9PBJ6uRIYf
rKE7HA7HvsLGjRv16quvasKECVq0aJGaNt1Pkcj+1vqRr1CoUFdfbaIzza4ffxV8qlDoXHXv3n/n
A/gYOXK0PK+VTB63NxQIFOq5557bpbajRt1kLYndrVUmKeM2TalsB5B/C96wZdt8FqB21sqWq5NP
PlUvvPCCpk2bpmXLlmncuHGaNGmSZsyYoWAwR2Y7sjbKzs7TnDlzduv6Ro0apTI3c0qxWLVyKUIy
vP/++zbty/6CmYLXBLnWWhcX3C74VPBbQUKTJk3Spk2b9Nprr+mVV17RunXrVFJSomAwk4alt0w+
wrguvHCo4HrftS9UTk5NDRhwnIxrdbaMS/w3gk/leXcKEkom+ykWK9CLL75oLYFtZdzabwmqy/Ma
23merLJcfFHNnj1b7dt3UzK5v1KpPqpevYHmzp2rCRMmKB4vUCp1uGKx+jr77It3KxBo1qxZdi7v
tXNxiSCpMWNu3Xljy403jrHPwiuCWcrKOlBXXDFC119/g0zewt8JBis3t7bWrl2rM8+8ULFYA6VS
hyseLyjNF7hmzRq9/PLLev3116uMbt5dZs6caXeEuWWvWAL3NjFgKibF92dAkS2vYb+DsQJe7Wsz
AeiK+anxqa/8JOBBX50u9jgL85OvInvkBjkcDsevheXLl6tv36OVShWpRYtOmjp1qiSTUiWTE898
IgoEzpLZqmyATIRqbXleQo0atbN7seYI4orHa2nBggVat26djj/+TOXk1FS9eq01bNilqlGjiZLJ
GsrJqaNkskiHHnqcVq1apVWrVlkFzvQTDEYlScOHD7f9mjxvv/3tbyVJqVSBVfZiVgFJ2rap0rrG
rZuQSc+SY4+TMuu43pBxa2by1aFu3brppptustcWk+clVFDQ0O4PG7efmG/clJ2jzHHAjhNQJgdh
KDa+OF8AACAASURBVFRNK1eu9J3L1A0qEEipXbt25WQuKKhrFbJMkuKUPC9kk3+HbB+ZSOCg4vFC
eV7m+hPyvISuvfY6qzz4x8O2r+7ro5M8L1d5eTV8MqRkXMmZ7y2tMtLYN9cx31yGZJTMTM6+uC1H
o0ePkUm9k8nHmMlnmPTJEPGNFSwnRzJZTbm5dXztTb+BQG6F68ux3yOKx6uVPrPJZKEaNmxnXbxl
dSORPHucVYkMmee97J5GIplci/5nK6ZTTz1X1arVK5XN88KKRosUCGSe47ggX50799GSJUvsvGby
OkYFCYXDBSosrK9EopaSySIVFDT0yRG31/XrIICx7q3DWAAB1vjOe77v9wGn+s49AhyHsaP796Hp
CYyzxx9i9u/JMAdjO/fzk/1H63A4HD830um02rbtqqysq2SUuyeVTFbX4sWL7Qu5kYx16GOZ3RWq
y6QkudbWv8e+zP5hv18lY8E6WM2bd9CgQacoHD5ZsEAmIXJ1wRSZXSK6Cy5XdvbF6tq1nwKBhIxV
7jOZnSBqq1q1AvtCvNv2f4cgbhMF15HZ9/b3gvoyVrMDZRS/RYKxtm0dK+NEK8eRMrn+cgT9BPNk
UoFkFImo4HGZQJBq9tw8mbQop8goQ8fYvibal/UDMjnlYrZNNcH7MnsN91A4XGCVgtNk9tUdb+tm
drkYZ2U+w9Y70fZvrIAmb+EUqxQ8YOfiZjt2K9/1f2K/ZxJhD7d1n7Bj5drPWzLBKf3tXCRl1k0u
kEmQnZJJJbNI8JyV8UnbJikTlFJ2n4ySHbf3IvNcZJS6Iiv7F4JO9vt+Kp+f8UR73zL7Ky+UCdDJ
kclReLBMOp93rPzY/h+14420cgVl1nh+JLNLShOZdZQJmdQ+i2Ws1XEZ62Gevc+ZHJGLZfYQrmNl
eMXWrWfHe97OyXkyO8s0k1m796W9xuqCo2zdNva6XhdcKaMAZp7Zz2SsqQ1k/o1Vs/d6gcrS/bxh
5/vXowRmyMG4gw+ivBIIZYsXnBLocDgcPzKrVq1SKJQjf363cLi/srIy1p1nVOY6fMG+rAp99V8Q
9PTVSdsX6/vyvJQikZTKcqxdIOO+y9R9X0ah3KZgMGzHe913/q8yiksjX5nsizNsFQDZF+3jMoEc
EZV39R4po6Cc6ytboTIL5xxf+XW2bg/f9+t85+fIRBBHbB/+oI3D7XF7qwD83nd+pn2pB2S2dsuU
n2Ff8Kf4yjbZeot9ZUMF59i5a1NhLopkFLZ/+MpetgpHVOXz9vWRUZJG+srmySg5EZlt9SQT9Zsl
2Oqrd5zgb/a44n16xM5lXZWXrYmV4U++sndlno9/yCiCmV1aHpZR1s731V2tMovkp77yMXbeuvjK
0rZevozbP1P+T5lnNq/CXHSSUchuETyr/2fvu8Ojqrb23zN9zpT0kBBCICQhEEKHCEhHutJEERER
KyqIgFKky1UsqOi1oKJeROVaUKRcxa5YsOEVC1WQXkTpAZLM+/tjrZMzgfi7oni/795v1vPkycye
ffZee+0zs9d5V6sYOFSm67GCQ66g3BfnR/U5obzVo20Cp+5RA8rDTBwrJgdPpn3PkvIAUVVlPTyq
fSzlYcp6/9+XJ/AAgKUQhW43xAy8C2Lq3aN9tqOix2Y1ANu0vVol7dY11SEenSd7xJbT1KlTy1+3
a9cO7dq1+2OriVGMYhSj/1AyTRPkCdg/waU4fnwjgCcBDAPwQ1TvHwCUAiiGBAWkQLx7tmm7C/IT
fhzAHjidbpimH8eObQKQDAk22BA13ibIz/Q2OBwOlJVFtM2ijZBgiH0AjkACFg5DftYL9XNAggJ+
gMQGGpAjIFOv/QFyhm4/aV4XxDi1CUAtbd+gfa31hAH8sxJ+9+vrVG1fDyBB170LQFkl63RCXNw3
Q1zeGdVno743APyo/bYCyNDP10Fy8/khR+YxSKzlfgAHtb8lC+iaDQAlsI/YUgBbtD16Ty1ZGPo6
XcdzKg81o+QYp9cQp+5TmfJzCLLPRyD7VlKJLABgCoCrAYyB4DcddX3WHlj8uGHvU75ea423HbLX
e5Q3Sy4n37NlkHv2Z9g5IrdD9nc9RBXZov2cAHaqvEzlZb22W/eSof2tfI2bYHuibVAeNqvcSnQN
1DGj98mSvRuy79Hy/Bp2GMV/ByXDjvz1A3gfsut3wvb9G4dTA0M8kLtwI+zAkJUQiRs4NTDkYX09
ALHAkBjFKEYx+pc0ZcoMBgJ5BCbR7W5NyY9WSjFt+Sk5/q7T15cSuFFRn1sINGUwmE6/v62+r0EJ
RAhx0qRJnDdvPv3+dBrGLfR6u9PhCNLtHkorDyAwmKZZk3fddS+bN2+uc4ykIF9+JiYmar+6BCZR
/NPCFDNrGoGhFETNT0GRWmv7ROUjTJ8vRNvcOZ5iTqxG2x9sLIH+iv6ATmcCBWUarZ/3owRhhCj5
BAt0jPE6ZlBl0kj7WCbeixXRCbBDhw4UFC6JgsR1oeXfJv87a3syAQcdjkQC43T8BAr6OlBfN1RZ
5KosrGCYq3Sf4vW/ZQqfRDGThynIYYCCao3VNqusXFzUmqz6ubeU7yfQW6+xUMYbyvfJNq/n63z1
CIR49dVX6+dDdM9N7eNkRWSuL8UMGlQZT9C1Binm96DuwQDafnKm/ln5CX0qP7+u/1pKLeVs5b+m
8tZUx75Cx7pQx2ip662q/SdQfF+DBC7Stg7aJ43AOXQ6Ld/Q0ZTvhrW+NJVJO4op/mK63da9cYXK
zvL7K1LezlX5W76LvfUe+PORQONfd/nDVAjgbxCV3gGJv78LYq59HoLgbQZwAeRxAgAmQGL4SwHc
AOB1bW8C4CmIMrkMwAht9+q4jSCPIAN0zGgi+afLM0YxilGM/qNo6dKl+OSTldi6dQuef34Liovf
gFS3eA92LN4YyHP7CgQCvXD99VchNzcHAwcOxLPPPotVq77CZ599Cr8/gKFDh2Dw4MEAgBUrVuCN
N95EUlIievTogYULF+LIkSOIRCIADJx9dit07twZH3/8MVq2bFmBrzp16uD77zdAUEcr1m8/BCV5
EcDlAG6EVLBYCTnOWkNwg2S43b/g+ednYeXKlXjiiSdhGA6cd15PuN1uPPTQfIjX0RoIerUXjRod
w/vvv4+uXbtiy5ZtaNKkEdq0aYOHHpqLDRvyIcibAeAw/P7VCAb92Lt3r7b5AOQAKIbTuQ1lZXLW
mKaJlSvfQ2FhEeR4+gZAEIAXhrEJLldtlJQcgqCcBYiP34TFi5/H6NFj8PXXXyMQMDFo0CCsWbMW
y5d/ArIXBJWqDcN4Bjk5eVi//nsIwlUA4GXIkZoIQbv2Km8eWMerx+OG2+1B1arpGDp0KEaPHo36
9etj7dp1cDgMFBWdhcOHD+Pw4SP44QcbyfN6A/B6/QBKcfCgjNWkSRPUqpWD55//O2xEtDocju34
4YfV+Pjjj3H99dfjyJGjSE9PR6tWrfDCC4tw/PjbkOP8GJzOQuTkuGEYxPr161FWRtSpUxsDB14M
MoLZs+dg377dAAxUrZqG0tLj2LOnGFLlJQfAuwC64frrr0BWVhZuu02y0E2ceAuOHz+OCRMm6x6V
AnDA4aiCrKwANm2KgyCexwHEw+fbh3DYxIED+3H8+HE4HA5cdtllyMioBsMApk2bBgAwDANTpkxF
9+7d8MEHH+CBB/6KkpITaNu2HYqLj2LRoo8QiSRBkOEAgAPIzMxEaelB7Ny5VffAi969e2P79r1w
On2Ii3OjQYP6iIsLY/r0W3HoUAkEwZQpEaMzQv/TD90xilGMYlSBFi1axI4d+7BLl/P5zjvv/I/y
cvz4cbZo0YnBYDN6PG2iUJw8Atn0ePrRNJO5ZMmSMz63oENBRVua0kbK/BQErbeiJLUUNQlQglXO
UeSksb6PV8Qoj05nPH/44YcK81x33WgGAjUofmF+RXvqEwjxscce4+7du3nZZcPYqlV3jhs3mceO
HWOtWo0JLIlCrp5j/fqtaBhxBC7T+c4msIKCQgYp/pTvKk9WDViTgrTVIhDHYcOGaeWLfAoaGWLr
1h0r8Pvqq6/SNJMZDveiIHfxihyFmZ/fgKbZiRJochYlQGQxBWWrq30vpCC0QZVVIt3uRC5evLh8
jkgkwvvvf5CtW/dk376X8PvvvydJ7tixgxdddBnr1WtJtztM8d1bQdNsy+uuG0WSHDHiZgYCWfR6
u1GiXVvRNKtz0iRJmvzRRx+xe/cL2L59Ly5Y8HeS5IsvvkTTTGEweBEDgbqsUaOQLVt245AhV7FP
n4vZunVPzpo1m2VlZRwyZJhWotlN4EuaZjUOGDBAkbtoH8QEfvbZZ/zHP/7BTp36snPnfnz99de5
a9cuGkZIkbqPKSlywnzhhReYmVmbgUArOp216HKlcOzYW1hWVnbKvVlWVsbq1QsoQTByv02bNq3S
+3j//v2Mj0/X/V+re/AIgQ/p93fm4MEVE4SfOHGCkyZNZ6tW3Tl48NXcuXMnly5dqntd8G9BAv8v
0en8JsUoRjGK0Z9KL7/8Mk0zg+IoP5d+fwrff//9MzJ2cXEx586dy5kzZ55W5YaSkhIuWbKEKSk1
KWXLLGf5K5mQUJXr1q37w7xFIhGuWrWKb731Fo8ePcr9+/frYXk7bUf/gbRz/i0m8DdKIIqHEnQw
XF9DFcg79P03BOYReJOBQH/Onz+/fN5PP/2UpplFKXcmVSIkSGQ8gZFs2bI1s7Lq0u0eSWAR/f6e
7NnzAmZlFdCOiP2GQG1mZGRTzIplFDPkVh1zFCVy11JOPtV+SRSzZ3v9H2JhYSH9/oGUiNh5BL6k
y+UtV0QikQiDwSRK8MG3qhgMVTn00/cTKebiuZQAmWRVeHyUSNS/EXhHlcTndZwAu3XrXy6XSZOm
0zQbEVhIw7iDphnHkSNHMiEhQyPHF1HMwkN0TZsZDlfhF198oeXmrCCK1XS7A+X38Oeff07TTCbw
MIHnaJo1+NRT80iSa9as4RNPPMEaNfLp8Qwl8ISu51YCL9M0m3HMmAlMTc1WuVvynMGOHTvrffGj
tn1EwMfHHnuMPp9lOh9Iny+ZzzzzjPaNDhhqwFdffZUbNmxgIJBMw5imc57FESNuOuV+ve222yiK
9BwCMwk8SMBfqcJIkp999hmrV69DwzBoGBdHzbuXXm+wQt/+/QfT7+9CYBFdrpuYkZHLGTNmUB6E
SmJK4BmmP/bLFaMYxShGZ5DOOqsLJYLROiQeZN++l/zhcY8dO8aGDVvRNM+hyzWKfn8a580TZWjr
1q2cPn06hw0bxmXLlv1qkt74+GxVGizeXmUwWP0P8/bJJ59ojj9Qoi4dmkg5noLUWPM9pkpBPiWq
dK4e9jVpl/vaQSvnXCiURofDS0klQgIlDAYbc9myZeVzv/jii4qoRSNIiQR2EbiChYX1GQq1UsXu
SQI30un0sVWrLhSfNa/+FTE7uzYFjTxK8SOzSqaNo6QEiY4CTaD40hXSzjHYkNnZ2QwEzo3qu40e
T6B8Tw4fPqyR0xFKlG02bV+6EpVZtipZ1hh/ZzCYqfNZ5d8iOvc0WpGq3bufXy6XuLg0SgoXEphC
oDoN41xWRNsO69qPEniJXm+APXr0YCjUvYI8Xa4ELly4kCQ5dOi1qjRZn7/OunVblM+7cuVKBoN1
lb8HKMqr1XcLTTOBeXlNKEqotHs8l3DYsGvpdqfq/SE1lR0OL5s2baf7eTlFWU5kgwZnURTiw7Qf
aHJ533338eGHH6bfH62k7aDXGzrlOzFo0CBKmpj2FP+/DAJOHjp0iDt27OC8efP4/PPPn5L8e86c
OTTN/lHjb2AgkFj++eHDh+ly+RgdNR4KdWSDBg30Pvr3RAf/O8rGxShGMYpRjP5N9OKLL2L9eg+O
Hn0dpaWzUFy8FMOHj8aXX36JnJx6mDz5Pjz88E/o0WMYBg26EqzEV7pVq0IAEyHRqRsAjEezZnVP
6Xc69Le/PY2zzuqEgwdPAMiGZP4K4NZbH4L4a90Diag8AMkUdggSiXkhxD+xPyTi9TzI2Tgb4gN4
JyIRF+677x6YZlu4XKMRCHRAkyZp6NzZrjraoEEDlJR8CDvq92lIVGhvAAuQnV1TZXEFgDkAUlBW
lo+1a1cDWAXxtSsCsBo//HAE4mfXGUAbAN30mh0AHgQwSf8PhPicuSAZzn6E+OZlonPnzigt/RDA
VQAeA9AW553XC4YhLmCBQADVqtWCYcyBHalbkZzOkzOtAeJC5gLQFpJh7UKVYz1IqbyjmDx5zEnX
LAdwKcRdfynIITg1QjUCYDSAS3D8eBssXboHhw69p7IBgGdRWlqCvn0H48ILB1fC1+nTgw/OhGle
Drf7Bvj9/ZCW9hn+8pcZ8HickFoTdQD4Ubt2Xfz44zYAN+ma5wIYje3bd8Ph8ALooe0D4XD8goKC
gt/MQ0pKCsS/8k0AdwN4C4ATmzZtQp06jXHttYsxdOgc1K/fAgcOHCi/7vzzz0co9DlcrhsAPArT
PBdjx970L+dLTk4G8Ayiy9fF6MzQH36KjVGMYhSjM0UVzcGPnzFz8P3330+f75ooBOIInU4P69dv
pSiUhfocpseTWam5eMWKFbQrZEgk4xtvvPG7eSopKdFI3boUNO+Y8vCVIjrP0o7G9Ch641Ae9mjf
XcqLVXmhiMBOAu8zI6MuSfK9997jzJkzOW/ePJaUlJzCx4IFz9PvtyIwfRR/wIYEQrzmmmGsWjVH
0SQLORpO8c16mJLsuQklN2CQkgPxXkpiYxc7dTqP1arlKn8+2pUhZlAightSki9PIhDgddddx0Cg
AQU5vIzAZIbDVSrw+/3337NatTytyBKiRJcuItCfhhFi/fpnUUzNljm4CjMz85WHKRQT7jhKtLeH
Pl8in3322QpzdOlyLgXN/CslsrY6JQI7h2LefoU+Xyfm5jakx5PCinkQO2nFkgDFZ/MWSt7EEOfP
n/+r5mBS/OHq1Sui13s5f80cTJKrV6/mXXfdxYcffpgHDhzg/PnzKWbv8RRfylsJeFi7dnOVr8Xb
S6xXrxU7djyXLlcDAp3pcBQxO7sei4uLuWvXLiYkVKXDMZ3/P3Pw3Llz6XReEDVuCQ3DxRYtOtMw
HqKFtno8Q3jLLVMqXLtr1y6OHHkTL7jgMj7zzLOnoIy2OfgVut1iDv7mm280f6eXiJmDzyj91t+r
GMUoRjE6o7R161b27XsJGzZsy5Ejx/Lo0aMk/5zAkNWrV9M0UyiBCfvo8VzN9u17qp9ffNRhRno8
HSut0dur18WU5LfrKD5Zc9i5c7/fNH9xcTEfe+wxzp49W1NjuPVAc+v80SbZ91VRshIk/0xJreJg
dnYeg8EGFfgNhQo5ZcpUer3ZFBPsVno8rTlhwtTfxFskEuGWLVs0vUcuJYXHbQSCbNasGWvXbqg8
5quy51OeLLNqS1WqkirwBaRy+fLlvOqq4RT/xFUEPiNwLz2eNFWSmquylUO3uycvvPBC+nxXUCpv
vEZgKx0OJ0tLS0/heeHChQwGm6gimUmgiKZZnTfeOIoeTw1VvLrR683nFVdcTVFyx1PSlAwi0JLt
2rWr1I8tMTGTooxba7lIZfIggSALClpyypQZPHHiBL3edEoVFavvkwwErKTVV1F8B68kkMxRo0aV
B4Z06NC7PDAkmvbv389rrhnJVq26VxoYEolEeN99f2XTph3ZoUMvrly5klOnTqUEwdSi+P9JVZDh
w0fS621EcQnYSK+3AWfP/iv37t3LBg1a0jQzWbNmfX777bfl83/++efs2fMCtm7dg3fddW+l8lm3
bp0qs8sJ7KPLdQOLijqwZs2Guse2O8egQVeWX3fixAlOnDidjRq1Y48eF3Lt2rWnjH3w4EEWFbVj
IJDJ6tULyss2vvTSS0xKyoopgWeYftOPRIxiFKP/u7R161bOnDmTt946g2vWrDkjYx44cIBpadl0
OicReIM+Xx926/bbFKrfS4sXL2ZaWi36fGF27tyH+/btY/36RXpYP6QKzQq63fF84YUXeN55vXjO
OZ359NNPMxKJsFOn3pRgggQKMtacLVt2+9X59u3bx1mzZvG6665XpS6g//2qSDn1v1fH/IISNCE1
iEVxWKhKltRpbdy4qfqrvaL8LmQolMqDBw/yssuupMMRoGH42bp1p3LU79JLL2VmZhabNWvGPXv2
MBKJ8JFHHmHt2vnMzc1j1apZdDisWrtTVUlqpHxZNXALaaN+Hlas/NBdlQ8fxd8vQqmmEeDs2bPZ
r9/59HiqUtC9c+hw5LJLl16Mj6+qMjD0YHfx8ssv1/Et5djHnJxCFhcXc8KECWzTph2vuuoq7t69
W0v5BSml7gZR8gOadDqTaJqpNAw/ATeTkqpw8uTJ2reL8jiRgJ/Tp0/nBx98wMTERHo8PhYVFfHQ
oUMMhVIIvERBDu+j+NR5aOX0czrdrF+/PkkyJ6e+yqsdJZI7Xcv4+XVfA+X/J06cyFmzZjEpKYmh
UJiNGzdmp07n8I477mAoJNHfhmHwzTffJElu2LCBDRo0YPXqWezXrx8nTZrMs85qqWvJIFCPPl88
Z86cqTKD/olMd+/ezQ4dulAQZCc7dOjM+++/n4FAot5XbxK4gdWq1ebhw4fZvXuv8utdLg+HDx/B
mTNnsqioiG63l+FwmJ9++ikjkQgLChrq2jy0cj+mpdWkRJm3I9CRHk825817miUlJbzmmmuYmppO
pzODUhKvEw3DVc5zUVERSbJnzwvoctXWe64eg8FUfv7551FriymBZ5L+1B/dGMUoRv/ZtHHjRsbF
pdHtHkancxQDgeTyJ/M/QosWLWIo1DFKkThGl8vkgQMHzgDXv50yMwsoNVLrUZIlx7FJk+Z0OBIo
KNUkGkYtDhs2kn36XKgKxzECxwn0YNeuvSod96effmJqag06HBdQkvrGUcxyT9BOkNyXooA2oQTD
JKridSulJJtloh1Fceo3CQTYo0dvGkZQFahk+nxxvOOOO1TpuJySqNnkuHHjmJtbyOhk0Q5HHPv3
v4SC+E0kkK6H7SQ9zKOTRYcoNWDbU8zMk1QJspIrf0qpXWwlg7bS1zjocISYk9OAptlF50nTdY4h
EE+PJ17lfXKy6GoU5a8zxYyaQrc7xJycevr5GAIXMxBI4YsvvkgxgbagpDlpoNduUF5DtJNAW+hr
cdQ915K2ef18CpoZptdr0uMJUhS3CZSo44DyFqIk4J5EIF1NlB5dv53UW8rzhXhysuhGjRrx1GTR
XXSMVJVVBwIhvvzyy7QTclvJos+jpGQJ6vUDCASZlVVT+zbT+WoQMKOSU19HKVMYVP5voQTQzFJZ
1GWfPn10nQNoJwP3alsio5NFX3nllfp5J+U5VdfQiXay6CEE/LznnntYrVo+xc1gEiW9Ui4lebif
8rBzAwE/MzMztS1D+55NuzZygFKjOqYEnkn6t/7gxihGMfrPossuG0aHY3LUwfko27U79w+Pu2TJ
EoZCrWlHdh6iy+XnoUOHzgDXv51q1mxAMb9SFYSb6fUmsKKP3j46nQG2bNmFgg5ZsljKoqLOlY47
ZswYPUztKFBRUqpRlCfLlNqFouxZ7wfrAU3tOy9qjNEETPU3sw7LJgSm0ukMU5SdUgpK9yQNI5Gi
aG2hHQVaQEHs9hNYreMc1c/DFJTMmm8ABfksoF03dzdt/8NsVQq+JvAXGkYcS0tL+csvv3Dx4sUM
BpvpnFQefDrOy6oQeGlHEFtm5QSd07ov1mi/FFaMGr+a4XBY2y3F7heVyesU023vqP5/V1kcjGpr
qv2ja+C+rXIIUiKwo9FO0K4eQ0oKHEuRfTyq73hKdYxQ1HxHdG2gKOlW3/na1007iruMQEMahkGg
Y5QsvqCYziMUpM2qjzyY8kBQjTZCu5d2uqC7tW0xxXRu7cmPuv4Siq+joWNZvC2h3Jte2qbxCMW8
DUoeSou3DbqGKgSeixpjBB0Ok6JEWvfZAZVZASvWon5U53MR2K5tpRSlEbRdJmLRwTGKUYxi9G+h
n38+iEikZlRLTfzyy4Ff7f9bqX379khO/gUez3UAnoNpnof+/S9CMBj8w2N///33MM10GEYIDkci
xo4d+6t9b7ppGAyjD6Tsem24XA9ConKrQoouAUACHI4gsrLS4fEsh2WRcruXIz8/u3ys48ePo6io
LZzOBNx992wAeVEz1YRE+B7U14BErGZDIn4nQ6If34REBN8BiaCNln0OADdIJ6TW7C4A1wCYg7Iy
A1JzNqh/z4GMKK9PQCJ1r4TUzfVBqp20hkTl5kBqx0Yqme+gysalbSmQCGAnJBJ5KaQAVjYAN5xO
J+Lj43Hw4EEAWbCP06qWlHSOo5Co5xpRssjRz7NhF4TI0n4GgNcA5AKoD+AIiouPKT8+7RsPiVgt
gVRZjZZ/MmQ/zwXwHIDrIVVGHDqmRTUh0dGlJ8nCGitL126tyYDIOLpvLeUhHlJ5BZCo4qSoz6Pn
OwqRfaa2OQBYUdm1omRh3UPWfWN9D3P0fwak7i50Lksu2QCehRQT2wZgqq4xQ+cdCuAXXVftk3jD
SbIwYMsrep+qw64NXPEeikSckH3ya1sYsh/HKpGFoXykaZsT9j2Sgxidefq3PnXHKEYx+s+iZ555
jqaZS3HUX0PTbM7bbrvrjIy9b98+XnfdKHbt2p+3335XpZGr/4rKyso4Y8YMhsOp9HhC7NHjArpc
iRQUa50iQH4uWLCg0usbNz6bYvb9lsBbBOJZWNhUEYnHKMEZk5iRkcc9e/YwN7chQ6EmDIWas2bN
etyzZw9JyW/WsGFzRS1WKcIST0EZNymiU51iFu2jKMzrFMSpoyIltSnm4uu1Xm9A0ZZ1FGf7NAIh
GkatKPSEBLKZmJhMQan2UFCnzvR4rDrD7RQFGkfxmbMiV1+lVHDoRhu56qz8vkfbHG1SEixvpZhj
QxQTbL7K7Z8EarCgoAF37NhBktyyZQuDwRQCL+h111BMlRspJj6rtu4gCkq4ROepr/8Xa/tgc6/I
SgAAIABJREFUBoNV1fzdlJKY+h0CCezSpYv2fUj36dYomVl1c98msJmCuAYppu1zKSZWyx8zrGNu
JtBV+4UVefqR4jcXoiBlfr2nthK4XtvDtBNnf0ExZVo1fe9U3mYrr4au/VPd12YUX8YwxSy6leIH
6medOnV0jNdUFhcoT0uUxzcJfEBBGF06/hM63wQCIbrdVs3jqpSgqNWU+32M7kkGBeX0ay6+BEqV
lx8o92VQ1zhAefgHgQDdbrfO94ryfLmuoSXFdWA9gZUEUpmfn6/794Dydhvlu9CWgl5+qbIrJOCj
359KMQ9vpbhqWK4GIcp3NGYOPpP0+3/BYxSjGP2foHvvvZ+pqdlMSqrOsWMn/WpVgH83HT9+XKN7
QxSzYCLFn8rBir5f/diyZctKx3A4ElkxCvQ2FhY2YbdufehwJNAwAqxTpxm3bNlCUqJ833777fLK
HqSkYAmFUvVADVFSkzgoJuUQ7bQyTlZMMROiKFekmGfTCXxHIEKn08tvvvlG+we0r4tNmrSm15tM
u8LHL3S54tmlSx+d11rHBxQl1EM7tQvpcrVnMBik+IhZfXdRlCGTotj59UBvRlFaPBQfrjQ9qLtT
TIrn0Dad+mia2fR64zly5FhGIhF++OGHzM1tTLfbKm1XSw/9QfR4Uvjuu+/SMBJ03jDbtWvH+vVb
quIiaW8SEjK5efNmVqmSx4pRp3fxvPP60VbiLJ7ddLvDGrRgtQUYH5+pe5KpYycTiGN8fBLFrB1W
OYcJeGkYlsnbaiui01mLDkdzigk+jUBvOhxeduvWm1bKILnGQ78/SeUWp3zEEQAfeeQRJiSkab8g
RZkuppj9LaU7zJSUFJLkhRdeqPObNIx4BoMp9PutoBPhrXPnLly2bBkBnCQLcNOmTXS7EyhpeyzZ
faJzxVEU4TB79uxJkszOzomSRYgej6X82vsEpGuZulpRPKfo/FYaIJFFUpKk91m2bBn9/jQCJn2+
VFapkk2XK0nvsTiVR0MWFLTkN998w7g4a5/imJWVp/dsHwJ1dJ4/l2Lm4BjFKEYxUho5cjh2796I
n376ETNnTofD8T/zE/n6669jwoQJWLRoEQBg0KDB2Ls3BZIseTeAiyGJh50AdupVBLAN+/fvr3RM
p9MFMYVatAXx8SEsW7YQZWU/IxI5jO+++xSZmWKq27dvH55++mnMmzcP11wzDJmZBWjbtjMOHYqD
FLf3AhgJMY3tB9AIknjZpZ/9CKczgosv7gOXywRwic4bBzGN7QawGh6PD+PHT4eY9zyQYykeffv2
wJAhFyMQaAW3exQCgVa46qqhqFMnFy7X6wCGQ0zEC+BwWKZBO6Gy0wn4fD5IomSLtil/Doj5t0D5
OQCACIfPgSTI3glgAoCfIWa7+ZAk0iUAbsHRoxtx/PhGzJnzCiZPnoxQKIRnn52DXr26wOFoDUmw
vRXAhahVKxtt2rTBNdcMQFJSELVrZ2D//hJs3LgXJSVe5ScPv/zyEx599FGkpCQD+BDAIgAb4HRu
R0JCHAKBqiqzHQC2wusNYfPm7/HNN6sQiRzBypVvYNGiZzFv3oMQc+R7ENPocgBNUb16BlyuFrrW
wwCWwOMJwe8PqewnAOgL4GcYxiF4vaUAPlVZPAyHw0BpKeFw9AbwCIA58Hha4/zzreTdJ2Cbh72I
i4vDhx++jYED++n3aDnEbHsBTDMe//znxyAPYM+ePTh06BA++eRr5a8ffL4A7rrrLzh6dBcefXQ2
CgvroVWrJnjggfs1IXMCxJx7PiRptB8+nw/XX38lnM7oe3w7GjSoD3I/yGKQB7B48WIAwMaN60Ee
AHkY5EEcP34QoVAKgA8AHAFwAH5/Y0QiEb1f9mj7azAMPyKRoyAP6d9B/PTTLgBAt27dcPToTpBH
UFy8G7t2bcSgQf3hcJyr35ODAEYgKSkRBQUF2L9/C8gjIPdj8+a1cLvdAPYC+AYxOrP0Zz+sxyhG
MYrRH6aBAwfTNm3GsXPn8xgOp1OS+VoIxypFFZyK7txGcfpPY+/evSsd99prr9Vxp1BMWuav1hVe
uXKl9rWSKVumx6CiIskUs99kipN8D9qO838nEKbHk6FITWsKcngWxZn/VQIBmuYF9PtT+cwzz2ne
vgDFXFiPQJAZGdmMRCJcvHgx77zzTi5ZsoSRSISvvfaajjtNUZ+wJoAO6RwvUaJXA3z88cd13Iso
JtQkijkxSOAe2kEyDQmAfn8CxfRYSuBuulwJug8h7VNIOyqXBG6kx5NHpzORbndVhkJdCQTocHSj
YUylaaZy6dKlrF07X5GjFhQUNFn3rBrt2rsLCQQ4cOAQRaM6EoijaSZyy5Yt7Nq1H02zHYHbGQg0
45Ah15CUPIJDhgxjIFCT4XB3+nxW5HW87ktVAgH+7W9/o8eTQDFLTycQz1tvnaHomRXAQwK9Wa1a
Nh2OeIpp+TYCWZorL5F2cBEJPMXc3Aa6tm+0bS2tlDSBQDIlRUpDSqLw22mabdmjR/8KiZMfeeQR
OhzZFBeDbgSSGAgkcvjwESqrv1KieE2OGGG1Zej6kgm4+dVXX3HLli1MSKhKl+s6ApNpmilcvnz5
b/7u9ezZlxL9+xcC/el0hjl+/Hja0c8X0Yq+Pn78+G8ed+3atQyFUul03kjDuIWmmcyPPvqo0r5N
mjShmJAbETFz8Bml37xhMYpRjGL0P0EbNmzQA3W9HqjbVWFxUkySVuTqVIoSGKCkl7hJlZx03n33
3ZWOXVTUiZJqYxyBafR6O/Kee+6ttG9cXAYlzYal2I3UubwUXyi7nqsobrdGvd9IIEiHI452hPEx
SoSkwSpVsjlr1izOnTuXq1evJklVWKwxIgQuoGEEK+WtsLA5pQqHNd8L9PnSKSbJayl+cJcTqML8
/Hy+9957TEqS9DKG4aT4wwX0vzXGdAIG7733XiYlZdIwHMzLa8xVq1bRMOJUbhZvV1J89o6ocjON
ohhb0bEf0+0O8aabxvGTTz5hJBKhKK15upcBiom1LiW1iMVDKQGDXm8qJTKZBL6j1xvmoUOHWFJS
wjlz5nDkyDGcN29euRL15ptvMhCoTeAQ7chYD8X/jJRk18lMTU2l32/t1VgC41lQcJbytj2Kj+FM
T0+n+P7dq/fW32ilFZKI34jy20vNyTWirieBfKalVdU11tC9T2diYgYfffTRUxJiX3rppRQF24pS
f4VAkIZh+Zpa4w5Tc2kCJSqYFOXTy9dff52k5PqcOnUab755/GmneJKcgk9SFM476Pf3Yk5ODsW3
cynFDeE9Aq7T9uv94YcfOGnSFI4bdwu//vrrX+1XrVo1yoPQc0RMCTyjdFobFqMYxShGfzYVFxfz
hRde4CuvvMKSkhK+9NJLFHQo+kAtoKAd9Si+dw0pFRPiOHHiRNpBBnEsLGzxq3OlpeVS/PBsX7Nr
rx1JknzggQfYu3dvLl26lG+++SYdjmRWTBGzhLavVDNWrBpxhSo1myg5BS9WZcdNG+UigRvYtWvX
SnmTsT+g+Cx+R+BRut3JlfatWjWf4uz/EMWZ/jnly0U7JQgJ9Cz3NyPJzz77jOFwQ/0sTFuRPKgK
iMGff/6ZJCsoKYaRrOv/mhJssED3I4mibP6NFVPkROhy+Xnw4EGS5NGjRymK319UeVqv11elBE7s
ooWqAUHGxUXnlCRNsxpffvllbtmyhatXr+ZTTz3FdevWlfM3d+5cBgKDKUEVt1CCOAIn3UPt6PV6
KSiw1baFcXHpulc9CHxPQWnDTEtLoyCRVt/jtJXAXL0Ha+u9GaQ8HFxJyTN4BQEfExJSKEjiCV33
TQwGMyrd05tuuomCGFrzHaRheHSf/hnVPpFer5+C+EavL4ELFy781Xv/t5LHE6CtXJI+3+XMzs6m
PFhYcx0h4PzT8nxmZWXRrgwTUwLPJP0pGxajGMUoRr+Hnn76aTocYT1YkxgMpmvQg5X/jQQ+UoXh
ZT0Qk/VwEKd4UtDD+++/n8uWLfv/znfeeRfR7b5eFaWfaZqNOHz4cLrdfto54DyUoAIXxQxaTEFn
ulCUuiBFEU2jlAl7jlaAgXzuJBBP00ymaaZRELYIBWlK45133nkKX0eOHGEwmExBA7N1fVV47rnn
8cSJE7z77lns128gZ82axY0bN2pJvOoUxdFCQy1lJouiSK4lEM/BgweXz/PLL7/oPO/QNpdm6/8A
c3JyK5WblFVLoq34JTE5OYPBYBJt5TBF5ySBJ5iRkVuO1B07dkxlejxKkRisB7wV3FCNgMmJEyfS
NJMIfK797iBgMhxuqCZzvyphfo4fL7V1v/zyS7pc8RTEbSolKtikncNuNYEQGzZsyECgDiWqOkKX
axzbtevJ1NSaKs8MlYdPlbIAJe/exxRXg5D2609B594l0JD5+QU6X3eKgtyLQIAFBc0JzIla80om
JWVXKuO3336bPl8mJaI2QsP4Cxs0aKXRsw11vucIBNmqVSuVww2UqN9hBHy/K+9maWkpn3/+ec6e
PZuffvopBw++Wmv5fkTgMQaDKZw9e7bOd7/KohsdjniS5AcffMCrrx7BkSNv4oYNG057/sqoRYsW
uhfj9R6J0ZmiM7JBMYpRjGL0R+m55xZoguNZFPNaVQrSV0BBdKqowuGjmKHu08P9GC1UJRSqelpz
/vTTT2zU6Gx6vYl0ufx0ueIoPl6XU/ydClSZ8uqhl007LUgt2tG79fRA7EYgzKFDh9KOXJUIytzc
Qt5wwyjaUaRuut3x5UibRSdOnGCjRmfT4cjRQz1C4AQNoyNnzLidTZq0pG0+DTAUqqqKDikJeatS
lNFkisI5RRUSHwE/v/nmG5aWlvL111/nggUL+Oyzz2qZtBDFFFtIMW93YKtWrSqVW9WqtWgjh1MI
hJiXV8gVK1YwPj6dfn8Vut1Bulwm/f5UhkJpNM0EejwBXnDBEB48eFB5eoc2qlabLpeLa9as4Vtv
vcV7772X27ZtI0m+9NJC+v3x9PlSaRhWehsrsrkaJeL1UwI+bt++nWVlZZoKZxNtc7yLljItvGdx
woQJHDduMt1ukz5fMuvWbcYdO3ZwxYoVUQ8jHjZo0Jwk2a1bd9quCHE8//wLaftTmpQHhqD66MXR
Lr9Xn0AS27ZtT4+nY/k963SOYJ8+g371/rzttrvo8QTo86WwZs163LRpEz/55BOdL55AmMnJ1fjK
K69QHgC6UFKx1CcQLJffyfTWW2/R602hlMCL52OPPUZSFMBOnc5jMHgWvd5raZrpnDPnMY4aNZ55
ec3YqlVXfvHFFzxw4IDeT/H6F2TLlm24ZMkSmmYVAnfSMMYxFErl+vXrT+s7WRkJup9K8R+NKYFn
kv7w5sQoRjGK0e+lo0ePcuvWrSwpKWGNGvUped0slOQ6SkoIy1x3Qg96PyWP2dU8NTAk/rR5ePfd
d3nppVfQ70/UsS2/uGKKz9rzFEQvgRKo8BPFPLZUD0Av7ZQtZQwGG7Bu3QJKSotvKVU4XqTDkaB1
f1dR8sntpt9/AR966KEK/LzxxhsMBhtTfOw+iVrf42zfvqfyuELb3lflbW1Uv1SKMvpoVNu9qpSk
c9q0aWzfvicDgfoMBnszEEjmW2+9pYrFegI7KObgW1i9ek3u3LmTAwdewWbNzuGoUeNZXFyspvHH
osafRbdbzMwnTpzg1q1beezYMR49epRPPvkkfb4aFETsNXq953Lo0Gv1ME9WORUQqM1gUHweI5EI
d+7cyf3795fL5dixY1y7di1dLl/UvKQEJszS+yODTz31FPfu3UuHw03bX/SQyq0GRZHPIxDm6NGj
WVJSwu3bt3PVqlXl6Y+aN+9Ap9NCbLfQ76/J22+/XRW913W8W+jxJLFZs06UFC/vE/iKhjGDNWvm
UhT1RykpeqSWcvfu3dm1a1/6/ekMBGoxN7chV61axeLiYpaWlnLbtm08cuQISfLQoUP84osvuH37
9nLFliQvueQqejz9dL43aZrV2atXL12XZfo/QMDLlStXkiTXrFlTbi4vLi7WCjN3K28vETD53Xff
cenSpQwGG0XJ7Xt6vUHu3LmzQtCKlKOzcjR+RjGdmywsbEXxXbT2ZhQvu+xqRiKR8j2NNhlHIhF+
9913XL9+fYXxTyYJ4Oqo64opgWeSTvsHM0YxilGMzgTNmzefPl+Yfn8VpqRUZ3JyDYoZ0TpAplBQ
uALaue5mEahCp9OqV9uSNhI4hg5HwmnxMGXKFNo1Uk39/z5F+QxQTFCPqgIRInAhxfm/jMCltFCQ
in53TXScWrTNxUk0jADd7iBtfzfS4xnGWbNmVeBp/vz59PnaUPwIm1KUzyoUfzM3pcRXtBKUTFtR
tpDAehSF1eozn+Kb1pMdOnSg210UddC/yqpVa+t6q1CQUMljWL16FjMza9PtvonAMrrdTeh2xytP
0Yf90wyHq1cq4/PPt6JHw+XySErK0vnupSiHLxOoxvT0dO7du5cNG7ai15tItzvA664bVa4gFBcX
a95BCwmcR0GkUlUOHno8CXS7A6xWrQ49nqspCZ9fjNpjq96vmy5XmD5fIp1OH93uRObmNuSOHTvo
98dTFP1Xda1JdDqtvH62nyPgYV5eY4pPqJVfrxVr1MilmImj9ymX/fv35+DBVynqbNLpDNHvT6PX
G2J8fBr9/ir0eILs0sWqPSy+hVdfPbxcnqmp2RSl/ycKGt6ZDRo0opiIrbnKCITo9YY0r6CPgI+p
qdkaSZ54Em9FnDFjBp966ikGgwO1rUTvcS89nni2adONhw8fJkkWFBRQ6iNb1x8l4GRmZj3KA0qE
wAgCfjocYdav34J16zalz5dEtzvAkSPHcvfu3UxIqE4LoU5Pz/1V8/X06dNp162OKYFnkk7rBzNG
MYpRjM4ErV27ln5/Cu3asc/S70+m39+Cgva9TCBIvz+JvXoN0IhISb5cv34Rd+3axXr1CvXwz6Ao
bVXodieeFh9y0HahRJ7+k2JuDlIiffdTooyr6eHjpvjX1aQoeFk6f5Di+L+KUiEig+I0n60HdYQS
SRynlUC6UJDAZ+h0hrh27dpyfnbv3s2UlOoU5bIdRcndQamoYDnF+1nRzOml0xmnSoeloJnK93uU
Kgs1aZmFxX8sun7tPq1HHKbUJ46oAlSLSUnJDIdba793dG1f6AEfPX4qL7lkcKUyFtTpEUoEdryO
YZlOwxSFVZTpNm3a8NxzB9DtHk7LTzMQaMSnn36aJDl27CR6PFbFkQKVhYWW/kP34jCBPTTNPDZt
2pbBYBXa5toFtH0CgxSzaQ1aPoHAGDZp0kYVrQf1flip1yzTMQ5Eyd7Nhg1bEOhLUZoOE2jOpk2L
9J7Zp333EwizR48eNM2WlOCgTArKTMrDj5VmZz1FUb1ZedpDw6jBV155hSSZn9+MEq1bk5LaZgRF
kTL1/vuKgpIHVdbNKQ9KxQTOYaNGLVT2O2grcKl8+umnuW7dOk178y7F97KVrukEvd6BvOqqESTJ
vLw8vTete2gHAZembbJqAjfSdZfRMK6gYTTQ9fzEQKA+MzOtCOMjFBS3L9u27VLpPZSbm6syWUnE
lMAzSqf1gxmjGMUoRr+Xjh8/Xm7Sev755xkO92E0GuHxxPHGG8cyK6s+q1evxylTprCkpISRSIRr
167lggUL+Nlnn5WPEQymU/zw1lAUsJW0zMErVqzg7bffzieeeKI8d9muXbs4YsRo9us3mE89NU/T
lIRVIbD4uIRAm6j3ET3ML9bDx6StBEpQggQnXEpR+rL0EG/BiilbNuqhPIQSxVtI4CyGQqkVZDRh
wiS63ddSkB6rhJc1xhw9CKtQlM8ulOCLVCYnZ+nBO0j5ctKuCpGsSkIi3e6z2LZtWwrCulnXN05T
vpycImYag8E4hkIttd8tlByIpKQ5OYeiwBVSfDPFlFtWVsYHHniQffsO5o033qy8LKUgmZZS9FeV
R56uM4FAEzZt2pRVquTw1yK2W7bsRkHnDhB4mKLgRCNa0ddO5sSJk/jAAw/QMDry1OjgjhR/vslR
bVvocIRUcQ1TUN3oa1L1r5BAkOeffxGDwUxWjAx/ihkZ+bo3tSlKWl0CVdi2bReKQrxdx4keuyfl
4Yc699aozyaxV68+jEQifOedd+hyBSh+n9bn51NyVvakKGGX6N43piib07XfywyHa7Bdu64Un9Jr
CeQxM7NO+fdq2bJlTE6uzooVbUjgXdarJz6i9erV0/UNpSjLhQTc6tM7goJG3xd17T91r633f6HT
mUTg6ai2d5iQULPS3w6fz6frHUnElMAzSmfyNz5GMYpRjE6hxYsXqynNIOBmmzYdeNFFQ2jX1w0T
SKHXGzytPGPVqtWkIG6WKfZuOhyJfOyxuTTNDLpcYxgIdGJeXiNFN6zoVyuJsvX+haiDqLMemlbU
6laK4ncpRbGrpvxapepC9PnCFCTnc/38Z0p6lMYEBlIiQ4cQCNPl6khguCoH9ZieXovbt29nvXpN
aZtME1VpiGdFv77htMp8CRq3RP+H2LVrT1UEvqAowxdSFFJLkXmcwFAaRhzHjRtHt7sW7dJjdZiZ
ma/zPU7bFNiCTZs2ZWZmHiU/Xi5F6Tuu63yKUifWQVE0g9y1axerVaura2hEt7u38jyMFdHHAxQF
LIfiWziMgMkuXbqwqKgTDcPy9Syl39+Ds2bdwyeeeIppaXVoGPVV3uuVZwvRWkdRLH+mKOBBDSJx
KL8n5wlM0nuhFW3T+FN0OBL03nhN++zUz76iYQTpcAwm8Dg9nsa85pobGAhkUBRk66HhItaoUZcu
V4iC2N1N4Ek6nWGOHDmKXu+FFFQujnbJwn0UxelLir9hgsrX2ovWdDpTOWPGTEYiETZrdjbFNcKS
5yyVhZXKZbWu9y0Kyp1AiTK+lnl5jUiSd999N3v27Mmbb7650lKQo0ePo9c7hFZeTKdzCnv1GkiS
vOSSS1Sm4yjK2S0EfIyPr0FgJgWR7E37uzmLtrm6lH5/Z/WPvYR23s3xrFu3WaXf9bi4OL2XxxD/
JUpgJoB3AHwLqYMyQtunQmr4rNK/blHXjAewHsAaAJ2j2psAWK2fzY5q9wL4u7Z/AiCrEj5+x096
jGIUoxj9Nvr735/Xg/kCVSSk8oHkmbMcy78jcAUNI+60xv7iC1GAxFeoJQGT06dPp2nG00aDynRe
N0XpWUBJpNuTdpSnSUmr0ZN2XdlCitJVjVZ6EYcjlYLCvUcxWeexbt2GfOaZ5+j3JzMc7k6XK5Eu
VxX6fI11vjsp1UKq00590kQP6Rfp8cQzNTVT26sTuIyCBvWgXZf1KpWf5Q8VoiiRowjk0e9P4dy5
c7U9nYJIWgmYXbTRtwjd7hZ84YUX2L37+QwE8hgOd2QolMpPPvmEBQVNdc5zKOb1eD755JNqar5G
+WqvfKZSlODbKT6SHxAwmZVVh6LsfUdRfmrQ5cqgXX/YSt78lPK4hbYi04VNmjThd999x8TEDIbD
nRgM1mdRUQfeeecsmma+yvIuAkEGAo0YH59Bvz+N4XAPer1J9Pni6fHUVrlZScADFGXTpa/bUpTU
IJ3OfIqCVIeCrMazefO2DIUyKcmjb6cgZq3pdAbo9bagrbT8TKfTq+b7OAqC3IRAAps0aa4KaAKB
rjpfgFu2bGH9+i0YCDSi11uXQIDBYFd6vel0ueIYF9edplmDaWk1dQ1nK28dCPyDLleQ99wzm15v
BsXU+zmBLRpxbM3XjlY9ZzGzkmLyzqPLFc81a9b8pu/XgQMHmJ/fhKFQM4bDbZmeXqu8hvacOXP0
PqhJ6zsNOPnmm2/SMIIUH8lEAjkMhdrT4bD8G9tpW1V++OGHmjy9HgHxNY3O9WjRiRMn6HR6KWg8
9Tvwn09pABrq6yCAtQDqAJgCYFQl/esC+ApSzLAGpAijoZ99CqC5vl4GoKu+vhbAQ/r6QgALKhn3
tH50YxSjGMXot1IkEqFpJtBGX45TFLIL9EBuG6UAlBLwctWqVac1x/fff8/27duzqKiIL774IktK
SuhwuKIOP0bNNziqzUKiLF+qAC2TKcrNviazsvI4fPhorly5UhWD6IjY5fT7JdHvxo0buWjRIn71
1Vf88ssvWbduPVZEvj6nIDUf6UF9jMBeOp2dVUFqRFE8LQXjhPa/jxI88SDFRyvMO+64g1lZ+XS7
/axZsy7XrFnDunWbUFDRUh3jRppmOh0OL+2KE2QweB4XLFjASCTCFStW8NVXX+WuXbtIkgkJ1Wgj
jO8RmMwWLVpREByLr2IKSlZD+Y7QXmM3ejyJJ7W1oNNZlaJEVtG1Wzn0HKyYOPsC1q1blyS5b98+
LlmyhO+88w5LSko0cOWz8r6GMZoDB17MI0eOcPXq1XzllVe4bt067tmzh4mJWZSybtFm9CqUZMrv
UXLNzScQYH5+Pq+/fhSdTg9dLj8LCppx9+7dfPXVVylKtY+AkykpVXn//fczFOoRNe4xulw+ejxV
KP6C/6BEgj+qiFgGJdn0KxTf12zOnTuXffsOpNsdotebyLy8Bpw/fz5XrVrFLVu2cNGiRfz0009Z
VlbGli1bUpRXk7bvqZ8+X6reR4/rPsQxO7uAPl9dykONW/fmLspD0HP0+RI5depU7t2797S+X8eO
HeMbb7zBf/zjH+WJvkkrOrgnBXVeRHFfcPLYsWPcvHkzp02bxjvuuIPLli3jfffdx0Agh+J3uYTA
W/T7M7h27Vru3LmTM2bM4MyZM7lv375Kefj22291Pdfzv0kJPJleAdAJogSOruTz8QDGRr1/DcBZ
ANIBfB/VPgBSxdrqU6SvXZDqyyfTad0QMYpRjP5zae/evezSpR/D4TTm5DTiihUrzvgcfr8VRWtS
zHEnV6wYTEE2XNpvBEU5/IGAg9OmTePVVw9nUlJ1JiVlsbCwBePi0pmRkcf8/KYMh6uwQYOz+d13
37GsrIwZGTV0nADd7gSmpKRRELerKUEZy5UXJ4FOUXysUWXGU369/E/SvgUUJcyky5UuGUqXAAAg
AElEQVSsCZVNCqpTg2Jq7U8gzI4dO+qcJqVmb6KWDRsVNd+X2ufzKPmEKCZAP+0ciGmUKN5drKig
WqilX9stlDCON998M7OyCgk8ETXfCloJnwVVXEFRSsPl19l5DH2qODmjZBEmAF1HdNTpMZ3focrG
mqh2K9Kzsa6nkHZARljX2pyiCNbVwzwu6nMrUbRZ/j8UytCSdXEUBdXiozcNw0JWrb3z0+9PoGEk
UKKGrb5LdDzLT7LiPSrzBihob1DHNaP6mFF8haJeJ0W1tdX11aQgglYgkb1PIhtrL33lc9rvo2Xh
r2TuOIqrwtmU/JHW+m7ioEFWou3o+UAAdDrDNIwQgZCidAG63eEKfZs2bcrGjdtE3RMBGkYc69Zt
rpHSFg9BmmYqfb6Ek/ZL7qdgMFVrS8s9lJRUlYFAiq4nmjcPExOzaBhe2lHQZqUVRzZt2qTX+yn3
+H+fElgDwI8QRHAKgM0A/glgLoB47fMAgIujrnkcQD+IKfiNqPbWABbr69UAqkZ9tgFA4klzn/FD
IEYxitH/TjrrrI5aHWMrgZcYDKbwxx9/PGPjJyQk6g/6W5QAg3P1/TSKIvhl1KHxOiVYoo3+hQl0
pss1VA+QZylmpvMpEZNZlBJj22gYDzE5OVPTYqRQ0IgNFJ+9IMU0nKtjVqet7AUoOeXu1APbF3WA
b6SgK9FI4GMUP6rJFIXKrYf81xRkJ4+2Mvu2rrmX8mDooXUfJVVLdtR8/ShpS5Yr/0/qfC/p3gzT
w95PQQjXUZTHNOXNSq2yjWJyDVAUnHYUhdqq5RtHQZCaUBBYK0p3GyVQII5iXg1p/xDFJ3ITBTGz
FIkgRSm+lqJId6CtwFahmLBzKahVTUri6m06VxzF/L5I+Zypn/1V+RlEMQkvVRkUqgwuppilB1NM
8q0owTgLKX5hVlR3G8oDxAqVpU/XUJVSyeIL5c0yo4+mJAK31vmB7nmC7l2e7m2OvrcidScr34/q
PN9SkCnLPzSkY3SgmOQt0/Odet1sfb9S+aqq+95M15Wue7CVYnaPp6CV8RTfxC0URDtM8b+rorKQ
yh0ul0vl96TON0F5gq7/G4oLQq7ufYgSSLSNUvvXVLmkqyx/oHwvLGVxgMqiOgVl7avXvKI8X659
b9S9Wk9xmUilXbLvAZ1vpvYdQUFLV1EeJgppGOYpvysSwGV9J8/S1/89FATwOYDe+j4VYuY1AMyA
KIJATAmMUYxi9Afo6NGj6ldTSts0eGF56o3fS6tXr+YDDzzA+fPn64/zaNoIxTaKAhaiIEdeirIy
NarP13ogDIlqe5ZAa9pO/t/x5Nx44XBzRTXujWr/jLayFl2O7Hzapl9LEUtXfuNYMTfhTOWxUVRb
hIL6JFCUJqt9kbaPiWrbShu1K9K54mgHJngYXYdVDsIBrFiHtVT5tWoHW+0P63g1KshC3gcoOQXT
KYqYhWS6dLx39HCOXlMKxYxp9QlSlGmrz0RdxxgCz1AQ3GwK6pdEYDFFyXqEwE0UxTWLFc3BjSkK
8rf6udX+C+WeOBLVNljbLLOzWz93UJDDiRRUs5CCslahnWKIlGCQ6JQz2RTfyQxaSKHwVpM2gkmK
UtSKorAs0jY/JeDkPV1r9JraEHiT8mDjoSh+Jyj3XG8C5+n10eslRQGz0No7KZGuH+o+OGkHp5AS
UHQRJWG61fazyqS2ztGDEgBUSLmXi07aXwtRjM4X+SLlYSnhpDU1oSiZf4lq+1bHcFHcJ1bTjvD1
Ub5XVt8Tuob6rJjg/H6Kwlv7JFlYvrZPRrW9QaDyFE8Vf1v+fCXQ9WdPoOQG8BKA+RBzMADsifr8
cdgK3XZIMIlF1SABJNv19cnt1jXVAeyArCkOwM8nMzF16tTy1+3atUO7du1+x1JiFKMY/W8mj8cD
h8OBsjLrZyECYDPi4uJ+95ivvvoqBgy4AmQfOJ1rIM+uG6J6bALg0fZXdd4nAWw9qU8YQGFUWwGA
fdq+CUAVyE/XAcjPWDGKi7eAPFHJfADghBhXciHnxWYAgyCeMw4AH0Li8Zorb5ui5l8PoAzATgDH
IfF1vwA4rK9/iJrvBwClek00D04d41uI63cWgJchRp9t2idZedsEIABgI2RPHNrHiBrvbH1t9fkF
wBG97rDKpgxAewBXAzgB4GMAY3SOyyGxgQej1rRfr60aNadD56ul81m4wV36vi2AHMieRvTzHADt
IN5GJoBdOnaCzrVN+4eUz5907W792wwgW/ts0DZoewDAFm2LU1neCuBBAK/rfJsgLvPWfhQDSNG5
blZ5tAXwBYASALt1rE0AakfJOFOvt/bXDfveO6IyT9Q1bdcxdqgchkXxfSmAibof+wEc0rUf0bWn
Rc2Zqv9dKvutAGrC+m4CjZQfwr5PLb6WQ75PJ3QPoHyVaJ99AI7p2Cffs0kAjqqMknSMHQAawP4O
WTwaUXMm6LgHIfsVzdsWXUOC9rU80TZq372QvfHr9ftVnid/f0/V79599119tQSCm/13kAFgHoB7
T2pPj3p9I4Bn9bUVGOKB3CUbYf9KrIRI3MCpgSEP6+sBiAWGxChG/6fpzjvvoWnWJDCJptmVzZq1
44kTJ37XWMuXL6cgR+9HIQ/1KYhUH0pUZhwBFxMSrFqtYwl0J2DS4xlMQZjCtP2pvle0owuBZjSM
DgQSaBi3aBRnLgUNKqRtqjQpaSbG6OuLKBHH6RSzWQeKCclKlhun4ycoSmJV9LiJgr5YUaVpFBRr
EgVRqkEbWRlGQWj8tM1+vXR9lu8ZKOiehbYspJhkHRSUajzF3B3UMZyKjoymRCe7adekHU1JRm1F
BwcpyNgkCjoXpNtt1Ta+jIIwmRQzZwoFnVpJ8cdroNfV0jV1ol0pxDKZjqWgPAGK2dRCavYqX/11
v4IqZysZc19KpHaOzmHVOL5R2136V0/5tnz0XLR9HZvqviWrfJIp6FM/HWs07UjpplF7Z1UlCVD8
Qa1o8BG0TfRWAu0Buk83UczONXWOZnrNdbTvsfGUeyFb19SIgizeomu35ovon7VPdWhHrk/SNQcp
99ZFlPvPKr0WTyuPoIzbTtc9Rvt1o5h3E1RWHt27SQSa0+NJ5qOPPqrzNdN2QYfz8xtFrWmYvr5c
x6qpfa30RHkUNHQAJVF1UOdyUu6lCbq3ebRdPTooz6kq80ui1mmlgRqgsizU+WpTzMot9fMrKD6O
fjZu3LjS3xvJExik3Ht/PhJo/Osuf5jOBvA+gK9hL2gCgIsgjzuEqMVXQx5drM+HQh49b4A8CgFi
En4KomIvg51uxgvgacjjxD6IIrj5JD5I/unyjFGMYvS/hJYvX44VKz5ERkZVDBkyBF6v97THiEQi
8HiSUFZ2HIIgWK7L1wNYCkE0CEG+tuPgwb0YNWoUPvzwI+Tm5uDOO+/EkiVLcPDgIZARAAZ27tyN
BQtewokTxejYsSuaNasHv9+HnJwcrF79DRYtWoR//vM7CAJzGIAPgtLshqAtDggS9pry8jDkZzKs
/PiVp0zIT/w+pKenomvXjli48CUcOHAIgsBMAzAZgo74IPF3tfRvDuSntFTnEKORYXhAdoc8q1eB
IHAGBImarH03AmgM4P+x993hVlXX9uP0fm7vdLiA9HJp0kFFARVBRcESBFQMKBqesaBo7CZqEk1i
1CQaTawxihpF0aiIvWPU2BBpiqB0uNx7z/j9MeZib0reLy/Plryzvu9855y9115rrrnW3mvuMVsX
o6URQkESAJ6xcR0JRQ6rhBCnL+27CZ6VUBmKi+PYvv0zbN26FUB7AEsQCMwBeSOAPhBy8xyEvIQh
FCpq7XSFoowR3lZXhlBoA5qawnZ8m33HEQgEAVwIsjuAcwG8hbq6Lnj55fcAHAzgFuPb4QiH/4pc
bgdyuf2N72/auJuML89ByNMxCIcXorGxEcAsyPLpHQD7IhTaivLycnz22SaQYZSVFeD735+CQCCI
xx57FIsXPwcgh1GjRuGNN/6GVauWw0PhIgiFokins9i4cS3INhASuQF1db3w8ssvY9cSsHUTsjHk
MGDAAGSzaSxY8KjRus54UYNweA0KCwvwxRdfIJcjiooKUVpaiqVL16CxsdLaWImKikJMm3YC3nzz
DTzwwAM7exs1ahS2bt2Gl156Gdu3b7WjQfTr1wfBYAhvvPE6tm7dhnA4hL59++K9995HOBzCp59+
anVDAN4DUI5wuA4VFdsxaFB/XHvttVi4cCEmTToVQhu9cscdd6CiogKXXHIptm/fjpKSEmzcuAm9
e/fETTfdhPXrNyAej+HZZ59Fv37D0NAwHVJItkU4PB+zZ4/AE088i1dffQe6J4KIRolBg/rhiSdi
NqdbAXRFIPAaCgrKsX59FwgR1j3ao8enOO64SfjZz36GTz5ZgWAwgA4dOmD69Gl4//33cf3114ME
Dj54LO6//37srZx00km44Ybf2pw1uMnLl6+g/OuwQr7kS778R5Vly5axU6c+zGRasXv3Afzss89I
kj/96U9ZWtqOyWQNW7TowOHDxxpCcLAhDFsppw+XneJIKnzEIQSy/7C/hQsXMh4vYyBQyvLyljtD
RGzatImzZs3hwIGjecopp3PJkiWGrjj0KmuoBClbrkLKbitCl+JKdk8u68FpVMaCk+z/QAJTmE5X
smXLboZ0uMDBQQrdPJIuZ6zs61xmi7h9F1M2jkVGz0p6iNn+FFJWSdkzbqKQtTTlteoQxQyFWrrr
XqTsyHKUvdl4o8c5LsQIVHLixMnm7eloPoRCpfpYP+MoNLCMclAZYXzrRKCM5eW19DxPiwkUMJ2u
NJrGUwhRBxtHyrxtixgMFrFv3yG85JIrrO9HfLTfTaCYHTp0s3EW2/dDlHfx1b66S4wHAe5qu3kc
QyEXt/E6ylFnfzZvvg/Xrl3LoUP3ZybTgvG4522qWHwpep6nN1GODYOMZ+UE2nLgwFHETuS4hM5p
omPH3hw6dCRjsXKGQuXs1asfZ81yqHLCx+MEp0+fzttvv52hkMsXnWYgUMxYrJwealvIUKiAv/jF
L9izZ0+jrYRAirFYgslklfEmY98VHD36CEPyHG1ZnnfeeSTJgw46iF4A8Sh1f5X41oXzji62Y2l6
Xss/8OWr1hrq3bs3SfLFF1/0zX+Gbdp0YHV1LYU6uhiQQYbDJQyFyi3On+IQJhLVbNGiHXUvuHtP
3vOJRLWt0xI7F2N5eS0PPfQo1tZ2YzxezVSqivvvP44vvfQSo9EovYwxAQ4bdgh79RrMcFg0BwJF
POCA0YxGE0aT80rOl6+qfM3bSr7kS778O5Rt27YxFiul1Dn3E5jAdLqK1157rT38b6KcA6oo9U2S
Sik1mhK+kiwsdBv/5ZSnawcCMTY2NvKCCy5lly4DOXjwaL7wwgt8//33rd3Z1t8IhsNFbGpqsuMT
7PhRzGarbdM8zI4dS6me96cXcPpOoy1kNPSmPBfP4a7hPuZR3pe9bbNyYTfuovO01GZ7ll0/0Nq7
zK5NWN9O9T2XUlG2pPKkbrJNtISeU0zU/kfpYr2J1iilgnYq42sp4dUvTJYTuJ2KdecPFj3J+F9A
qdiusLZvoBxramzDTFPq8PsoNW8R5XXa22i6zea2wOhpQzkP/NDovIYS8NpQ3qsj6al/XTaJJkr4
jFs9N09TjNZaSrh047yJUqtm6KXFa6AXNmaCjwcbCIRYVFRNL4ROEaWuvJ8S9lpQKs6pvutWWfu3
UgKscwgaYdedSi+YdoLysv4Tpe50QlRHSo1/OYGE5ctN2twNs7n5PeXckLE10IeeV26GUl/eT6md
MzZXf6YE48OMl27Nunk6i0DSQg8lCFxk13SlXk7OoOfdm6FU+j+xNk62/g6khMeDKEHvFipAd9bM
MzLUvXs/vTzDLi/1T23Om1Oq4vuNtkoq2PqvKIEzSd1f91FOKSnjr79ekhLezqK39o6kXqycacNN
VEae5tbvAMox7H7q3kpT91KCWud5IfCrLN/23pMv+ZIv34Fy66232kPYxfRrJFDKSKSQ8vBzm+uf
bdO5kNr02xIoYXV1e7Zu3ZoSEF3ddwikOGfOOUwmB1Aeqr9lKlXKfv362Ybp6m6lhEnYpuG8mJvo
IQDOezJn/bpMH5MpweF8ejZm63xtj6I27nG+Y6spoaeA8tB0x8+2TdP9X2/tNdjmVGmb04OUfVkv
eohkfwpxqzHaXLDoHF16NwkqacpmrIO1MZISFjLUpt1IzwP3Lz5afmx1Ko0vN1LeoaQENH8asQcp
JCZkY3DHD6E24v0ooccdv5YSGl6z/3O5q9fzi5SAt41eOJT2lKBUa+MppYQaF6jbzVNLSlAbRKHH
5RRyfA+9vMy9rB64azzHFfTsNjtRCOtI3/nNdv4aSjD2r70K+32ntRul1pnfIxbc1QP3TXr2g+/5
jk+1ut1sjg+mhG13/kZKaL+aWj9x7rmOa3zXLDMeLvgH87Sf9Xe079gndg2NB4Osn63UWupMT9De
Ti/GoD//7++M/yl6KGyOno3mmb66zxvPSa39Bb5zAe5qL/qlXV9Kefm645daXx9R99/vjSfNqXvP
PVs6WX+bbUx+r/G+xtPp9v/rFwKDX3cH+ZIv+fJ/s2zduhU/+tElmDRpGn7xi18il8t92yT9N4Vo
aGj6b84HAFyJYHAygkGgpqYGe3s+/+Y3t2Dr1lsgL9Ip2L79OKxatfoftJmEzJl372f30gDZmt0O
+cWNh0yjG7DnIzwA2S352/lX9pJlAK4EcAiAMQCuhmwiAdlrFUA2d5shz8y90f8u5A17IeQdOQ0y
/T4Eyvr5CuT1WQbZmP1PymeQHeQpkGfyV202tQ6ep2kQwHkA/gBlJz3N+tsbT4MAJgHYF7KDfBUy
VT8Imq/BAH4EeacCsjM7CcCN0JoJQbaNN0G2hXtbkxMgr+9ZAG4AMBayyfyqC7H3efkAsj39GBrH
3mj82mWXvZTteznWfC/Hvi7Z6qtoM26fb66EvtHevt1ygT9ETL7kS758faWhoQEDBx6AP/95M15/
fTCefPKPePfd5zF+/CHfNmlo3749rrrqx2hsfAt6BJ4H+aZtg5wVGgA8Czk69IGCG2wB8AeQo0He
h3btEvjgg0fs+s8AzEAotAmpVAZbt46HC48RidyLI45oh1deeQIKHVEPCRFrICN/50QQBnAJFPKU
kICUAHA5lFq9AUqkdCYkfHUHcA/kd3cbJGQ5IeUM+10PhaeYBRnRh6BIXM0APA45KeywsW2BhJEv
jJbnAQyw8QPK2LkQMoJ/wX5/z/peA8X8T0CC4jRIeFhn/QyEHEVOtN9p4+1FRuv1RscCaNNeDCWO
ck4e70AhcK6FBFxAWUL3g4JM/AgK19EAhRMpg4TkPwMYDeAJo7MGwEsAzrK5fsR48QmA66AwLSsg
f8PmkCNIE+TY8hcAdTa+MyCBowTAIhv3lcajbjYvoyEnGOfwMtNonwgJhrcCaERBQTHq65cBWIxg
cCumTDkar7/+NwCHQo41N9qcbAMw3dp60vf9GBROaAIkDH8fElCjAJ4yvvzC6jVA4YJiNo/TjPZy
KDhHDRTe6Dp06NAW69Z9aGMvMXoroXvh18aDMIC7jBchWwMxaF0tgcK5bABwMiQI/xxajwnfPN0C
4B5kMnHs2PE2tPa/sLH2g+6NByBfz5eM30cCuB8SRHOQc9IKePfvi9B9cCO0Rv5m7WSgICXPQs5P
C6C1uMJ4UWRjXAStn2Y2hw9BYZS2QC89JxuNvSEhvLldcx60hnIA7oVeni6FwsQstzrl0Jq60mj4
2HhfbHx9BvKLvcr4uxDQW9S3Wh7/J49918u3rYXKl3z5P1OeeuopZjLd6alcNzEazXDt2rXfNmnM
5XIcNWqcqcKam/rnM1NhtaHUqc3pGdsfQqlZpbLJZPbjUUcdZWqbDpT9UiETiUL+7GfXMZlsR+BG
hkJnMZutZPv23emlbHMG7hHK9idNqdac3Z1TB2at7yy9EBcX+dRGf6UzzFdYkO523T12/m1K9dad
QAX33Xc4Bw0aQy8ERiHT6TTD4Qw94/hKU1tV07MtvIqym8rSSwO2dCcdqVR/RqMxermISymVcl9K
xfuxj+ZRVPiQYsrO7LfGuw52LLCTNrWXYCDgsjuMpuyrHG9+5Gv3LnrZT5xzQpbOkL+6uo3xvJjB
YCF79x5sfUXoOUPA5vkQSo04jECGgwfvZ3X2NT6VUzZcjh+FPt41o1SaLhVdOaXqHEPZibn+igm0
47Bhw7h06VJOnDiFgwaN4eWX/4SNjY2sqGhlfBxC2fONpFTIhcaDu4yXGUoNPIGy72tLqS0dLxL0
nFZiLCgoM36W2SdBqSKbrF3xolWrVpw/fz4jkRY2pnHWj7NRvN3H+4vppewr8X3SDIWK6IXXKSLQ
gtXVLnyOf56SPP/88xkI+J0v5JgRDpdyT8cQtz4yvrohZjIl9ELlzDIaUnasHaWmb2f/76NsOwsI
lDAQiDAScXPjwgGVEihkJlNMqe+d81QNgQDbtOlhfHZr1gVe72TtdiFQxUSigs8999wejiGDB481
2qfaGjmUuu8OoBcW6NsNFp2A9BVl2DX7RhZ6ZciXfMmXfNlr2b59OwKBAnjqygSCwRjq6+u/TbIA
AG+//TYWLXoZQgGegsKRutIFimsfgtCb2xAIPIVQqCcaGx9COLwY6fRStGzZGwqpsj+EblQjGJyH
U0/9Piory/Gb39yORYsWYfPmerz33lvWxxwIddoHwBQIBTwQQiacGvEP8IIyN4PQtNaQOvFyCEko
BfADBAJNeOqph/HLX96ML78M4fHHv8SOHeNtHM0RDAItWmzDxIlTcNlllyIQCOC1117D/PkPIJVK
4rHHnsWjjzaD0JgBEBLyIoTspSEU50IIWdoOqamSUMDgmQiHF6K0dAO++CKOHTtGQcjNJgiRuRaK
ADYBwH9BSNyTCARGoFmzBsTjn2P58h9i+/Y6KGD2b+yzEkKxdgC4EmQDhOh1gdDJBgAHQOiUK0UI
BGIgIxBC40LE1AGoxKefPo6rr74C69dvwIgRw9G/f3/E46UQ8voahBC9avPQC0LONgF4A4sXd4IQ
23fseCOAmWjXrgU++GAZhAJHob26DYLBexEM1qGxcRaEmj1kNDZA6M4R9v82LFnyJVq1aoU77vgt
Hn/8cTz44EM4/PDDLaTKWAipOg5Snb9gv2+3tTIOQBnGjOmHJ55YhG3bfgwgimj0FDQ2ErlczNbN
KRCa9AyGDdsXo0ePwezZ52D79k0AsiATNr93IhrtipNOGo7169fjhBOmoqGhHtruP7F2liASWYSG
hiIf70uQTieweXMcQtnehgJTn4tZsw7D9dffiu3bfwihvZuwevUatG3bHp98QjQ0NAOwHSUlH+G0
005Dz549MW3aadi06UsMG3YAZs06AS+++BLKy8twwgkn4Msvv8Rxxx2PJ5541e6Bj+AFi65G1649
8eyz/WyNBgDMRP/+r2Lx4sUQCrseCvGUAFCPaPR1HHDAUNTV9cbBB49Fr169EAgkbZ4/tjX2Z3Tp
Uo/XX6/Gtm0jIQS1D0KhCXj33Rfxm9/8BtdddyMSiSiGDh2Il19+F4sXv4rGxktsbXRFMHgWstns
Hs++jRs3oqSkCo2Nv4IX+qcfhLFNsrW4e6ifb7bMhnQk9fbtPm9CT8d/t/JtAxD5ki//Z8qGDRtY
UdGaodClBF5iNDqddXVDmcvlvtZ+lyxZwscee2xnyJe9lWeffdZQyjp6AXVvsLf5W30ox5Osru7E
+vp6nnXW+ezffxQnTZrKlStXcu7cuYaMTKS8BisYjxcwl8vx8MOPNLSjlEoXFTDkZQTl0FFLDzlr
SaUa+ws9Z4NqHw2k0LJe9FLA1RCIs7S05c4x3Xzz7xkIFFCerotsXAcQOIexWBV/9KOLeNlllzEe
L2UgcCYjkWPNEWYihVjtSzkBHEAFxC0wNOI6yiNZXqCJRCWDQYVgCYVKeMUVP2arVu2sjUnWf4ZC
rzrTSyV3CL2g2hHjdRG9oL9x6+8MQ0aSxrdaylN7ln23pQIfF1Op3J4kUMtkspitW3elPEWvpRDQ
HpTxfwFDoXGUI0wBA4GQpeHrRYVmuZ1AjMGgC6p8tPH4TXrezQnKoWAfAnF26dLDxuKcIXIE2nHE
iIMox421NgdXUY4mdbYGzjEaq5jNKqTQD394tqFQBdw1APYQ4+tfKKeCNvScIRoZDpfxgw8+4KOP
PsoRI8axS5e+jEZLbMyH29q6h3Ic6cjJkyezsrI1hb6dSKHdJ1EpCF2g6I4U6uyCIg+kHGeqCWRZ
Wlpt7f6Vcsgp4qRJk+jlXD7P+J7mggULuGjRIiaTlfScIpYTKGOfPvuyf/9RPPLI73HZsmXM5XKc
OXMO4/ESZrNdmEqVMB6vZiAwl4nEoWzXrhsLC6sYDp9oNNbRuz+UNq6iorWtKYcEFrN372E2d2UU
Qldj66wlhRROYjB4FhOJMj788MPUfVtjYz6MQBVnzJhha2OUHa9kp069+dRTTzGRKGUwOIeRyAks
KWnGBQsWMBQqobQL5xPoxlCokB999NFen0XDh49lLHaMrZGr6QV2r6Duze+Gd/Cp//8q/xblK91s
8iVf8uW/L0uXLuX++x/G1q178KijTuCXX375tfWVy+U4Y8bpTCSqWVAwjOl0GZ988kmuW7eOmYyL
5xVnOl3FaDRtm9ZUKv7bRHv4Hk55rDbQZUSYMOHYPfravHkzW7VqT8UHdBvRIrp4ahJoutkm6nIJ
t/UJDKtss3Gxziop1VEreiEi9jFBoNaOHW7/nXBWwKqqtlyzZg2HDBltx081waEZ5U3pBIY3jaYS
evliSQkcTvV1MyW4uWvGUHlyXd2bjUcuA0gVgQxDoSwPOmg0JUi7ugvoeVqOto8796zx5A7Ki3Ig
Pc/O3/vqnUGp0JPGu5MpIShl9X5OqQvL2K5dN7711lsMBiPWdgfbRLdToTsO9V7/jT0AACAASURB
VLX7PD1vTacKd3HeHvbVO4a7Cqs/8527hIFAoV0/wcZ7KoEMO3fuavRW0vNudnEPXe7fHIF+jMVi
nDr1+5RA28docvmTf08J5HdSQlmh8Wim9XcEgTQPO2wSt2/fTpJs3bobPa/WB6z/fY0XrZnNZhkM
dqRUuKQE1X2t7f2o+JJZytv8L5RHsVuzy6k1VGH8qqBeWqIMhbrZPPW27x4EMrz77rvZ1NTEQCBI
z4uaBE5iKBRhU1PTznvqoYceYirVkfK8pfFiyU5+hcOtGQicbf+H2zq4kTI3OItAmhUVbSivctfP
FWzZsrPxfq0dq6eEvC7cNczOg2zfvs7MI173zdNgjh8/3sbk7o0PGAjE2LnzAO6qGp/Fo446hsFg
JeVZLk/iYDDNlStX8oILLmEmU8ZksogzZsxmQ0MDN23axOOPP5mBQDElOGYpgdU9W74bQiAgV6dJ
EB7tPv9u5WvbgPIlX/Ll2y1PPPEEU6laeqEnHmFJSTOWlramUrV9Stk9HUyFdehAP6oClNoG0IKe
7VBLHnroUXv0NWnSNAaDnaiwIq9TaNTblEBxNYWa7KCEkD4U2nKgb7Nosg31XaMnTiDA3r37c+BA
JxT9nIobd4v9j1LC3V0E5hMYyUCgkP3778dQaBYl2HShELc4geN8/W2ihM4sJRC645fb8e4U2uff
FMdTgp/7fwe1+bvYcG9QqdVGMZUqpFAPV/c9euE9jqRQGXduNbWBb6UEqGoCb9nGvMhX71f0bBBd
CJy1VCDiKsbjRfzJT362c042bdpk436SQqn2pRMEhKy5dj+jkJYiKrD2GRR6VWjz4er9yHiYoTbl
B3znbrfrr6JCrnSnsw+trW1PCchLCKwhsL/FpAxy11AgkwiAqdQ+BDbSE9xa2+977PcfqNAj7e0z
2ug5jsBHjMVGc8aM00mSpaWtjPc7jL7nra01BIoYiUQpVHkmhXy/T+BusxNcRQnlzaj74g5bA/41
G7Vxnkmto2ZUbMEXjE+/ptbs7wikOW/ePJJkQUEVFUibVFiULgwGw3z66afZpcsAlpa2Yteu/RgO
z6AnfEWtrvoPBrtQMfacENiBErCL6dLGJRJVRo+j+R4WFjpbvpzveB213s72HfsbKytrGYkkbAw6
HomcxE6dOnHXeI47CIQYj1f5eEwCP2dtbRdms/74l2Qq1ZqXXno5k8kuBD4gsJKJxGCOHTuef/zj
H7llyxYOH76/jacFvZSB3x0h8DbIWOKXkKGH+/y7lW9kM8qXfMmXb77ceOONTCa/53v45hgIhKjN
/UU71tIewq/YhuqcVhoIlLB790GU0PW2bXIL2b59nz36KilpQcWdK7TNpB+FXBxm7bUi8Hf7fR4l
aJRTcdOW2/+01TnNzk2mhIc23FMd3InxeKlt4O1sE2tFp9qUkOscFpbQZS/RxvsJFZw2RU9N+yEV
L9DlQK2inE5KKBXfJ1QcwAylAhtl7WVtPCN8tL1NIS2lVPaRpZSgUkwJyC1trI9R8eIOs/7GUhv5
NdZOCwoJeY9ST7awdtvsxotW/NWvfsVVq1btMicbN26kBAdSLwLNKCTTxabz95+1tquowNgzrM5w
ShBaZOeG00MKO1BI3hv0EFs/XT0IxNizZz8qmLE7/gZTqWrj//eMtw8aDWAicaKvbgMlLN5t9Y+k
ELosAwHnFDGCXkaS9wnsx3C4jCeeeCqPO+4kJhJjqPVevBt9I1le7pDpPpQQKXV8INCKQks/opcL
+SXjyZ3Umj2Nnmr/YLrsK6L1RZtnf3/t2L27Mnbcdddd1IvMUAItGAh0Z69eg5hOl1H3xPsMh49n
MFhG7yWuH6WW/4TAQ4xGM0wk2lL37rnG/1OMlwcSSLOmpj2lkn6Lug86sU2brlZ3LhWH8TdGi0Mv
rybwEROJUTzllDM4evQRjMWOtX4fZjJZylGjRlkb9xkvTiSQtsDug20eXiBQw0GDRrKkpBkDgesJ
rGAodAlbtNiHY8cexV1jGD7OQKAV0+n9WFvbgw888AAjEZedp8rm5nHiOyIEvoP/jNx138hmlC/5
ki/fXKmvr+cpp5zB4uJm9gBdbg/Z3zKbrWIwWOJ7+Pak0JYGSl16pG1iExgIZNm9ez/bZLdR6OAx
rKnpyHXr1nHcuMmsqGjL3r2HsVmzDhQK2IteQN4bbHNdY5v1ZxSC1ZlCdQbSeRvqO0IJgVmrSwJf
UCiPX321iUARM5lCyovYBZG+gIFAkdm2jaSyUbgsIE4t3cE2lAFGRwElfNVQQvBAyqPxTXpqwayl
J3OpxBwymqKQig52ndvM/sREwnmB1lrbfempWg+36zvR89gtsI9Tg2+gBKTmdl4pxoCw0fJHSo13
GwOBFIcOHc3ly5fvsg5yuRyj0SIKwSIl/DnVecLaraJU4K8YLT+nUK2LKdQrRi9l34nGt+3Uy8I+
xtMMnV2gh1BuJFDISKSQJ500g6HQFB9/7mDXrgOt7TFGQzcC7RmJRBiPN6OXhu/X1n4hJay4No5i
LJYx3rakhPp1lKB7BYHFjMcncuTIgzllyilMpyvoecA6ZDbDzp07MxodTQ8Vm2htbSZwAl3A9HDY
74nb3ubpQAJhVlW1tvlpQwmMGSogdyG1fmnzmWU4nOEHH3xAkrz//vtZVdWWqVQJDzxwAq+77jqm
Uv7g0PUMBCKMx8uYTndmKFTMSKSEwWCa6XQZp02bxiuu+AnLy9sYWtfJN456AklOnHgMQ6HuxqNW
DIe7c86ccyw4vFP/F9JThz/FQCDBwsJqTp8+i/X19dy4cSMnTDiWBQVVbNWqCx955BEuXLjQ+NGc
eiGoZipVzvHjj2EwWGfH2zIS6cBrr72Of/vb39i9+yBmsxUcMGB/fvzxx5w+fSZDobN8472W8rrO
MRabyMsvv4I33fRbFhVV2Zovo+6174YQeDeA6m+biK+gfBt7VL7kS758jWXq1JlMJA60zb3MHvSt
KaEkynPOOcce4FNtU09S0fhH0DMYL+DMmWewV68hVsel7OrNgoIW7NixN8Ph6ZSB/fX2kA5Ttkju
of6pte1QH5eftpBC5tpQaMF9lF1chMHgeNtA/AhKX0q92JxSo7YjkGXz5vtQThqu3mtmlxai1Jj3
U6qpwwhcQiEfLgyHE+icjd00Cq1LUcLMYwQeZzC4L1u2bMeLLrrI6rWkkLqfUoJRip4AW04Z6CeY
zTq+O0HFhbU5hBJ+RhjtgymBNU2Fh3mHQntaUuhmR0pA+ytdfuRXX32VVVXtKCeRZgT+zGDwRJaX
N+c777zD1atXc/78+Xz88cfppSRLEYgyEulmeViHUqjefJunHL3wPC6vccLmNGPjy3DXMDRvG0/6
UwJqlpFIG0od3I7BYCknTZrKtWvXsqamlrHYOEYiJzEWK+Kll17qa3M0JfimOWjQIIbDDpVUaJJ0
utj6+QuFcj1BqZ37UML0Ocb71lQYG0+ICoXiXL16NZcuXWr9ldpHzi2dO3ex65+iXobG08vn/CmB
q1hV1ZbHH38y99mnP8vK2jCZHMBIZDaTyeacNWu2jaErgZetnRofz9tQtpG1BDKMxdrz2WefJSk7
2kceeYQLFizgli1beOyxxzEY7Gtz8RaBGxmJxHneeecxmSxlMHgxhUg2I3Apw+EjWV1dyw0bNrCg
oIB7yxhywgkncOjQg5hIlDMeL+Pw4WO4ZcsWdurUh+HwGdR9cg11bwlxjEYLuHbtWq5cuZIXXXQR
L7jgAg4YMJKRSIqFhVWcP38+SfLcc8+nckuXMB4v5Ouvv861a9eyW7cBTCarGYsV8cgjj2djYyNJ
8q233uJ9993Hd999lyS5fPlyFhfXMBIZYfdDMT3TjDM5YsQBrKxsxWy2B2OxGt96/G4IgU9CvtWP
QlEbH4AiSv67lW9nl8qXfMmXr63I3uhjSng7grKZu5xKCRbk7Nln8pZbbmHXrl1ZV1fH0aMPplCN
nhQ6oHhwEyceyxYtOlAozWv2gB5JlxjeM5AnJcwEKMHIoR+XU8KPE64KKAHuIF/d5hQaJEFqypQp
tuHfZu3/iZ7q1KFSCYbDzRgMhilBaYttft+3DTlECUyjbRNuS3k452wDbW/9nWDtJU2YkPDbvn1H
RqMuztkgerHnCihBYwC9nLVO/Z20TcyfV/gMCtGcaueG2kaWsOubGX+mGU/89lVh6+8p3/FfEEjx
6qt/zlDIxbZ7jhJuawgMYTRaxFgsy2z2IMbjbXw8G2L1XUzBltb/fpQAdZKN4UAKhXvWxha1Oetr
51tRwsIq40kPyvmhiplMKUeOPMCu6UKggEOHHsht27axZ8+BjEZrGAwWEihnOn0AJWwnKcS1ikDK
8uWW23+Xt9mlREtSa7Ob0eZUuf0p9K4rvZR6pBwqwqypacfXXtPaFy+G0nmhBwJtjR9tba24uHf3
0TMnaMFAoJbAXxkKncWSkmpecsklfPrpp3nKKbONr/5UaTfQE/oLKEFesRNjsSzXr1/P1atXs3nz
DsxmBzGT6c9k0gm65TZWFxPRqZvbWttF9MwqcgSGsra2C0tKSoxX0ygbwP0IpHjmmWcyl8tx2bJl
/OSTT3b+jkbLuKtN4CAbw51Mp0s4b948BoMZ6v5yDj8HGo+yfOWVV9imTTdbA4MJJHnppZeSJJua
mrh06dJdzBMuv/wqJpOVzGbHMJEo5y9+8WuuX7+etbXdGYv1MPSwiEJoryeQYjA4zNbBD6h7KUvd
c98NIXDYP/j8u5Vva5/Kl3zJl6+gfPbZZ/zBD87igAFD2bFjd3bt2p/JpMs5298enF0oz06FWohG
01y3bt3ONubNu5DB4DjbIFfYpvAhgTjLy9tQiFGCHoLlNvA19Azku9gm64LCtqEEpqRdn6bsz1ZR
wketbZ7O8/EVAjEmkxWUbdY+1l4pJbBEKW/besrhwgl7bWzTbmH9OQTrcWt3ix3/k/0uoOwCH7Jr
0/RCdTQS2J/FxWXcVSX9jv1PUx65bvM83Y5HKTW6P1fwiZRQ8oaNwamya+nl7N1OoAvD4QR39bRc
SQmBhfRUuaSM9mOm7i6lUKtKSnBw7b9hPNhG2VTGKUHRqSSrKIGiG73csXf7xvehr7+51o8T9n9m
c+aCEzvnkhyBqQwEshTadpC1P4JAmtOnn8h4/BDKlq7Oxk2j/RH7vZUSNmE0OlV9O+ql4iB6dn9N
1IuDU5O3JnAsPWH8cMphohuBngwGj+a++w63eXqVnpmBQxHr7Pe5xotuxgvH+3pKUFWopGy2L598
8kmS5FlnnUvdV34v7vPpAnvLppCUPV2SrVu3JklOmjSV4fB/0RP6Y5Qg29vmz6nDP7C5qTYexShz
CNfXCYxEOjEcdk5O0ynzhlMIRDh37tw9nhlCReP0bA0bCDRjNFrFYDDLRGJfWyMO1U/RcwLaRqCz
5QmvopxDhhjt8b0+oz7++GPG4yX0P1vi8UKefPIsRqNT6K37s62vGGV/6WxZW1MvjXXGq++GEPif
Ur7yTSlf8iVfvpnyxRdfsLKyDQMBF9uvLaVinGabWDkldLjN/iUCMUajVfzwww93trNq1SrzZu3s
21xIoAX79Rtom/EcShVVQjkJnEMhHFfaBl1CL/bfJOrNvZoSCtZTQmKIXkiN07lrAnrapllAYCE9
oewPlDBbavTX0Isvl6bsiD6h5zxRYHT4UcqjbbPqZu10plCNkG24p1Lq5gEETmB5eQ2lavTT1ooS
OP7kO/YgPWeAUdzVW/ZeemiV314wRU/wJYHTWFNTY+2MNX62Nr6FbJwXGj8L6KmvnYB6C4Xi+Gkt
o5xRelt9P+Izxq4/3XdsnSGLWXrhVEgJts0pIb4LJWgVGi+KuGv4mLvoIUZ9KZWqnGfq6gbaGEZT
XrhOkAvRW5ukzBdgdDxICQ1TKKeLTpSA6+r+1Oa/gBLotlCCSAElnMTtu6Xx3GVO8fPpEEpgPIS7
erp+Rgnhn/qOOTvJJQwGy1le3o6TJ0/nO++8Qw+tO9FocMJwq936a89YLMabb76ZwWCxzXl3ylko
QaF319i8+a/rQK3XIdTaH0epce8yHkyw8Q3c7boi9umzpxPXhx9+yFCo2Nr6MYEDGQxWcfz4CYzF
Jth6GUSZINDmye/FfRKTSZc95zLqhWsYgTg3bty4R3+LFi1iKtWNMsvoTOBIJpO1HDx4NHeNQfpX
duzYl5FIdrdxHGrjc0Lp1y8E7p59fG9lMxQ+fRMUODoHJcPLl3zJl3z5Rsqdd96J9et7glwCRf9/
BMqTeiMikRFQlovuUPYGQNH2G1BcnECLFi12tlNVVYWHH54PZRtYbEcXAvgc4TCgR9xjUB7P4VB0
rDOsz6cAjIQyeYTt4xLUD4EyFZwC5UldD2XfIJTf9lkohymgrA8B6+vnUDaJegC/BbASweAmAIOh
rBcXA+gEPYZvhDI4tIGCNUShbBe/snaXGu1BKNvHaCgDySgAMRQXF0D5S2+A8ufeg+rqMiifrMtM
8CCU8WMblDlhu9H2C/veYTTcZP+3Q8EiGqEcvu9AOWQB5Ub9mfFgFYA7UFtba7yMQnkHqqAMDiko
u8hmG3fE+iqEt00NBvC6XQcoR+9WAIdBcx8B8Ds7956NtcbqrTY6rgMZNZ5PhLK4HAHgYSi/8veg
TB/roGRZq4yeXxk926C10QhthX+FMqg8BCCLwsIEgJ9YX/dCGVACAFrAC6qxDMB8BAIBm6MxRucv
oXXdA1oXOWgd3Qit5xZQVpcpRseTUOaQDJTb1+X3vc76ucO+34Jy5/aD1rx/2w8hEAggGPyl0fwp
lMt2BYBByOXOw5o19+Cee+oxY8YcGzeNzkfsdyOUHcNlk10EYDl69OiBKVNOQy53FJS/eSKUYace
wH1Q1LmPjTZAFmdfGN1FAP4O3XMDoOwuZwN4FOFwGMr08ppd92cA23HYYYdh91JdXQ2yHsqxvRJA
V+RyG5BMZlFf38fmpg7KaNIA5aj+uV29AsC9yGaz0HPgLAAjIGu4BoRCoT36q6ysxJYtH0I5pP8A
oAW2bl2NoUP7IJn8HZR/uAHx+K8xZEh/5HKAArAAuneesN+3GU+/e8Xlq7n82ybkXyhfK1KRL/mS
L199ue+++1hW1srykFbRQ4fW7nx7jkSmMJFwBv5v2Nv9xQQyfPPNN/farpwf4oZkxK1dfz7SUvvt
8vmeQQ9lGkIPCQwbPUmrV0ZPFUR7ox9j6EaUXs7ZEAOBEnq5TGP0nBJAL1BxyneNC5JbRCFQzvvX
2b5FKVRqDXfNZkEGgwNYVNSSnoqQxqMiH10FRkuIniODywuc8fHEIWlxerZuP6SHkmV952uMJ7IB
Gzx4MMPhMT4a6i3Ic5Se923YfpdRHtjFlJr3zwSivhyzzajwJMcbnW4eHC8iDAajlP2nsyvsxEzG
0ROzvkL27Q94vYGemtONP23XOUeIIno2eSTQiXV1fRkInGT/f0zlP87SQ34dctaSffr0YSjUn966
esfH73Ibt7NxPNh+/8Wud17pE7lrPMf5FOp82268iDEQiJp6PUE5vTzERGIIjzrqeLZu3YWRSBFD
oQSHDz+IvXsPYjQ6ytfuDlPlF1A2lTlKtTqKnmNLGf3BpJs3b2W//TzqRpk+OM/qh4xOh6w6xDpL
ofBt6AWNlvo5kUjRhUhSf1KNz549e4/7fNmyZYzFnPd6BYFCxuMdOW/ePCaTHah79Ut65hz+dRhh
r14DWFbmsv04Gj4nEOK6dev4+eef8+677+YDDzzAbdu28aabbqLuaVc3R6CS9957L4888nhGImnG
YoU7PdzDYWd7WkEgw2i0jjNnzqSXX/y7gQT6Sw4S4Q/8GmjJl3zJl//DZfPmzXjwwQfx+eefAwAe
fvhhjBt3FD7/fBOamqYCuAJAKwiJOgbASwBuRiQyH3V1dQC6QohcHHpMbUa7du322tff//6x1esE
IXgTICRpFIDP7TMdQvuKIFTgJQDz7DsIKUdCEJqQsc92CCGph57fr0AIx7MACiAUsQlAEMlkDkKF
CiDEixAylgbQEkL8mkGP3R1G3xIAT0PoUQ5C/JxyJgyhK3EI1dhko80hFNqIRCIBoV2ufAalhU9B
KMkSCK3MQuhcBB7aFzH6miAk5Of2nYYQs2UQajUICihBCCFaAqF3awAchYaGBsTjmyGk7WUAnyEQ
CCASSdg1vSEUpRJCiV6BkLD9AByDUCiMqqqWNl8V0Dq4H0JqWlsbZTZncdx7710oLPwMgcA0ADMR
jxNz5pxu/AlZu/sYzz718eZzm+MkhFpeBKGs90PoYdDa+D6AvwA4H8BypFIFINvavBwDYCHS6bTV
7wGhYbMBrMGgQYPQsWMO8fgYBALnIhIZjlAoamvhJgjpextAXxtrHEIqCSFmsHn63Ef3WrjcuFoz
SWsvizFjDkA2mzbe/QmBwBQMHVqIE06YjFWrViCXa4dQqDl27GjCxImHIBrdCE8G0ToLBiMAJkNr
XustFEraXL9hdL8FoBGNjQ0QYvk3O9aAYNCt04MgtOsRm4ee0NovhNbzTGgtpaC18yaAFQiH16Kq
qsL6/wjyU30VQBNGjRoFALjttttw/fXXo6GhAYlEAk1NDfAQ9T8gHA6irq4O4fCX0H1WAmANbr75
lzjllBmIxVpC99FkvPrqG9Dj6FWbt9sg9DaClStXom3bLjj22B/jyCPPRY8eA7F582boXtwCPTOU
S7ukpAR33nkzzjjj+5gy5Sj85S93o6KiAoEAIGT+BgBvIhLZhq1bt0L3Wym+K2WC73MEhAI+999e
8d0sXzdokS/5ki//Ypk6daoPLYmxrq4vW7RoQyFdB/verJfRQ80KGQgUcObM2VywYIGhJ58ZSnIP
o9Givfb14osv2tu+s4P6xJCIwdzdbkdoz0rKecOFQYkasuBsAk+0N/4dhoyk7NORXhgSh6wV2rGA
jcMhIA7xc4jmMRTqc7LxxCGOBXaNQ73Cvmuj9nuq9bEP5QgyhkCaV199jV37Eyr4r0O1osZn5ynr
vDcr6KF95da2Q9Fcf63t2yFlDgWM2Pev6Td6nzp1KtPpUu6KikZ843YIXVd6SOZmCiFy3r8OKfwd
hRS6MCdv2nxld7bfv39/9u8/bCf/g8GsIYFZygbT2ewNsXaPpZxCmtmYHfrnnHBcaJkMO3Z0AYcL
qVzOzTh+/OG++SmyNmLETjs9R1uUkUix/Q7SQ6IfMp45ZNblVD7PxuDmuJXROdb6mkshuynKbhX0
1kuUWm8hym4wYmMoZixWSC+UkVvbCd/cjKPWUC2LiysNSfSv9wPsWNBoLbDxRs072q0v8am8vJXN
RzkVELq51XdjdUhgmkINu/j+a+yXXHKJj85SOxfh888/b3Xdms2wb9+BRpv3bBFv3Hw4fmaYSBQx
GnWe/W4NJ+iFWOpkNJcSCLF9++5Wd3cE0aHSpQRSjEYL+Pe//913Tvw9+uhjGQi4Z1naN78hejm2
vxuOITdDhha/g17JzgVQ/m0S9C+Wb3hby5d8yZd/pqxZs8YejC6v7SsEkoxEYvRSZDnBbI2pta6w
/8uZTLbkDTfcwF3jlSVZXFxNUjHK7rjjDj700ENctmwZjzjiCHq5bT1VnkLMDKEXLHoyvWTzhVRW
jRylQiqn1IcDKMcIp9K7jVLROceN1lR4liQV2Pd5u86pvCZQm+kWyuA8QQlhTgDKURt+yOr/iUqN
1nHn5iWHEVLemUW2cZRQwt4MShWdYllZW0qF7LxeHV/fteuKrb0H7fxI48V2SrBwQkxnG1dHSlBc
YXReYvw7jZ7gWkEv921nhkJOkH7P+r6RXiDfSZSKcSMl3F1KOX24MCn7Go2V9DKNdKDUhTkqHI4L
sqxA3JlMhhLYV1md8ynBIkkZ+o+hnGlmUIJSLSWAX0gJWDMpJ4QxlGPHVuNnD2q9uXRoLxJIsk2b
Wmv/S0q4nEZ5NmeosDekvJILjafVNkbamHpRwvtUu945GgWotfG8jeMseiFg+lIOP7OMLicAOo/f
JUYrqLW8xto4k57Qfr4dW200jbX+2lDCTCf7fwi19ltS66gzlTEjZnxqTq2lpyjhvI/NZ6PxNcum
pibOmjWLrVp1YjCYol48SDnqlFEewZfQE4RnGW1r6XlVJ6lQTs4xKWHHR1HrdRtlPhHm3p4tqtue
Uks3USGXnPB3GfWC+B71MuCccmZT68SFW8pS91AjZT5QR8V0LKaCt5MKReNeAvel7vMd9MIYLbex
XUHPWxrW76f2O1++qvItb3X5ki/54kpDQwMbGhpIkqeffrptNH6hrD+DwRAVSqGC2iAXUm/iCfo9
+KLRWdx3333t4X4tlaFjIoEMn376aQYCDg0J2gPdvY07z9wHrP8aSnhyCI6z2XvF6ns5RbVpOETL
xRj7hPLAnGd1hlGCTRV39WrdYdcV+WgghUwV2nGXGaSJ2ljTlDetq7vY6u7uHTyZgUCACp/h0EyH
aMUpgWKJbU6V9GLzHW58KaKEyb15Bzej0MlCauM9zPjg6qynNscPrb/9KCHicnrhQ6ZyVwE8R23U
RfTCuzjh0GU+uYjakC+mNuMieqnZvmefL2yO/N7BhzKdTlP2nO7YOnrIVHsbx9X0BIMCm/dB1vcH
Nu7dvYNdwF//mu3NwsIqeuFdnABWS609P21HGx+n+465tHHF3NM7OEPZNvr7qzJa/aF1Ftg4dvcO
HmnH/TmeP6GHvK7xHf8vesjg74z3Jxo/ulIesq/T86T9PSUQ/cjqXkrdN8dRcfBcuy8Q8ND5p556
iolE3W50dqCCR2+kh/i+7zt/qfFoT+9g3QvzfceuMbpKdqvb12i/wnfsXRtvkLpHHBo+1Pjmtxdt
snoFVNBsd/yXlHdvv936a2Ft+7UMMyjbSvd/s82DQ3G/W97BzSH3G2co8yfIUCVf8iVf8uV/VHbs
2IGOHesQiSQQiSTQqVMf9OzZE7KjedtqfQ7gHfPKewmyxXoGwGkIBt9FOcnLWQAAIABJREFUVVUN
PC+67YhEFmPLli2QqfJMyHLlFgBbMGTIAXqUogme/d5syO5oPGSDNBmye1sLoANkz7MBQAzy6OwF
2SK6PuvtdxNkt7YB8hrsDnmT/hCyt3sHwPs2ti8BLADwGwDPW/+t7BigZ/3DkP1XA+R/9yejbT1k
I+TswGDHANmJXQHgTACXAXgGyWQS8qr8DMCRkJfiJsh2bTXkibofgFMhu76NkCdzEWRP1wGyJ3sU
3h60ELIfPAjAyZCN1lHWT73V+StkY/UEZPd1i7U9CrLXA2R/txqeveJzVjdnfTheLLB2SwDMhbw2
z4XsFcsAXAB5LPeDtqdya+MFa2MjgJfQunVra3eHHX8Cnnf3XZBn8emQ/Scg+78lkLdozK4twK7z
9FdrrwHyYAVkT/geWrQoh+zccj6+fWptPW3HtkA2os1s/Fvt+JPQfDbB87TNQes/BeAD4x2gdfUF
gI523s3To/bdAM979kvILtOdb/TxImK0ubW9wzfmvpANYi3kuVwPiQNPQ2u9ldGcts95Vvdsozdu
4/CvIccXoHnz5mhq+gi6Z2Dj+xSyDXzCrg/BWxdNRn8OsjN09q1vQTylb/yE1ugWyOPc/2x5z9pa
YN8wOoM2jqOt7bftE4LmaYvVXWQ8C/hoy1kbtTaOlXb8I8imcYf153jxGXTvbLf/T0De36/6eNWA
70pZCPmkR+zzPWjV/bOlOXTXOOvQU+14sbXzHjRzhb5rzoZW+bsADvAd7w3doe9DsQdciQG4044/
Dz2Jdi/fFuiRL/mSL1b233+svYmvo9RgzZhON6NnazXM3upTfOWVVxgKFVKIzVACKV522RV8+umn
mU6XMZs9iKlULQ87bDIPP/xwCo1zaMsyevZyB1EqpuX0gia3pZC8eym0ZgQ9b9DzKZVQIRWI1yFv
BUZHM6vnPGJJqdGc/dYgejlyC+1tPmN9T6KHsqwwWnpSCEuB/T7cjreikAyXS9fZfv2czg5NaqZK
CiEZSyDNZNKlcSvlrp6KpFSrz9vvEym1npDCcLiYs2adwc2bN9NTd3WjVIxZel6ax1GerzvocqlK
1ZWip2ptRqE5ZxjPPiHwMqPRGnpI61B6tnMB+92Hni0l7JzzhN3iG7fz2HVeyB3o2U0OpkshOHXq
922MHajcy0kbfzN66kRSKscQpaarN95fSKFtLqexm6diBgJpjh9/pNE5mEARg8GeZh9XSKF/fe38
SzaWpLVfYbT3s7qV1oZTGzqv4P50KdiEzjm15FB6NnL97Xwnel7Qs6w/f8YQZ3PmMqgMpEwmyujZ
zA2ysWYo1WRnep69qwmEGY2W0lunLaiMNv2sXYfOb7N14VTmHYwXKabT5bs8Dy699McWx2+QtVFF
3a9lBELs29dlbxlA3T8ZHnroofSylAyzPkKcM2eOjbk7XRDsSMQh4GWUSr+aQCVDITcHbaztBA84
4ADjxblGzzh6CHna5s2t2QDHjx9vv/vZPKWp+8DZpQ4lkGGzZu04YIDLCNPZeJtkNFrEQKDGrnH2
tC4O43crY8gb/+Sxf1QqIbcoQGL236HXwSuh11dAr84u7Ewn6LUlAr1qfACJ3IBeV/va77/A81I+
BXpVAeR+5QIk+cu3tO3lS7783y0rVqzgc889x7Vr15IkM5lWBC6gwlhUUELRU5S9TYguVdpBB01g
Lpfju+++y5EjR7FXr/689dZbd7a7atUqzp8/n4sXL2Yul2OLFi3swTmYUhtW08slu5hS2yyi0jK5
DfFUekLAStssxlB2YCdT6s4kpZJ2eVO70Iv035ee2vYOAln26NGH2mRvtI+zVWpGT5j5O7WBv0Av
dMmjlOrNCQBVlPr39zs3RPXfnrIZc3l/I/RUrTmjaZBd/0N62UtICcFJSjA7mc5QPRyOs1mzNiws
bMWBA0dww4YNlEAVtQ3JCysSCBxv182lBJpelKr4HAIRptNZzp8/n336DKEXBDrNQCDJoqJmPOOM
OUwm21Ppxs4hcD3jcWf79X1q8+5L2Uq6XL51lErZ2Uw9SeBpavPNUmp8l9nj95T916MESllY2IwS
+p6h1LhJKg/wT4yPd1MCbZqBQIDxuEuL5oIfr7X+76XMBi4nMIeBQBEnTZrKqVOnMhzuTKlHSamN
iynhoovx7R16aepKKYGhLVMpx1uXPq47ZQs32+b0AkoVHjO+ZGze9rW5jROYyHi8J3v06Md58+Zx
+vSTqfvKrTv3STISiVBC7E8oR5NzGI2Ws2PHOsp2cV+bh3eML72p+/QyhsNtOGfOObz11lt54YUX
cty4cZw2bRrffPNNnnrqqcb/3saf/gRSjETcS9VhlDBVzkAgs8czYsmSJZw8eTIjkX1sbucT+D0r
Ktrw1Vdf5cUXX8xsNsvKykquXr2aM2bM8LXb375TXLhwodmcjqRe6m5iLFZAL7zS2bauMpw7dy6v
ueYaFhQUMJFI8swzzyRJBoNOePsr9bKVYiwWowTCsdQLyo8JBFlXN9zW8DEETmIweCgPPfQwXnXV
Vezbty8rK6s5YYKeY4WFLih7Nyoo+B8Zi1Vz8eLFPOaYY9iuXTsefvjhfOONNywtngu+/vULgYH/
fxU8ATmF/NHqHwUhgyP/xT7vg6JZXgdgKISLVkK4ckcIBcxBOg5A2PoFUAyCJyABEkbHMEg38QgU
u+EFCOdfDekM/IXk187PfMmXf7vy61/fiHnzrsCOHfU47rhJ+MlPLrGArP+7Eg7H0dQUhNReKwBs
QyRSgIaGHBROhZD6rRZ6vwvAU9uFABCBQAhkGEABgsG1yOVyCARCiEZDqK+vh253F3zYBYreYdc7
1VMQnjrYBbvdDqk/6yElxDzoXXQLpIaiXe9Cifj5Ue9r04XHCEEqzjikmlxnx6JGX8D+N9ix7fbt
+nFhZjZZ/azVjUDqrKDVS/rGtc2+J0Aqqgq77kUoXM4LkMr0UujR6gJC09rbBilRtkPv566/bcZD
P09dQOsgpOpr9NHWFlLCZH28cG05vgeNtzFrL2B14nY8YH0F7LPNzsWM/vcAtIcC9rp5udLoPsPX
Rmy3cYTgmQHk7Hw9gM6QUilm/Nhg9ZzCaweADyHV+URI9fq+tVMBqQldUOsmKKzNr6GtrNzoykHr
JgapBAuMtjCkrs5Cc+1fQ1sgteA6uz5o9IbhrSHH++3wZAQ3T00488xZuPLKK339RQBsQCKRwLZt
Y23cGyEThj9Z+2lrN+ybJ9p/d7weQLWNJQgv4HnI+JXy9bfRvivghTFKAtiOaBTYscOF2HH9JaG1
n/X1B2tzs48Xbk7r9xjfmDFj8NBDT2HP4tZZA7zQNg3WXhxeCKYmO5eAlIm/BHAVhCmFffPk1n0S
LtyTirunG60NR9tWG0caXhgi1y+tjnsubLa6G+E9D/4pOe1rLa2gYDzOJvB+aJX+q20tg0b3pe94
wPf/WsgQxpWboKdcb+yqhh5sdAFa1dW+cx9A6mZ/+SaAj3zJl3+rcv/99zOZbEV5N77HZHIwzz33
wv91u3LUyBD4mJ46NW5vtgdQaqYd9rZ7Dj0j+bGUSupvlFq2D6VeoqEiwyg1XksqbdzDhgoMM5Tl
PgrxmkIhYu9TyNI4ChEqp1PHyIlkhaEXzrPYqQnfNdQkTS9g7VuUOseNI0MZyX9MhbFxnq9j7Xgx
5T36iPX3R+vPqaVeoVDBXpRHbXN6aOilVvc6ek4LFZRq8T0KnXLhLL5nY55vda80On9sfLuBXniV
oZTjhgsFE7JrbrT+zrcxB23cb9pcOHVrhjJaX0EFKfY7VDxNqfj3s/G9QXkGX0M5DRTaWN8xHtfa
vLlwJL1sbC9TKlKHoDoVf85oak7PMYQU8udUcKcYL+6mlzKukEL3llHrwKk8u9q8HUJP/ZykDPjn
0kOqi2z8f6PQ2wzl/LHCeNzK5qnG6C2hnFw+pOdgkqUQo0/oBUjuYW3NN5qPpRcmpy+1dl+k1uxM
o+eX1q9zkimk7oXXKYSzE721+QOr+wd6yGABhbZ9TK1Dp4I81Piz0P4fa3TcZW3MtGtrKMTyXSrw
eA11P6WodbeCCl3j1kWZ8ewDSu3qeDHdxvxno621nXPzdJjVa04hex9RSH4htTaTFHK+gnp+OK/a
jtR9uoRCYttZO3OpdeVyVK+g1OY9re0hNnez7dwfje/701sX7tky1dp83GgdS6UJ/EfPFhexoBfl
PLWNUnk79f5pVvcO7ho4+3Hr+z+npKHIn+Ps/5e7nXdWz3khMF/y5RsqkydPpzYwt6EuZm1t3f+6
XWDv+T29CP/n28O3yh7uaWrjP4SyhTmTUlv6Pfj+bg9T2gYw2X53sk3lGF/dHZQ6cgcl/JXZxuI8
LTvsRluNPZB/5zv2GCUo3eU7dh89W50f+I6voBdTbBkVDmSanfsvaiNzdY+nhC73/6/Gq98bbVUE
nqA204epjc0fYsQJ1UXUhujPSTuRstl72Hh9GCUcO2/GN311L6eEQ7/Xac7GXEzgTt/x+ynhJsNd
vVwHWNvzfMfes/kkFTLnSMoTsjN3zdd7i9Hr7AIX+c79ip5t1GmUMHQaJTgV0QsRQ8pjuZQSUv2e
0mONB7N9xz6j5x1eazy/mJ6n9WBf3Wcogb+IXq7kF7lneKHOlFDr7CH9Xtyv0xOq/Tlpj6UXGsfl
Rt5GCeW7e0pfS63X/rv1W0HdM7ftxgsX184/T8OoNTuHEnKvowQ+F59wla/ubKPtIN+xJqtbTAkn
7vhN1lfz3WhrZ3z2z9NLNrYQPTMKUms0wF3NM9w8ZamXqF9Q62WujcPvgZuzemFKbe+O30Ot7SKr
cxcl7PrHlKbC+TxjfPPzbD96uZgP9x3fYWNwPFtlffzceLG3Z0sx94xBWmhj9GdUcd7B7tny9QuB
/4zOpw2AWRCK5+oTwCH/g34iEO58K6QOBjw1sHMHWmPHV8JLyAl4uqSV2NUr2R1317SA3IykO9rV
lQ4AcMEFF+z8PWzYMAwbNux/MIR8yZf/vFJcnEUotBRNzkkOS1FYWPA/bufTTz/FM888g1Qqhf32
28+Ovgl5x7WBPAq3Qfllj4LUcQfBUxXtgDyA20Ker50BnAg9NmZCqpc/QibDsHYLoEdRPaQCdSrm
AIBPIJVWGMqp2xl6PCyAHkefGz0JSPXivG0/9I1qqdHmP/YRPI++D3arG/b9LrBvQpH/P4GnGg1D
qkXsVv9Dq7MRwDTI5Pl6yLplx176o7W1DFKp09oYbN/7QJ6OJwM41PiyFFIVw2jYYe3XG7++hKcO
fAdS/BDy0Wu0emsha5sG6NGb28t4XF5VN08Zq/fRXuqFfP8H2e8PjDbaNZPt/wvQXF4IqfEzkHev
U5GvgrYP11fG2vX36dTOt0PYgrvul9CW4tSR7eCp7B3dBdDa2QKp7TbZf6fWDmPPeXJq5o+h9evm
CRA/k/Z7mV1Pu66/jxdJaJ62W1/roXVSiD3XJ6C5cVtsI7T+AGW8eAPazs+Hpx5dCm3DgOYyafS6
NbsKnvrSz88PIXXoeuNFxviwzq7dnRcBq78c8hjP+Y7/fbe6zmv8aAgHWgHPy3klPHXrOniq8d3v
X2eO8QWkavbfh58ab5LGq915thwSK94xvvqfLUF4GT2WWtsfGM17e7YQegYeY9c8Y8eajI5q++3y
iz8I4WbfjfIm5NE7ArLBGwbZ8v2zJQBl5L5mt+NXQkY4gAw9dncMiUKr5EN4OvEXoJgAAezpGOKy
qB+FvGNIvuTLP1WWL1/O4uIaRiLTGArNYTJZykWLFv3T1zc2NnLBggXMZiuYyRzCdLqOXbr0szfY
lL1dd6AXVT9HqWoq6JxAolEXkNb/9jyQnsqkkFK5pSg171RrbwalhnGZNrKUAfi5FPLXj0I+Sinn
kxPpOStkKCPt84w+p05KUAjeafa7hfV1MuW44LJmuAwBh1HqURfh3zlTzKFQmv3oBeUdSE/NmPT1
k6bUlAl6ThgOHdpg7TnavkchpE7dFjJ6zrW+Cm2cCcrQ/xwKwQtSaEuaQiYn0UPgspSq6jx63tNu
/valVJquv3LjyVxKZen4lqYQvx/Sy4ww3eg40WhzHr2z7FwhvViLTsV3hs2x6895N2+z/vY3nkcp
J5mO9LyFs8bzuXSemVIPF1AI81nWZwej15+T9nTjZSG1bubaOKvpBWqeSS9eXmers4/V70GpE50z
0WTjc8rGFrZ5OIcKaOyCNKfsv5unCD0v5x9QqHGSWvPN6a3ZWuvPZc44yfjqz3DRzOoOsL5cMGWH
dj1ox12GirOpdeiyghRQyOhcCp123u8Jat26LD+HGK87Wn8uy4dTox5L3Q9Ju647tY7Ope7XLHVP
FFMB28+1/y6rzD30EL9x1m6GMhU5j3o2OAerBPVccPOetDlsbe2WU2v6XDveg57ndWfjsfMOdoGi
XTabEb42IvTu/UJKnZygZxbSlbs+W46j5/E9wuiqpOddP5d6PmSMjpS1/91QB7/4v7x+ECTOvw4F
LnoNEt6KofAzewsRcw4kVr8LBZlyxYWI+QBKXulKDAr65ELEtNoLHV/jVpov+fLvW1atWsUrrriC
P/rRRVyyZMn/t35TUxNPP/2HjEYL7MHnwqIUEKhmINDVHl4JexhW2oM3SqkYi+xheg4jkSwvu+wy
xuNF9NJ4PcNAIMlsNsvCQmcDFKA2x9b2e6wdL7ONoYCyNZxrn9ut3hBKBfq+9VvAVCpLbaIjqY1+
NL0UaTs98uh537rQIdXW52PUhjfDHtTDKNuwuNHgNkyFpwgEnBDQhbLf6m7turAoNZTw1drqVXFX
gXgfX31HW5Be+q8Djb5h9FJNBYwnBda2S1dWQQl8Yyn1W4iecOaCKAdtTv2BoOfQC0sykC7MSCjU
h8XFJdbu/kbDELowGp4tmpu/gM3DcEogeIheSr229ASgifRSgDlh7Xk770/95T7PU561bW1MoKdu
q6KXqs8J2jFqg36YsrNz6zi4s81AIMC5c8+zMcesb/fpZO26/t3cFNETbosoQdUF625BCXFdrU1Q
a2o0JRicTyBhXrXh3cbn2g/Zb9EZDieptVxrY+/EVKrC177/093m8Qh6IUiSlCmDv55L5Zei7l23
hkKsrKzy8Tew27f/E7HA2cPtfIBap48yFBrMXVPZwTyXT6DMNeYRWMBwOMFEoowyA3Hr8BKWllbS
eybAR4+zn21OrcFxvrXizWswqPR0mUzJzmORSISjRo2yeoNs3g4jMISRiHuxc2ntKo0/5XZMaeIC
gTATiQIWF9fsxos+RvtTlHpax8vLq9iuXTuGQiHuOc8ZP1+/9XIs5J07AIqa6j7/buUb2E7zJV/+
s8uNN97IQMChaB9TBt/tbGP7jDIWL7WH195sAhPc1QbxpzzkkKNZUeGi6sfoCV+FthEdSqEwKepN
uxuFGvyA2kBrKNSwMz2bsLdto3EbrkPp2rOysqVtFndS9nQ32X/3YC+iNj2XKzZOISgt6aEDoJwz
nD3ebdTGWmrjcIhOnJ06dTJenGT0Xrhz41A/bSmk7FyGw0U2zhuo9Fd308uX25wSiFZZfZdztIZe
jLnhVDYKl5PUIX3nUFk17qMEZ2cYX23jO8Ha70HZt5Vwz4whJcbDz+1YE9PpHiwtdXEJna1dDb0c
w/2MdwfY/5MoQdGhUWvoZSqZTW3czoawjMo4kaaEHGdwf57RfTQlyEcpg32HFvW2a26j7L2usvad
fdjFVOiX9tQ6KqILiRONNuPAgftx4MDRPOus8y3na5yeANfN+nb2eeOpF4DbfDxP7WwPyDKVKqKX
WaaYLi+tXg78dqzKGFJQ0NzmdzX1AlNFOQqlKUFiHZ1zwvDhB9rxYylk2a3jpPH5AGrNudy5zpFo
LWUH55BDt4ZilE3jcgrhKzJ+llJrtYZa98sp55CW9ByGxlD3lEK2TJhwOIXSLaVz5kokqhkOF1Nr
7wvKRjTJs88+2/jyChVK6URms83YunVXa2+T9VfOli1bGo/vsvm92Hgwld7LlENa59ra2Y//j733
DrOyutqH79Pr9MZQhjr0jggCAqIURRTs2HtL7L0Te02xRsVYYjSxRCwxGnti1GjsBY0aCygqFkSl
DnN/f9xruZ8zknwm75ug72/2dZ1rzuyzn13WXs9ea68apMOesq0T0+lqLlq06OvzLZmsoaSIyykb
RtdgzI7sUyvFoNVT+Pc+gZcYj3fi3LlzbW5zbW77U5e4VsohZyZ1rnVnTU0T33zzTZLkzJk7MpPZ
mXq3KgxPHie+I0zg2ZAC/hEo6LN/vm9l3VDN9tJe/o+U3//ePXH7M+RMJSV1mxb5/3Q7JMsYYtQ9
xiCVuTnS9jccNWqyHdibUV55+9qz21HELeqcUGuH6NORA7mvfbpR6qsDrY2YMBGIHSkpw7msqeli
h3s9dfOvZFCh5SnjelLeneUMHnu7GJGpjhCazhSjk4+M59LKSgLTWV3tOXkPtzVMtXY9DBY/ZfAI
dPVeAyV1qLf/cxQjdxBF7C9mCEQ91/q63Ob9orXfkCEfsTNdLVY/hWLqPGDxMMpTcw5F6Kso6e2X
FFHeiMFrtY7Az5jNbsuhQ8cyFkvac6soYv06Q5q6EZSx/oE2x68oRmp3yvmjDyWZTFq/N9o6Cgyq
4Kdtjp7bebbB/TCD52R79lKKqcraGNELSEfru9JgsYXN5xaKSXSJZT0lAb2d2ex0plKePixvz2zG
kLOZlDT1PMrBpAPl4XmZwfaPBLLs3r03hZvDDcan2Hgxa/c3m5M8STOZOuoy5XP/sa1n70id0qp1
6dKbYorDpSp42m5m8Dnc9nM3Cr8+sbYf2Do8aPYTNq9PbL93sud3oxi/lMHxoch4vzCYpihG2T16
08znqyimx801tmCh4PE7P6EYtN0IDGV9fT0DE52g3vM8UykPeu5MdJ6xWJbCwyhT5kHEb4vAYT+G
fNqzbC37GMw/secO5pQpW319xmnsybYez3u9qe3txwznkEcN+EtkHhezU6dmljqGrGAI8F1Fvau/
MjiWs6qqIxctWsRCoYZi+mljH2nfvxtM4JsIQYi+z2Udks/20l6+/6VPnz4UY7YdS/OjnmREw/+f
TRG4Dgw2gS5l2IGSwPyZwKPMZnvwsMMOpwirS9VaqdvzxpQExPt9hZKapVmax3d3IwCDKPunMZSU
YzFDSJf9bOxydu7chcEWp5ry6vsRg7QkyjxMpBiUV+3/5RSxc5XvcRTxHsRg/zSbbkeUTI6wQNYj
In0uowhalIAcQzHSTQy5g1vt08QgbZlDScPchiphY/elJA2kPBmrKIbxEoPXu0ZkhlJE1W2OlhrR
cRtEUoS7iiJcbm833mDTavPM8NhjT+Djjz9uc9gu8rzbmmUpKRAZ1PGfU2EyjqYI9+kUI17FwHyT
YqwG2fd7KVV6C0WUJzGo2HxPPKvDaPutlsEbd7HN51prt8jWEs0YcgiFs0Pb9Os4cWqk/igGW7Ua
KnTMKJZ6Pp9NMTiuLmwL4y0JwNbjTGVf26tKimH1tnsa/DdgYOYlpUql6hnMKEiptz1X9rJI/XBK
aldGXchIvSNtPZ2bKA/5Jgap+hrqnc1SOHdppL3b+rk6/3Bbh3vr/pABj6+O1A9g8JIfYjDqSOHW
oRQznmQsVkl5ZPu6j6LwpSPFYNH2M82+fYcwFjvL6q6lLjsv8ZtnyyAGRvZ51tX14LJly0iSsVje
YOtz7k5JOLdkCNbu0tYeFPPvsNif8XiBwuUvrO5TBtvbCyNtbyNQx1xuJ1522WVsbOzF8P666rzV
cGTdl3lQxMfve1nHJLS9tJfS8v7773P8+M1YLNayd+/hfPLJJ9f1lL4ura2tvOaaazl27BQWCrUs
K6tjOp2jGJyXKeK3KyV5cXuZ3Sn1WCVjsRhDBo6NKIauQDFTlxIYzFismjNnbmUH3dqYwAMoic9T
VEaPzSmVT9rG/ZAKpeJhHCrtsHWGjZRqa1Pr83VKSuH2X+VGfCopiZxnrvBQJe/bb+7Q4n1OsbZR
m7k37bCPMsY7MBar48SJEylJSpQJLOfamcCNbMwLbK1n0yUrYji9/d0Gm5jN81SK6L1NEbnpkbbH
U0S1P6VCbzUiNZhKj9eWQdmGYobmUpLALyh1Z5X9fiLT6QrOmXMat956Z0pCVk0xlQczSFYLNrbD
bgBFVA+lCGglg23n2pjAOkqCWGe/tVBSyu5cO7Pmqfr2pHBzqM2nC4FRzGZrucMOuzCT6Wbwb8sE
Ru23WiP91lDMlbe9iUHN7lLUcoYwMs4Eeno1ZxraMoFu8rABdUmpIBBjPO7x/2YwOE643eaGtqYK
duvWh+XljdQlaz6Fgx6nri0TOMzaZQwXDrO+8pQkkhTDlKcY6A4sZQK7UXhVy6DW35lALdNpN0v4
jEFKWcF02p2oZts+Vtka4hTj53jxGcUYjo3UXU8gb+YRV0XWcSQTCV/DSAqfexLI8dhjj2Us5pqK
fpTTmcdpjJ4tfSizCBI4mYlEA2trO3HbbXfhgAEe8/BgAuOZydQwn6+l1MnuTOX76XuyL3VxqmY2
W2340sfqetr/k/hNJnD410zgvHnzmMvVMR4/iMGBaxrxHWECH4HiBvwBist3J5R1/PtW1jVdbS/t
5evS2trK/v1HMpk8jrrJ/pplZfUl9inrshx11AnMZgdRqq3dqdt9vRGqMyiCvgsVy+59SiIQ8twO
HDjYbAc3p+y6hjMWK2M67Sqm7RlSnw2ww9TVV64O/hUlAfEAs9OsrXsCu0eoO0M4E3dZhHhNMaKQ
sc8oSgKSoaQdCTuk3ZHB1zCawXuznGIm1zDEE4tRkgw/1J9niI1Hm/u2jMWOZ9eu3ey3Q4z4bMSQ
WuxmKpaaM7A/t7WPs+9TGeztzqGI2ZeUJNVj231BEewjCZQxFksbfH0unzB4RL8SqT/f1u75i11V
2YmSwJZR0ptrDa45yga0gcDBzGa3Y3l5F4qp38rW5NLfeym1dHesQpjFAAAgAElEQVRKInk6gSyH
DRtGEfzjKcb+AMZiFVZXTwWgvsjg7oGzp7EUZ3raGD8weE4ymK5vv39EEfubKcZCkqNEooyvvvoq
77nnHgZJzi0GhxzF6FQZTBIMHuyeX3YJpRIcwhBwerTt0zSD0a8o/HPzgFqTZm1MXQRuozuAiEHy
NGLTKClvljNmbGnjrk/PSXvJJZfwoIMOZyyWIJBmPJ7i3LlX8yc/+QkD4+ZmB70ZvFlvZ7CnTVPM
8VMULp3LTKbKnh9oeFBDoANTqUoGFeqONtcptldlFAO4A4ECJ06cxLXFCezVqy+Dk8/OBGpYXu7m
DdF4jKsYi2Woc4YUc15LXWzOs3mdQr0nOY4Y4YxuN0q62YVAkV26uBr8LOqMKrC8vI56f30tB9ge
Vxucam3Pqgicx1jsR4zFdKlMpbK88sq5PP/88w0f3CmnjECOo0ZtwJAub1MCOc6ZM4eJhNtejmfI
h3yGPXeljddAYLuv1cEk+cwzz/DMM89kIpGkcPty4jvCBE5cy2fCuprM/6CsU6LaXtpLtHz44YdM
p90+SYdhoTCNt9122zqb0+rVq3nQQUexqqqzEbAPGG7PG1AqmKId4B0ohsgP8osoycXzBM7k4MHD
mMs123MdCExlMpm3NXueVw+r4ozWhnawD2XwShxH2YTtTg+toEO6YAd4DWtqOrKx0T1AN2CQmPS2
uokUAX/LiMYsa/MbSjroGSVW2GGdZwibkWGwR4oTyDEed6/CHMV4XUkxThlKEvc3ilFpJDCIqZSH
mulsc+5nxKRgxMgZwCsoWz/PJ9vB1l/LEJ7DPVVlJzVmzMaUlOIxStJQwVzOGbZLKWbR1brllIRK
hBcYy3g8zXy+jmLKhlHM/t8pe7AfULlWZzHYNJVTzMwEArsyk2liLFZFXQh8L6MOJddTzF0/JpNb
cty4cYYn/nuLwdo9k92hpoyyCXyAYtxrGY+XsaKiI2Wz9TrFWDRQ6v+JBpfeVN5gx9uNKGaigkB3
Dhs2liQZ1LTVDIb4b9teDDDYD2ahUMcQ0sc9g/McMWKC7ZOrnFsoZqTC9uYmSiLWmZIQfmTffbyu
TKezVjeVUo93IpDkmDFTGAJOtzAen8ZjjjnWJIRdKaaskYlEgZ999hnPP/981tT0YibTgclkL4ox
ztpaPA9tigMGDGAm00xJJFuZTB7LjTaawcmTt2QyuRHF7M9lIlHJ+vpm27eNKInbZMZiBTY3D6cY
+rHUu9qbAwZ49pqLKfXnFQTynDVrO1ufSwobOHToeN53330Gz7MIPMZ4fGt269afIevMTiwNuH2d
wXYagX1YU1PLEPbneMMPMWZiyP25SwymWQZvbe11WVmDPbeEYuCiKvWzKWnyX5nLNfCUU05hNrsF
JZmfTuAMxmJJrly5kv37D6QY/WruuOOOfOedd4yBftf6ep2ll9U6eiaT2toefOWVV3jYYcdy6NCJ
nDVrZ77zzjvs27cvwyXuu8EEti0bQlE1v29lnRHX9tJe2pYvv/zSDgU3Bl5NoDtvueWWf6mflStX
8vLLL+eJJ57Eu++++9+ay6WXXsp8Ps9YLGHSuwMohmd55GDcyg7Z3hQTU01JRF6k1Kc1dnifSWAA
9957bzv4r6I8CY+z/z0jwmz7eML2GEX0PTWVx+EbSqlWaiipSMqMxdejiP15BHIWZsFDa3g4iOH2
7A0UI3A25Vzg9kcuLfIsAq0Mnrtpisil7TOBkqjszRB+o9YIyZAIIcqwNGSGh0UpGKFZQKmaCgwS
pyEsDW1SoAjcWFu/OxH0oCQip9C9g+PxNNceoiNJMQwdGJxZXOpTZ/+PJdCFiYTb/bmEdTfbC89E
8SOb4+8pwpq33wdSKjfPJFFn/WxCMWpTKAbHnV1g+5SyeXWkGK64PTeDknR+Sklvc5Rj0TWUVKec
8XgVJclyvLyYkrh49pQmBoeLQZSk7S0GBjPBVKrIoK52pjpDMSVlFNOxgB7zMJPJM+BukmIKXZIX
zfYw1ODwIwovf0Th36MULo2icPYcBpz1eIigh6GRJNdj3zUS+CGbmwdF9sel1zGOGLEeu3d3R6QY
+/UbwG7dBjPE8/PwKEMYjxeZSDh8kqyv78JFixZx3rx5bXCnkXq/ekfqJAmrqqqh3tG4tfP9a4t/
4KxZswxWd1Bq244sFmuZzXo2kkEEejAWy3PUqFGMxwfbuispUwSH610UE7gpE4npFpLIL2Iefga2
l+dS54o7tnS1vbvB+pIkf7fddmM2O4pi4jdiqSnCkbbGzgTqzRa6dG2TJs3gxRdfyljMtQVlTCbz
nDlzJnU+3kWZhFxh/exh+BH6GDp0OOvrGxmPdzdYDGJtbRN33nlnhqgE3x0mcDiA86CQ5g9DGUS+
b+XfIpDtpb38J8pHH33ERMJDX5xAYCITiS689dZbv3Ufq1ev5gYbbMJ8fjKBk5nP9+QZZ5z7L83j
3HPPNWKxC6W6m8AQEHUQZZR9CUW097YDbzoVJFU3/ETCb/pHUQ4CRW633XYstYPz1E5FimAfTKkJ
qyhmYEMb/ySKeRtIMUIF6lbsAV23sPkuivS9vR2WZRQDciLFoLl0zoM392MI4tqLYnYfpgj1Coph
HURJhD6kiHZnhhiBJ1kfdVbfaGMfTxE7j+VXoOzqjmUI0jshMt81DF7EvqZjKcK2IUUE3etzOENc
uzpKGnE0xWw4Q1dGMVDHM0g7mq2PE22urs7yffL9vowiTsMoRm84Q6iXzpRatyNlBxq1n5vIUs/i
AkuDRU+nJLcFm88RlASrQNkEjqcIe4N9KliaKu1Km+sIitFw2JezNOWeBxQ/ksK3tsGiD7C+t6Qu
IpWUStTVesdQF4OCwSMa1qjV6j200Q+pkB85iuHYgJKWPmXzK9qaqijJtcPC4x9+HOl7psHvYHtu
cmRv+kf2fyiBosW2LLf/PVh0kYEhDcGihwwZEtm/aLBox5WAmxMnbsRg93gchUdFStV7BEP4mY42
J/dUP5SSluUpe7+2waLdhGOO7ckB9oxfIHow4GY0ALYHzq6mGLMHrc16Bn9nbMv5zWDRHRkc0U6i
8LnW1hZVVa/P2bNnMwSir7R9e9DmWG1zmEadIR6z0s+Wekol79LrI2y/XS2fsz0/mXpPigxe/vsw
BKLfxeBcpBxqxhGotGgC341g0X2g+IDzoXwnByHknvk+ln+VTreX9vIfK1999RWTyRwlHZpD4EoW
CgP5wAMPfOs+7r77bhaLIxgMuBcwmcxy1apV37oPebMdStkqjWGQbLxFMTV9KVu9lygGYTKDCvtp
yni7lqU36V3t8OpMqR1JeWh6BoDzI23PpW7reYZwMiuNIOzLUru7u4wYVEbaMnJYDre5fWyH8MbW
942UmrqJQbq5xA7aXezgdgnntZF+HzCCkKPs11ophuJVBnWUt/0TgyQwao/3IMV89Yrs0yKKKbjN
5uAx7p6gCFnB5kfKuL/R9iLqiHKTwSHB4Pjie1JOqbVrbR9fYFAP3h7pYz+KUduTYoJ72BzccWJ7
ioGoYqkTxYGUxHeVwbSJYvD893spAtyZYhCj6uH9KQK9hmK45xosKhnwotX2JWtw/tLqv2CwBZ1N
4WIlFYJmte2Tq+HWUMwjWBq+6Anbp3LKBGCltd3B2nZlyGv7IQOz/rNIH2fY8x9T+DnE5tHIkHHG
2/6WIYZjND/vZgwe9XPt2TspvK5h8H7/imLePDD6cturzxgYsh9F+r3Y1pFkqZahh9VPibR90GDR
mTIb8PrNGfJU30IxJwsYAplHpXTHU4xpGaX+9jlXUYz2CIoZ8vZXGKw+pfCyC4MDi7+TDZQZwhiK
Ud6JQVr/U/7js8VNJj61+uUM4WXesLrPCFSxvNwl3m8xSA1HGTyfY8DDaQzhffwde4PBqSfqxX2w
jZWM7HULdRYVKAYyCgc3i9iLwGnW1qWvvt7/PBMY/ye/zYckgFMBjAdwEZTcrr20l/byPyz5fB7H
HHMsCoVTARD5/K8xYkQXTJgw4Vv3sXTpUsRiXRFyr3YEEMeKFSv+4TObb7456uvrMW3aNMyfPx+t
rQkoR+pSAF0RjoTOUKKfjwAMAXASlNynO0IWx+4AVmPNmtX23Usv66cFwGToLjkRijSVgHIJe3kZ
yrVZC+VKfdLadYJybvaOtO0O5Ro+BEo6dAOUefJe+72Hze2nUJbL+wHU2HNLodyoWWtbAeW/7Qxl
mfwYUnS8EBnvJegMTkD5RFuhPKQOp15t5tZibXq0qYc9Nw3AKZBJdRLKxpkGsCuUQ7Y7gC+hPKSe
vzln886sZTxExovuyUool2qdwUv7pLV0b9PHYxAM34dyqL5jMIkBuA/AegCGQqnir4f28lYol28K
2qdWKHdxtN/PIZj7urz0st/iUF7WlNWvgfJKb2Rj3mO/1UA5egHlUq2yZ+MAdjTY+JoJvQOw37vZ
97Y4tMrGO9P6LId8H2P220ZQXt1xBps1KN3THtD+/QDa084Qvvm70btN21VWPwPC2WMBPI6QJMtx
x/G01uYEaE8aDBYFCM5FKHtqwuaWazMerL0H9UhCsAaA+jawaIFwM7pHzdAeeZvP4WeLxou27QHl
7vU8zj7nGmg/3sA3cS5p7f2d9Pl7jul6CN/+DCUA29XaRtfXCQF3aqD3eoX163DN2m9paC93ADAM
QAEtLWsg/HgcCoM8zcaKnmUxhHcy+o41IeSqbovbaZtXB6tLQLmsY1Be9CgcHMY97HsCwiXva92X
mQB+A2WR/jmAje3797X8OwKb9tJe/qPljjvu4PHHn8grrrjiX5LgkeTChQtZLNZRDg4LmEodyhEj
xv/D9slkhd2yd2WQOMHqbqckEL+1W//elFplD0qilmdZmWezuIeSuGzHdNpVTJMoh4I/mRTAHSf2
oNQfW1NqjwpKKvYSFVi3mspe4VKTzpS6r4PdjqsoO56/UyrEbSn7njwlAdufUhO5amae3eo9K8nJ
lIr1WUqKcYmNdzql6nmLHqRXcy7YGLsxOKyMpFRtCyiPzZ0ZpGUPUOrjLVgaWPohq5/CEGvPcwXP
sHUuoiQtIylp5laUGrVASZsWUvZ/boNVR0my3qC8Ul3lVhHZk61s/AMpKcvrDLaXni3hTUryU2Xz
+JF9H8LgDJOw5w+iJBx1FH40UhLaBZStXt5gVUkZ9b9F4csutpb+lErsdUrdW0/ZGt5ic5ptYxYo
HLqO8khutv1wB4IH6B6fwquOBP5qcxlnaxpJ4cMCytYzz0zG4wfeR0nZZtlayikV3iqbcwcbL2N7
mzN4zLc19KVU4s/b7+6cM5RSz19saxtscHrM5jQuAvtRtvczKHy4kJIqj6QkrhvZeF0pSetCuqe0
0ifmKLvMVkqD4Kpdd8p4hSGdXRmlplxobXMM5gCOm9OsXQ/r5x0C91vdNRSejTcc+KGtr9Hg8iol
de5CSXYLlFR/ISU1dVvHDIVjz9gzg6nz5mR6BhDNfaHtrzuDdaHe2fmURPcog7/b5+WpQNULKWlk
GXXGVFDnxkLKScTz/u5v81Lb9df3vNcb0b2cdR51tf/fNVjXMKh651G4tRfDuz6Kwu2/2Fp8rw+3
tjfaHOrXAofjqLOtzsbejcFxqIzC+e+GTWARuvbdBeArAJcBmLJOZ/Tvlf8pvW4v7eU7Vx5//HH2
7j2C5eUdOHnyLH700UdrbXfWWWfZofURxRx9wqAW89ytbnjuhvDBhqlQ2JVXXXUVd91116/bpFI1
FqesjCFdlsfe8ywBFZG/KQYnALdz25xBRcI2c8lQDGNvimHzgMU1LE23tcoOy2o7XOUJKuLuquEi
gzduLUN6N5+bxxkcHhl7AEPMO19fmfUBiuHqTzEkbszteUa9veci7mzfPYzKjymCumlkHA+ZU0/Z
VXlMsnMopi0K56LByrOcRPctxRDexn9LMhCYQqQfDxHjatRnGPKtOgPle1XD4GXp/brnNFg6Nx/b
cz+7oXs+Ul9FMUDuLe5BjF1dVs4QvqeT/a0xuDvzGx3P4e5zi7Fjx94Mwa+1/3KEKTAEsiZlkuG5
nOfYXLa1vvNrgYWv1z2HawmUm32sw8Th+xEDXoS5hbl7dhVfj+9PnkAFq6vruNlmm/GbWVCaKcbv
wUg/XWzuPj93sOpDqaA9t3GBerd8Dp6xpgNL098VWfoeu7OWnx0OnwRL33WwQ4fuFO5eSDGa7sHv
54TH6xxI4WYjxTiTYjyLjMXKDKaay8iRY7nLLrvY+rwP2d1WVjYyk3HbyTzj8UrG475fo2yvhhHI
cfDgIUwktmJQ8d7IeLyaxWINw7vkpgeOL9FLXoIPPPBABO5lLBQq2NTUj3rXonvtoWj8bPNn8ozH
K5hKOdx6217+mnpn/L36z5Z/pg728iWAXwHYHJJrPgvJs9tLe2kv/+HS2tr6T38fPXo0Xnvtr/j8
80X4wx9+i7q6uq9/a2lp+fr5O+64A1Kz+O/VkIpnJYAtIXXEMgDHI6iePCTofWhtfQS9e/fG008/
bc8ksHr1F1i6dASAPSH1R18AIyFVVRdI7fMidIScA51nQyF1TQFSRT0PqYMBhSLNQKq4JOLxOIB9
ALwGYCGAKyH1zjkAnrbnYd/TkOr5eUiNvA9k1tzJxlwB4FwAHwD4q63hUAAnAjgDsVgeUtmMMTis
gNRQgNQ0vwTwAOQXt9rqX4dUzz+3sRK25vMgtd/vAAyyfo8GsCmkOtsMwMUAfgTgbpvzSAADbE+W
QurzXjafo+3vYgDLoTv59pAabY3t3zgAB0LqtdUGx81tfVU23xZI/fsBpP6eA1n6rG/7BUhdVg7d
/U8GsC2ArW2unWwOnwJ4DblcCtlsvfW7GYRDXwK4ymARNxiuAPCM9ZkBMAtSv34K4C+2FwDwFEJ5
AlKjLoNM0hca7JdBpulD7Lk1kHq+wmB7EIDBkCqwiC+++BJSwZ8O4DAAe2Kfffa1+T0IyTYegdSC
hFSEJ1rfO9vaMlD21FEANjBYVBmcL4P2+joALejXrweAIwEcDu3965CKczVkWvGVwWkX+z4TwBfQ
vi4GsAK5XBmuv/4y7LTTjthvv93wxBN/xrJlyyBV/WMAbgfwJwAfQu/zMJtnJYB9IXzLGmwG2fz3
hHCoFkGN2tvWvArC2z2sr3qUlWWs3Q0G8yUALrS6rSEl4a0AdkA8nrCx+xisewOowJIlS20OB0GJ
x35hz2cAlGHYsEE466yTkMm8g2RyFYTHru49HanUGrS2LsWHH76Fu+76DR566E48+uiDWLx4MaTq
7g9gG7hK+fDDD8Crrz6Pe+65CffeexvuvvvXyGR62nhvQWfO3wE0oqWFWLNmhO397wB0R11dFcrK
qgDcaHvzoc13T1vzffbbcwCIvn374rPPFuCOO27Afff9Fp99thh//OPvkc1WAHjF+nje+qmC3oul
tt93IJutxJo1S/Dgg3ehUCiDzt6NoHf7VIRzpr38b5X/soymvbSXf7/ceutvWVHRgfF4giNGTOB7
771HklyyZMn/r9r4iy++sMTrSQIpjho1gVdeeaXdTH9FGSDfYrfPgQw5Z0mpNaos2n+ekr41sLl5
GDMZl07sSwVu9dhdExm88FzS80OTPngMto6UoXe13Y6H2MeD83ooFJcqeLiXgZTBeSulEupufRTt
5uzSGg/y7Krla+32fjPluOCBd2sYDOpd9eS3dpcqTKOkTWV26z+MUtm4CqnK5ldlMPAsA4Mo6YoH
w3WVcZZSQzVSoWqusn48UwMpledmESnBWMqjcn0GaYVLfDzQrUssR9lY3Rm8LydE+p7PEKtsKyr+
46sGl73smZciY3i4mCIlfRrKIJ16jXJMcBVwNYMH8/q2H44DaQYjfVKOLSmDmafVeoylEsJNbe1l
1rYXS6VfPSjVbBmFG6MYQr0cTOGh5xIucuzYTWyOna3fHLfaaisKx3K2/54HeiSFH71tLzeJwLhg
sBjAUumXSyuF55nMRja3PhRedKAcDTyA9me2dld3l1Fq7dV0/C4v72ChcGTikEiUMZGISnXHMQTR
XkmpOgdSuFWgnKcylHqelJNCrT1bbnPbhKXS7XOpLDVX2H4eS0nj6my+y5lMjmc262fAyK9h0dDQ
wfr1mInLCdRZ9IM8pe79lfU1gTLnqCIwjqlUJyYSVRaupYJyFlnFZPJQjh+/GV988UVWVjYylxvO
bLYn83n3snXv/03tuSYWi5swFiuwUBjCsrIxbGrqx3ze4yT+lDJHuJlAjocddpjVDzRYVHDDDacw
Hk/Zet+mnMFyNqcy6n3xPOdZPvnkkyZpHEygB4vFDrz33ntZUTGapTjbn8E0wvudwN69h/Doo4+1
PdjQ1nOEPXMkg1lNe/nfKv8N2t1e2sv/uLz88ssWwPcJAiuZSJzAAQPW5+DBGzCVKjCVyvHcc3/8
D59fb73xdth+ZgdOHw4cOJhBvRqniKmHAhlMeeatZiy2AzfZZIZF9nci8gVFRGFtPcbaEIb4bkdT
zMrnlJctGIh7P4pQ/o5iQpI27lTKZtBj3bm6tixyyHe2w7CrfdzT0u2grqIYiUqGeG8d7PepFMPg
+UTXUF53e1CE3BnGNxnyrbr9XYyBgU1QKloPN/OhPd9k88na3BZRxPGXDGpqt/dyFaBnK2imiPca
yruxl43jqtzlFFEdSNnXnWJj/pSyqetGMVUOH89PW0UxaJ59gbYnSZaqYqOqXLfVbGbwhi5Q3sPO
gB7KoF5MUfjVkWLyTrO2t1C2ZLcwZK14IAL7UQyMUwfq8uCqVk/75v0XDV45ivGMMrNphiwwHnDZ
1+9hZj4n0JHNzc0UznrasJttXhUM6chWUwziTpSZRC1DLMJLre1hDB6jzjh7aI+XKHu2bpStaV8G
RtrV+g5rn7+HDqq38RKUqtJNJbak3ru3rF83o3Azho4M5hW9GfICO/NcZCkjspGNtwGD9/PVDBkt
8rannufa1+cBwssYj5db9hP3cm2lvMI97mZ0vCG2tqipgs+rjCFu3xc2/weo2IoZAnHmcg187rnn
2NzsntfudVukmM8q6r35BcVAuafwddQ718pU6mCOHbsRQ/Bxx5cMu3btajBxj/1LmMt14DfxME0x
27UMF7RmAhnmcnW2Rg9w3sD+/Qda/uFHrN/fU+/Sj20OHnC8yhj9DAOuLaFweXcGG9l2JvB/s/wX
yXh7aS//frniiiuYz0eJeAuBIpNJZ7TeZT7fjffddx9JcsGCBXzyySe5ZMkSkrQMDj9nCDNyNZPJ
SiMm3h8J9OGkSZO4++77MZnMMZUq47hxU/nRRx/ZjTiaL3dHiijXU04arZRBeJn1+3qk7VkMacre
tro/GzEYQNlIraaI6WQGG6PtKEnU4RRhupuyGZxOMQJPUQQ5SREdT5dGitiWU84lN1F2XU3W/q+R
uV1KSUoGspRoOUM3mmIEvqQIcTllU/hzO9A9rEfcDuwFFINzhM21jmK8vd/j7SDfmDK8v5Fi+M5i
SMOXpZjkhZSNV2ME9p9an422Ju/3foaYfmdbew9dI0ceMTyvUoy325v1tnVczWDzNZy6MLxs6+5G
MYPR0C530VMCBkmyh8g5kTJyf8XaXUsxJQmKeO5OSYF7Ug4PD9nYR1NSLWcUtqaYtc8Ycu66A9Ng
m2sng9UIitAOt773oXDopsict2AqlaLwyes+oQh7gQE3STnHeIzATRhyy75mc2ubO7jaPtF3ZDSF
W/0YcHwPBkb7DIYc1rUUXrht6wqKCXUJ9XORfn8S2b+Hre42g88I2xO/ePyFgan2sE1/pxgbsDRc
y7sMmXdOZUhn12B7/77BpS+BApPJvK35kUgf1zAwuEdQeHEihePNFLN2AIXrHmvyAur9e8rmsAvF
zJGSyp7BePwgrr/+JFv3vhTOfcAgXXdp28ksDb3yno0lGHXs2Gxw+jWD5LnIeNzTMPpzrzJISk+x
fXqTwf63irqEkApl5BLU7SgG9BPqYpJkyEfuQa0zNof1qcvJCupscVvQ6Dk0lSFd4s9s7Pbyv1XW
JV1vL+3lW5fbb7+dxeJ6DDf25+wg+ejrwyIeP4ann346BwwYageMkqhPnTrd/h9gh+GfKNWsGzjP
ohiZWQSyfOGFF0iSS5cu5eLFi7njjrswFnNpnOfgfZ1BGndA5MBaaodeT+qmS4qIj6OYpKEUgW6k
GLnqNgf2iwzp44o23v6UamoEJR1YYfO+h6XqVb/ZF6jg1mkGz0xPOxejCNzOFBH5nCLSXShi52nv
7rP/OzAQU1LMiktCHmOQxj1F3f73oBiXjSkGrYaSGjiz/iFF1MBgfO9q740oAvoCxXTMoCQbLRRj
sy8lCT6WQU1+emRuDzMEm26J1O9kcNiSkrz1pOIAxm0df4m0PTkCQ5dG3Gkwy9u6PC7dptauE8Vc
umSwq63XpWtNDOrSMkpFezmlZmyimFdSOPIQJe1MGGzWFizanStcOpyjcHuY1Y9mYMSeoBjmwLzJ
O9iZ9eMYAiaXU0xLK/VedafUsZ4D+mmKuT/UxplB4fYyevpCtXO19mqD9QYM74LjuEuXV0bqPZZm
FcVMD6Sk859TEtJrIm1nW7tBkTpS75UHF4/Wb8iQEs8DbHuQ5Z4MuZWPYQgiXaQYN5cWD7MxL7X9
GcjGxp7MZusonF9lax/FdNql8x4k2XEnb2saRF1EfH6PW9uhDI4qz1Dq8oL1X8tEwp1aohfMMxki
ATxD4Wsveio8rWkqgeXM5TbnmDEb8pvBokcylUpTePSJ7fPBtk8JBrU2CexvmV22jdStsf1c2wWz
zPpdTWkGWgg0MZOpY9uzJRarMXWy17/C4AyyPfVurVsm8EvIgnFtn6X/5LnvalnHpL29tJdvV1pa
Wjhp0gwWi+szl9uX+XwD6+p6ULd/EZxCYYJ5DFYxSJ7utsN1YeR/t+HZjJIC7USlrtqDtbVduWrV
Kn7yySc88cQT2dzcl2KQ7mAIx+GZKcrtcB3EoHpxVYd7okBlHnoAACAASURBVA6nCG65jZenAsu+
SzEzRYpJcqJ9KSUt2Jkh7+9FFFGspsLWLGWwI6ukGMMxFEF3qUoVQzovZ5RvsTl9RhFFt6nqY3+v
N+JQx6Bi7kwxTD6/OQzewY2U+nWozdXDyVxocB5u/7vK2BmpQQzqVg8K7UznTJvzbIppa2IIbVHO
Uo/NftbfFZS0sxOD2jZNSWsepghi0v53puN+Bg/cqBTnIKt3VbEzm66u7MxweehIz3mrdv0oyc4z
DJI6J55nMjDabvPp3q/v2B7VUzaRnzIQVJfMtBpMXCJyAYVD5zF4k06lJDLRANp+Kak3mHdmRYXb
e2YpxuZVihF2eLg3tUtFyykGxj05x1Dvi3uZuhSxhgr5M4xi+sYTKDAWy1ES4YDjhYKrWx9iuCj1
YaHgnsBnUAzQeOqSdbTV78yQSWSKzcfx+y0GCVOaQUr1GQNuuOmB2qRSGYopc2/mPgarDSjTiq+s
vXtp+7uVY21tF77wwgs8/PCjqXfGJZNV3H77HQy+HlD8JQZmvYnBXMKDQndiOMs+ZGDMC5QmgATu
ZTzu78DVDMzXZOpy5wxiPV0FnkpVsVDowFSqyHS6jJtvvh2feOIJa+uM5KcEqjh+/ATq7HE4NbOh
wYM6e+7pVQQGsqGhgbokeKD5xxhU5adTl6I7CGxtaeSKDHnX3yWQ40477UFdGsPZsvHGW/Daa69l
MJtJce+992MsFqPen0uJ74gk8HTI7azcPgcAOG2dzujfK+uatreX9vKN8sUXX/DOO+/kokWLSupb
Wlp466238pJLLuGzzz7LRx99lPl8LdPpjZnJ9OPIkRNMyuFR5/2TNUIQ/b9IqbA6M2QEaWU63YPX
XXcdk8kqBpsXP4RvpwjiWOp235shzlhPipnLM9jpHExJSBJUfLHdufa0cU7EN7LnL7EDNkMRaFfx
dqXida1HEdxOFHGktf0y0vc+ts7tKUK2kLqJJyhV2BeU5KmKIUUXqZv61Qxx59xmqQeDjV611Xvo
ipU2txhlB/caJaV86euDXEzbLhRjl6OY2s1tXnfafNwJ5VyKsH9CSaZ6M8Sx83m5Wv9Chpy/+9rv
51LSoytZ6ljTw/ry1G13UFLWOoppOYEinrvY84/Siek228xmYPQephhHtwWtsH5/xoBnzRQj4/tx
GUP6usspdew1tp+9bA3DKOZuPYbLQbX939fm3Gzr+IJKX/gFRRzzlD3fMxQT8JitYS9KYnktRfSn
slgsUsxUR0rF6/hfQTGhJ1BM9SkEwFhsAoMUzcN2jKTwawjF1PvlaA0ltetB4Fhms81cf/0xFD6P
oCS8NRbL03GrP8UY1TIej1Pv75eGG4ttnKEUY3G5we0A6rJQpN6FzRhCMXWhLijVBkO3UcsZfMZR
dnKjqHd1A4b3r8z6qqSYsUcp3I6eJyM4ePBgLliwgC+//DL79FmfYpL+SDF9c1lX14WS0kf3SedF
Ol1LST2bCXRkJrMxxfRH1eg7UQzwrtT7cTSBlxmPp5nL+UVtc4Z8xr1sT35lfx8nUODZZ5/N+fPn
8/777+df/vKXr8/Srl3dPlUObJlMDW+//XZmMrUUrklyevzxx9vc3EGpO4Eyjhs3jvF4o+3bdNuD
eeask6Xex4EEytjQ0M32uIqysazgIYccycWLF7NLl75Mp0czmRzHiooG3nab1NWFwkRms5NYW9vE
d999lzvssIPt7YvEd4QJfOFb1n3Xy3+bvreX9vJPy2mnncZAWNPceOOp/7DtSSd5btJofDi/jf4z
SaAzPX+0w8tVzC0MMc6KDCqWCkrCU2mHnhMfT1012w7hDhSzEY/04VKpQ+3TiUFq+HFkjIwRpKHW
f5/IGAVKwjPY1ukOGwWKkC+mmFlXK66mCHOSIW5Zg7XxuHIuDfV+3EvWpVNZiqmLxi/0ILNZ+z9K
tCZTUo4alhq7u3OC24ClInNwI3M3kncV6BiG+HbjGSSI2xgMt2MpI51gMHQvUkxab3o+0xBnLhVZ
TzXFmH9MEWvfp4zV3cZgw+RqQ5d0urNNwepcauhBpQ+jiJ5LAm81+P+aUnM5M+se3868uPTVpVlb
RPbJY/KdwiDF831yx5lqSn12M4Mk2C8Z7vSSiuxBmiGO5Dv2jMPQ4QaGmIYeuy1pv7nE2OM45ilm
2m34fB0OK+/TccOljR6X02MNDmCIJ9ls49VSEu+XqPfM14PIs26T5vZ4UZz1PfT30nGyQDGFLv1y
+8pu9qm19UUlgb6GPEO+ZVfLZ2zeMQZva9+nJPv27cvgiZ9mwH+XoEclgY6v0fcn6rjk0QKqbTww
OHLlGKSDvkdZ1tR04y9/+UvLxRvdJ8eVCkrtf3gEpkWK+etNMXcjGIu544c7tOUoJrGMuih5DErX
MiQZxdlOnTqzoaEHw9niZ0aRukj6+308s9l6xmK+jpStc92Xx6GASQn77AQFK/q+lf8ieW8v7eWf
l2XLlrHUYPlFAkVeffXVa22vA+coBluzZkq6c4j1M5juJargoz3o0pRYrMhk0hmtmTbmdvb/xpQq
cynFGO5sh3yBUks6MXAv2fUoNekQ6gZdRkkGD2XI29vLDq8ixdjMoW7ceQb7vCUUAexMEaIzbawF
FLPnqrfeDHY7B9pYbn+2PUPe1l3tr0vsLrGDfqD95jaBQxm8TtvaBFZQTNlXFPO6ta13MGUgv9za
5m19nSm1TyvlAFJhczg2sk9dGOzk3DDeM550paSFq2zMsQwqvBbK3qgjgwPDL2yM9xkcc2oZsqNM
jezDYoo5u4VSs/amGHj3SP7U4HOzwT9qE+iEtK1NoKuMb7G2z1F44g4gHexzMwNhu9z2qZ7BueIJ
66ez/e1ue7ojxdQvNbg7Y/EIxZhEYXG+wbo3g61ogcHj1x06PN+tw2yOjVfBYBO4mMF2s0DZaZKS
nudt7tMZbAJdip2nPN5JScBqqPexLyUlXUNJ8XayuVxgbT0/sNsEvmX1PyHgwZEbbb1X2m932J4c
aTDe2fp354VHbX7TGWwWTzUYO8wuMJi5TeCRDM4QJ1pdX4bQKTnrg5REskCdK1vZPn1JOTs40+Ke
4H9kYEQ7M1wMXCX7c9tvtwksp2yU66kLbCslWa6kJN7DrG4Rxbj6RcTVz7+18e5lsC9cTklinQH0
nNlPW9271CWlkWLePmawDayjNARHMDiGtD1b3MRjD5baG3dgyHLkZ0sZha83UWfjx7aegQznP23+
Pp6fLd8NJrA7FDH2Y/vcjpCU8ftU/rtUvr20l39S7r/f7bSiqpeNOW3aNJJka2srW1pavv6rgyzq
dXoSg6ffGIoRWEIgzblz5zKdriBwNGOxw1ko1HL69OkUM3IyxdycQBHQRgZmj/Q4gSLAUenXVhTz
1MUOyt/YwVdhB3Nb421QKqi5NtatkUPd2/2MQc0cVe/uZ/NK8JsefM6sjaYYnt9TzKGrj72tG2/X
cO3G2/3bwL7J1t3WMaSRIto+z242Nihmz9suYpASRPfpBJvHlDbj5SgG9v5I3a9sDlUMEtsLGbJ1
VFJEx9t/YHvijiGdWZoF41TKdnK5zaGSkp7577tRjEXbuGZ1XLt3sMfDi7bdkGICTqPUq+NZStgu
oaR8zW2eG2PwvZlBot3WMaQi8txFFAPrv6+0/XjW+vGMNFGc3dL26bBI3ScMtpRtvYNjDN7f/nHH
ibV5Bze0aTuBYmbaOob0sb6jjiG72dx2i9Sttnbl1DsUXc95FJO0iX0fTZlBkGIInVm8lyGE08Us
lTStovDAVeLvMkgv3dbwWBtjJoPZhH9cmtrWOzgaecA/nt7tUuryskvkt1Zb259sDrMZbG69jdt3
vmy/7UnZsO5r/Y5tM14VZYKyFfUekZJwu/dztO0mkf3MUWep//Y36izw/ze38dZ2tlTym2dLFUsj
D3jblZSaO2o2cSzFRC+lLhczqHMperZ8NzKGvAVlc661z5b4fucQbi/tZZ2XLl26QBHhn7WazwA8
h6qqKpx99nnI5yuRSmWRTBaRTmehiP4PWNvVUPaErlA0+jcBbALgNSQSKVx11c1YteoiAOeAvADL
lh0EMgVlLNgdwC0A9oOyMNQBuBfhrLkfSo6eAvCo1X0J4EkoE8EqKNPEdgAesufyUPYFQBkC7rHv
r0PHxelQFoHlCEnTW23cUVDmC39+pY37GaR4uNf6BIAzoMj7vwZwDICbDBZ/hJKzPw5F6QeUUSEL
ZWu4v82Ynn3hPav/u8Fmtf3+JeT7dh9kBt0JymRwAZQt4J0IrDyq/0MGs3RkLautjwK0z0us/hmb
SxRujKx1NZQ14FYou0ka8sfrBuBVaA9g685BWQ8AZf3wtbZYfVcbI2djOA6tAfC+9fUKhEcAMN/W
vgraR8eLP0B7sxzKAgMoQ8dLEBm5H5IXHA1liLgawOUATgKwv8H3dXtukX3vAmViWGHw8Lk7LJZB
OPqurePPNj4geHe2MecYzOJQBhLYGp6CcPaBCMwehMhY9H1qsfURyvDwqdU/b3NLQfvoc7vP6j+H
stkAysIyH8pe8Xtbj4/XDYL/Q1a3HMJVQHi6zL4/DCCHRMKzahShzCmw+cagDDNH2hxuNTg+BqDJ
2v3B4LLa1vV4G5iVt5mbj+V4eBy0p3dA++zvq7//QOk+3W/PfwCxCgCwwD6wvrra819a3Z9tHmOh
9/lxm/9DCNljHGdPt/mOtGdusN9fhmRSPsZXUGagJ208GixqIFx4xdoujszpr9B78AjCGfNABJaA
MtEA3zxbMgi4AJvjPTbHtxDOlrcR9r6rtfFMR10h/KmFMjglEc6I6Nmy7ksfCDIv2/+Dobw637b8
AjphXozUzYHe7mfts2nkt+MgzH4VpTmKR1gfrwP4WaQ+A+WweR16Y7r+g3msY9lPe2kvoSxdupQh
QPIEeiaNVMrtpvZliHu30m6dlZTKr5mSZm0Yqd+QqVQFb7vtNg4evCGlhvAb5xXceutd2aFDNwYD
aVefjWTILTqSwbnBbZw2pCQQu1LSuhmUBGSa9eG2XkVKOuFhS1wd7OFh3C7OY/H1otSs29lvSRu/
K2UP143BO7YHZdBeRakrfV2XM+S+HWrzaaCkUb6OAQwxutxA3NVwDTY39yb1HMNuv1ek1GOurhzH
EKzXsz000TNRqK5g38cyBPAdzWDUP8Ha+N5XUOr4fvbd7aMKlNTVw5m4vWOtjblBZMy8rbnanpti
a6mydm4b5p6iGxj8ozEFK21uRYZg2VU29zH0fKm5nNuWbWi/+3yj++S2Yq62n0bhQRRnXYp9T2Qd
Hrjc96E3JT0pZ8gb3cRgj+V2ZJMZpNce9Ng9TmHPecaQAkvhNobCNd/LMoOT75OrussoteQghpBG
advTybYmh2mZffdsJiMMprU2954MkjL3/t6QQI6NjY2cO3cuSz3Z3UygL0ulaQ0MGXgGMYTNcXOF
vK2pg62zlnoPujHgz4mUlCtH4bfjnGfHqWV4n06kpLHlNt/htu5LGPIN+9kShfGWNr+6r9ep9uMZ
8MTxv1OkTYPV/Smy7h8w2IVW2XiOs3VWN9jGK6OcWNyhbSKDw9JYm/s+BqPuBpMCJaF/mJI+5xhw
qYHCC7eP9PWFsyWRGE3hhZsQ1DPYOo+2sbvZfrhjiZtfuJ2uv09NNsZ/tnwbSeCVUFI7v0q9CGD2
vzDG1QCmtakjgB9DiQqHQVcnQMkAt7e/0wBcinD9uAzAXgCa7eN97gVdSZsB/ARKLNpe2st3uixb
tgzxeBl0E/4Eug0WsHr1BOjm+CfI/HZf6FZ8G3QzfBCSXK2AJA/LUVtbxLXX7o3XX38eM2fOxK67
bo18/igop+4jyOfPwOabb4QlSz6HcnvWADgO6XQS8vE6CJKkFaH7Vd7GaoVuwDsCuAaSaJ0O3db/
CB0fFZCkqgbK3XuwPVdmfz+zMb609j+Hbsef2udeSEq4OXRDb4Fu12ugG/yh0L1zOZT72KUJsN8L
NtYLkESFkDSgATo6XjZY/Q2SfH0FSRjTtu6pkCQgD90nB9l+LIXy6i6A7qsx6ycDSRjjUN7S5ZBk
bzvrYw0kDXrcnu1j82mxPp9EyO2bN1gWrV0LJHnJQHiRs+9rbByXdrlkdoXNxaWnnxrM/2ptqgH8
AMplnLY5AsAbtsYJUI7bJIJEdbnNpwKS4jVDUtBTAVRg1apWy7NchlisGiNH9semm06xvfk7Qg5e
2Hp+CgWXuBnCj14AdoCO8yEGw542Xj0k9fvAxhwJHecTIUnOOdB9/wCIJM22/TzKYBmDcvjW2bpH
I5PJWP+ToLzMR9m8CpCM4QkIL7YH8C7icZc6fQhgSxQKVQh5hLe2uc8EAPTv39fg/KrB7W0UiwkI
n9+EJJEViMdfsX0aBeH5bgDeQz7v71kRkhyVY+XKJPr164dsNo1YrIh4vDPy+ZdQVgYIn8628Y5G
MrkS6XQcIoHLoJzGbxsuZBDyLH8AnQVLIFxdAb0zKUga12SfpO33Cgi/agxH3rR1nwblvJ5mv89H
PL4GicSPofftKIPVDwF0wbBhw3D77TeiS5dn0Nj4Maqrk0gkXkAikUBFRTkSiT+jomIldtttK8yc
2Qfnn38SisXPkUg8hrFjh+P00w9CsZi3uXqpsP97AjjW5niJ7f8S1NWVY9tt++CII6agb99eSKW2
tnWNgaT4PRGPt0BnZw0kTZwO4AMkEs9gxoxJ6Np1GfL5HdGz51z8+tdX44c/3B6S8H0InRWrIRzv
BeVM9vzAozBrVlfMnr0DYrEk9P71M5jOg97LStuHZVAe4o7Qmbvc8CWFXC4J5RF/F9+V8lf7+2yk
7rl/sY9uKJUEngLgiLW0Ow7S83i5B8Bo6FSdH6nfAaIm3maUfU8iZKNvW9a18Ke9/B8v8+bNY0ND
D8bjVUwmK7j++pP49ttvr7Xt8uXLmUh4OIgKSjrgN033PuxtN/F6Sprg3pO6aadSFezVaxiff/55
kuR1113PxsZmVlZ2YocOPRk8a13q5xIheV/G4y6BcwmGp0Ty9Eb+/HYMtknXMHgAepoqfzYf+d89
TF0q4FJDD8vgHn/NlISxjrJnIkO4lSRD5pFCpP+fUVky3PYpbu18PHdgcI/lSgbv4i0ZpC+dIvDM
2N+2NoFua+a2dqsYnAhckuPz8v/beoVWMth6uU2j26XVMcQrnMKQ2cHj23mGFIdftP9UpD+XICcj
cCiL9BH1FnXP0goGL2yHW5X9704ZB1E2dT7f6HiVDHaQ7pWcp3C6yeDtMek6MoQTKmOIv9iFQRq4
O2VDtYySovVhSLvmzhL3Mngzn0xJepqoDCwxBmmnS+TcMzWaJs/xw2HpKdzKWFlZY+08pVeapfjk
eOv9+l46/MoZvGh9nxKR/c9HxosxOBg4nDxmYm+GuIV1DJJtX5fjhUsMt6UceA40WCdYikOOr1MZ
3uV7KBu06Bwch3yPwnkh2z6P/+mwCN64kuA1UFKuvIV3cZx1/CyjpLK+D4Wvv8di7gmseZSXuwRt
ACWZu57BC9fD+Lj3veOhS7WrWFFRx1deeYXJpEvcXZru72E1Ja3vRNn++W/RczbB4Mnt++fBv99g
wPsyAgmWl3e0UDPu1Z4lcCDT6X1Y6tV/IGWHWc5Se8WpkfH8TFn35fcQy+tM4DYIkrtvW7rhm0zg
2xALfRXEHgPARZD4w8tc6Po1AkH5DgAbArjTvr8IsdNe3oBY8Lblv8kPtJf/x8qTTz7JbNY9JC8j
sJCx2GlsaurHVatW8brrrmefPuuzV68RvPjiy/jss88yMFv9qKCjeUoN/GeKCN1OecvubgfPlpST
wv327EUE5rKqqhPnzZvHfL4T5UX5JqVqGWzPPUw5VRTtgNyEHgQWgB2GWzAY8Dth3IcyzO5OqU9m
2TPnUwSrB2WYP59Sv5xAqW6ckclTXnYLKe/ZMgaHlJcowj2dMsb2TA/+cTW1e9r9nWKQnQnpS4XA
8YDVPt48ilFtpDw2X6fUNTWUAfbDFMPdRBnOL6SM8D2sym4MRPIUhvAbUYeDTSKH9AOUg8EMg9kj
FMM4gzKud1VmjvIKXkgxVeU2t0kGu+coNZGric+0thczqPfqKMedNyjVVTEy/2YqkLQTuLzB513K
67aCUnNNoPDjMdt3D/FzpfV1MgMzd3ZkzT+j1IULKQ/YUQbnvK35cIphO4ki2q9Q2Te6U16vHnC5
mcKPWync9nRva8sYkqcI9JOUoXwjQ4YZ9y7uTF2S6m3tB1q/N1vb023cyylc+gNDiJgptlePMDBB
eYPzJOuvG8XseXDsF6zOVYynUo4NW1B4cC6D5+tABi/9csqB413Koziqsr3T5rwrA6MyxvZ5FHUm
3GltL7U98HUdTJ05tZRadzr1PpZR3q0LKUcJf9dPiMD4bQYGpu3ZMp3Cpzpbt+PyQJvTq5QXbhcK
N6oNnptTjIyvr4F6J2so05YFVJDtHjbPBob38AyKKXuDung6LHpTl2A3q1jb2eKmD/1s/JsJVDMe
dwb+esqJo5xyXHI8rqXOlsn2W7/IPq3tbFlAxaP0uY2i3uMnKRz0thfZGGdH+uhMnZevUqr0c1ga
ZHup7aUziw/Yc+u+9IRsApdDcvM/41/3Du6GUiawHpLdxyD90lVW384EtpfvZTn11NMYi+3Itp6W
xWIPXnTRxcznmyg7vUeYyzXbLflKSupxA0XgRlPEcS5LvencE/KdSN2hdI/TiorxnDlzG5YS7Rfs
8DmeQaqVY/DidQIQYwi3sguDFDLB4KH6McWoxCiG4kmKOF8bGe9eBs/KU+3wGhX53YNFZyliQDt8
qyhiEz0M32OQLka96V5mkFR8Hqnf28abRXlujqXC6fjvTxh8SeXuHU8RlSjT2cnG60ZJNKbYM85w
nER5X/+OgRAdEXl+obXz/9+kDv2jbb6T2sAia/Oaz+Bxex3FiDaydG79KEbkJ5G6p1iaLqw7xdwe
RzGpu0d++8L2s4oh/AkpfElStmTRudVQRD3q5TuPkgK5x2PB4DGGIdeq2xXeHXnueoZYhwdRRG5W
5PcWBqnziZG6mRQezqFw0+flWUwqCfyUelc8FmSSpSn0tqUY34Mpj9oDIr8VKWbD/z+RwZt8sdU9
zeCZHbVFvdHgU2vzqmfIBrMtQ7abx6mwIWnrO5qOzNPG7Ripcy/uNIVny2z8FsqjP+p1SoqB6mZ9
dbY1/Y3C1RxLLy4Tbbw6ihn6hGIaXUr3fqTtoQy4PJ5iDNcweJI/EGk7l2KAaynP3BttvzzUycXU
OTE78sxqW+OD1AUtuqZe1AXiEwYp4vzI7//obPHA5MMpHCMl1U8zeBLfRDG7/twag+/b1JnmkvXo
2eI2h9XUmbKa0gYkqLPoiUjbCxnsq9ueLRUMmU9I0QIPUF9nsPMA79Gz5T/PBCa/RZs3AWwMGVHE
ITe1/2n5KPJ9LgJD9x7kMualM2SQ8559b1vvzzRBDGoSMhr4FGspc+bM+fr7xIkTMXHixH9z+u2l
vZSWiopypFIfY9WqRQi2WkuwevWnuO22+7Bs2WaQAHwNli8fjljsCQB729OzIXPWdyD7rwpIUE7o
nvQuZMe2AMFz7XXIbmwlWlreQ21tH6RSb2H11w5lb0Gvq3svfgXZ7fSy/7tCr9HfINuzlfa3xcaK
23jPQjZHcVvTq5BNzjLIBszL3xE86dxy4z3IfiYF2aCtgCw3/LnukGLhcFv3JpBN3ss2h8EIHofR
NSUhm6+noPuke+09BnmeDoT80YZAd8q3bL7XWP/P2Breg6xHqiE7nVbIbm5Dg8M7kJ3VSsi778cG
swrIFuyNNnNLQnfWv0MWLAVrQ2gP19i6PkCwS3sNwWv5dcj2aClkG1gB3b0/smfvgzyjV9g6YN+P
gI68FGQp87HtgePPW/Zbyr77s68jeAmvhOzIPrU+CeAEyJ4pAXmkHm7PLbLnktAxXA/ZRK20urXh
BSGc7mVzaIX20o9xQvvzB4jErLS6KQB+ZzBYDpmmxyHLoUMgm9PjIFu5IyBcfcHg/y60t69DNlZv
RuaVsHn0tP/fsDkNgOxzAWA4gk1m2zW59+0SBI/QzhBOHQkF1ABk+7iJwfRtyNydCLjzJsI+vQPt
0eYAdoE8RB1GnSEcdPzqC+FIAbIfvh0B1zew+b0J4anbWsLWNtXWVG9jJ+25Rmvzuq17pa2nAsKR
RKRtFBYJ6+fn1v4i6N11uE6wtUf33G3mFkH7mrP1fGx9fGawiNt4fSP9Ad88W5ZD50AK4RxaYXN7
D9qrcoQz1t/DNRDuvmtrKIPenSxko/wSpPishyIqzAGwB4I7xRuQTWfW4LYabk+q3/rYWqJ7DlvT
V9bPbw2+h0H7DgB3Wb/rthwR+Ry+ls+/UrqhVBLYGPl+GILfd3/I3jANUYg3ERxD/gJREPeTd8eQ
A6E3DdAJ+Ot/MId1LSxqL/+Hy5IlS9jU1JfxeDMlZTqRmcwA7rHHARazr5FSLzxA3d49WwMpiYrb
rXWikqDXU9KjE+ym6PZHx1FSkiKBQ1gojOP06dvygw8+YENDd2YyuzEeP9p+n8CQkN1v9w/bmI8x
ZESIxu673MZTEnfddp+2335nz0ylpBIFe/Ygq9+V8jbNUWqdIiUJOYkhoO9L1v9BlKdhjpJcuX3Y
TpQ6MUupXWoo9cxRDHZwbrvTh0GN5/lzXXr5gtUfxuDp3NX6dY/mPEP+UFdf5WxNh0bq0vbszgxe
ynFb/yxKVek2WnMoKd1eDJ6B/SmJxlhK4uRBkidbfT0laSijpBeuNj2JkmS5bVA5JZH7E0PcwmGU
9+2TlKqwnopNV2P1x9v3BCUlKRosd2Swdaum1Jcn2PNuC+aqd7eFWt/adLQ9W9/aHscgiWq0535A
xahzEwf3EB3EkFLrBGufjcB+O0oVmaNMAna2cXoweBh3oKSALoEeZ9+H2X48SUlN85SUuGh9NlLS
zOMYVG7HUN7onh0lGtTbgxD73H5oa/JsDkVKcrW1xpUQyQAAIABJREFUwekY+/9QhvfpHgbbshrb
j6mRPS2jpM7HU++bS7guoSTAIymJ3+E2xxMo/NqPwXvd7VjvtDGOZrBlbGawvXNV5Y2UlHIEg/2Z
ny1bWr+7GDw7RfbJs6eUU6rUPay/Hez5aupc8HzRLlnbiZJU+57XW/vjqfdqEPVeNDN46XvWlZz1
dSyDpsLhNpLhbOnGcBbsQ0kgqylccbXtcTa3MTZeR/vNzyp/BwuROZwX2cunqTOq3mDhEQS62LOu
ISjYHjxFvQdFVld3sPntb3tZwZAdqKPBxU08ujKcLetWHTwHEl3cALG4F0BX4b8BuP5f6OdGhIBU
CwDsCblwvQDZBM6DRBRejodY5lehK4sXDxHzBoALI/UZKGCYh4jp9g/msa75hPbyf7wsWbKEF1xw
AWfOnMXdd9+DN998M7fddjc73KKqgNsZi9XYy7+/HTgeAiPBzp27coMNNuCmm27KPffci4ceehgz
mQY7oBSa4NBDD+WJJ57Ea665hi0tLSTJxYsX8/zzz+ecOT/irbfeytNOO50HH3wwe/TowYqKSkvj
lKUbvf/mN7+xQ+iyyNyeYAjQO4ql+X9ph6qnURpg83G7Mlj/Hoj1TQYD+i7223Krn2WEYZodhgmK
kXBmdziV4WACA9PlIUCKDMFxP7ZDExQxjqoZ45QqsIyBsD/OYNjvqtEnGQzXz6HUpKdTamrPHVzF
YFs4wNbjhNXTZg2IjL/G2joD6s4kTkivt3ntZm1XUQxKtbXpzeAw5Cm3zo30/xg9bEtpoO1ZFNF1
Ap+hGBN3TvG0c00UA7HEYDXb6j3923HWV4t9tmcImTKTwtddGEKzNFFqZ1f7NlA2n2dSzIQzBBnb
75kUg34ngyPGTvbX882WGRwcx8R85XLuXPJL269OlAovw9KAzJMogn25raU3w4UhT+FLd9u39W1/
3AnFbQ19bj8wOPaiGCBnlOttj2oMPsMoPDqcsp2tYMDbgQwp6RxnPTxKkTJD8Lk/wnCJ+jl1YYgG
3Hb1eJ4K1O31ezBcctzR6i0GZ5SoCcPfGIuVWe7wbSjV5+YUQ7WJzc33eidWV3eyuo0NlpvYPnmo
Hs868zyBHKuqqhjOBX2KxQqm056m0evT7NSpM+PxeoaL8WWsq+vOysoO1Lu2M6Vqz7FXr17W7ySD
STMBMJ8vROonUe/SlbZHm1o/E62+ztbwlcHyBINDGfXe02AVNSH4Ld2kJRZzZ5qD7fnl1CUvTuFU
dJ8amErVUBcTP1uuYchmMoeyxT2bpYzk13Bb5+VPKPXRLrO671tZxyxCe/m+lJaWFp5xxrkcN246
t99+j3/o4fvPyrJly3jkkcczm+1IOQlcEDkYrmEsVm0H51Q76PcjMJbJZJbHHHMSV6xYUdLfHXfc
wdGjJ7Bz54HcbLNtOX/+/K9/W7JkCfff/1COGbMpx4yZxDFjpq113jvvvBdFvGoJVHHrrXeyQ6ur
EYrPKLu+SRSj1snaLrJ5v8yQNcCN8d1LuEBJXdpmQdmEwZi/SBG8LSkm4VlKslVBETRnHOspeyhS
Ho8dKMlVDZUWLE4R/+kUEzXbDstyyolkBcXEeMyvQW3m5IxctM5jAUbtKj2DR5ZKhUXKXqzGPkNt
TZ6DtYnBJu1Lhlt+vR329RQBLafs/2pYal91A4PH8A4M2QgGWV/HRNrexeDJ67miP2eIr9iVsg87
gGK0nQkba/AeytJsFYspBsUztGzB0owhv4vAopZiaJwRTth8+xgct2GwKexAEdPJto64/d3L9s8l
rtU2txmUNHBPBmcWlzLJozeXc0bZU+wlqXcoxWDP10pdJNI23ma2v844OTw2tbW4ZG4ExQg3MTj0
lNs6tqbehYsNxp5Ltsr+d9u1QxgkZk7U/aLksf1qrX4og7dvHYX/r9p3lyTvYmN2YpB0LyNQxkzG
GZcDKaY6y8BUtn0PwdKMM3+xZ9OUtLq37d0eNnfPJ+3zdYmix9XrYetJce0ZQ5IU07Ut9c6fwW7d
htg8GiN7mmUsVkmdOw227iEE4kylqgxGft5M5tChwxnsQH0/MxwwYBRrajoyFqu1vg+gzqRqW9sU
Cr9y1OU7mo3I0wwmGGw337e93Y1695zxc8/ytWUMKVK44vu03NplDWYzKEZ7AENUgk0MfkMoqTYY
NA7fDSbwNUjh7SWLYGj0fSr/HkfQXv6fK/vtdwjz+XEE5jEeP4U1NZ25ePHib/38yy+/zD59hjKT
mUER/R3tED3VDp4KBqZoKmVEfpj9fxpzuS246aZbl/R50kmnMp8fRuC3jMXOYXl5Pd955x2uWrWK
gwaNZiazlx20I23eJ5fM+80337SDazsbbyf734mye5WOZghQ3MQQlmJCpM1pVJgOVwn3pCQ6LXbg
PtjmEN2cIel8lsHLdA2lmklb/U8pAtqNpUbtQymCdbutr4Ii1rfZXPzWXMkQimQoQ1iYSgaHmGcY
pHOvMUguPNB0ue3TeTZ3V5lGCdwUG68HxTiTcmApo5iKy2xdHix4P4qAucH5cwyqx/1trS0M6reb
KCPzWorZc2lKkVKh/YSBKGdtHhdR0qvZBqetbS8Osf8nMeTpvYny6CwwSG9+ThHmURQTfZT1tcbm
twdDeItp1ucPGEK+5Kh0abfYGM4susdvK3XB8HkfQ6UerKKI9e0Uo7gBJbnzNVdRUqCbKOK6HsVY
FCiJzQ0Uo+RhavpTxHhHBgasA8UkXUJJ53x+TQafPRlU0kVK7Xs7Q+7ZMtuXbgwhYlwV6A5FHobm
TAbv0JsYwhDlKab0NsqRJuodfBJ1GRrBEIrmMIPZVxQz+gObxzQG/CqjpLkFSmI3iyFkSZbB9MMd
rdwk4xAGfGm0+sGUpOssm9NONo/DGfBnqK2zlrogXcHw7mUZJOvzbR3jrY/LKBV0Jw4d6h6+/Rku
Xq/aOG3PFg+Y3JXy9v0JgRxzOYfR/ja3ada2D3VOzbP+XK29AXUJuJ1SFReoS8hICtf9/fWg4Ncx
XKo62/pSFJ7Mo87I6Tb/o22fVlF46e/1ZrbuSSwNnzXXYFfLEGR/gs3NVf5ufnCOfV/35QRIdTsH
spJ+HlLZft/K/yqj0F7+b5Y1a9YwmcwyqCXIQmEb/uIXv/hWz0+dupkdBB624TcUke5IEZQuBLow
kai0A3UZA3MxiiL6K5hOV/Cjjz76ut+Kig6UZEdt0+n9eN555/Gpp55isdiPYiJK553Ph3lfeOGF
FLF0SdUaBgJ1uR1krRSzVclgS1Rt3++gJAxRL793GTIFvGp1HmKitx1oHu9tNMWcZSjC7uq2Msob
cBuD0Q9t/KMpyeOp1tcya+c2fAsoD8KVlKQBlKrOGT8PLzOMYpyqKZWfx7hzCYfbFQ639qdTKp4D
KUbJQ+lEPZo9BE40d/AHkbVtQ0luWqyfLvxmHla3x3RC19Hm8WikzQkMamqHs8eNc5tGV/k6A+x5
YVsMvp4reLk9++dI/8cx2I11oZjhbQw23RmyYPShiLZ7dzvhbKWYhwRL8/M+zSBh+jhSfwCDPSEp
deVoBoZ/hcHgI4oJdzX6GooBmGVt92GpZP0uhnA3l1HSn1MoRilOMUq1DOGPJlP4cZL1uTuDt+7Q
SL/LbZ+2YmCGnRnLMth4tdg6exksorlo/8TgufxhpH5LG2+zSN1ihpiQz0fqf8bAtJ5FMTA/tvE7
stSc4zfWNsmQIaSGYqRylEd0lmJibrA9Kj1bxOyMNfh53ZcUnjVSDIvX/5TBhMPfsWoGG7moZP1e
9uw53GDkNob+XnTi2s+WKspcw+uPNLgNYCneOFPtJgmPUZfThbZ+NxNotT1OMUizPa6lX2b8stFA
XZDB0tzfn9nc/GI9kP8fe98dZnV19D/37i17297tLLvAFnrvCrI0UUBQROxdERXFEolGRbDEXrFr
NNEYe4xGNMaYl2hMLIkaS4xRxAZqgr0gnd3P74/PjHPusuYtvyjGh/M8++zuvd/vOXPmzJkzZyoF
aevvaJDOLJI9pZ9fHvRhuS5jKIwat7rkVhf66xcC/ycVQ84WhsN8KgwdO0hEzvkaYdrStrT/iNba
2ipvvfWWvPce664+9NBD8tBDvxdm0/+nsLbnHGFMkxXcyYgIZOutB7bTY/LfAFX7PCMej3/Fs2uE
Gfc/F0bQXSyMmPtQGKk2Qhgl2PwV8EX1+b2Frr8l+tyrwrk2CvFwpDDeS4SRgWuFUX1jhJF3vxJG
Il8hrG5wvbDCxEKF6RNhhQ8onFOF7r9l4tGKn+s7c4RRkBuEbsV/FuaUP1IYhWh1e1/QZ0qE1Q4m
i8h1wijAE4TRquuEa3eUMLJ1kHgGqgfE677eq/NOCe/Kc4QRiKLw/kl4lxYRuUkY31YsXjHm83bw
GxFGK5fp3120/4zizCp97CpexeR/29bq/F4SRnTeKh4xXCasNnK+EGft1TJtFa+72hb2hLCCjFVa
uE3nGGnn+fZaUfD3CqFb+L96NyKs7HG9UGcRE9LL+8JIzAYhnb6vcN8tjCXsKVy/9lqxEL9R7X+G
eKR1qzBCuUhYfeIw/bxt+1fneHt7qlIY7StCnN8jHul6ojChxtHy1bhIKLzPCffPs+L1kjuJZxw4
+Sve3yCMiv3ftITQZX+hkM6L/8WzUWFsZ5FwD779L579OlpMGBW+g5Av/EgYpmCZBx4R8qE/Cvf7
V7Va4bzPFdZa3lOI28lC/nensJZ2kRTSsrX29uv/dG98861IWEW9XrzGzH9a+1o0R1vad6+5OfiX
KCra1By8du1aLFu2DP36bY10uhbJZCn23XcWZs+ejUJNAkAt4J6gNouZ7QcNGokNGzYgmbSktLeB
GqNqiNyBVGqn/4E5uMO/MAf/chNz8M0334z2zcERUNtifi5WqSAG+qhcA5rjakDNUWiyGQpq2ZbA
M+x3gJvWLGjhU72B7wJqLmpA7cve+t5NeiveF9Q47QhqmPqB2psGUKth0XM5eG66N+A5yYbCtQNv
grd9S4JtlQAS8Pxj+2vfluurFTTpmMYtrTjIgtqrq8Bbvvnq5HQ+w+C+Qmmdw92gOScLalVMI2C1
ni3qNAsGfPxQnwnNwRbRnNZ1Gg2anUyLZ+bZ4TpeE+ibtwjU6JWAmqt7QbeEHKitMnNwCaihqIOb
1qaAmr8uKIwONjOV4eJefSc0X10MmoMbFM8ZeN5J055NgEdP3qlrN1v7207X+FrFkWk49wW1a3W6
3n9QmH4EBtiYT2kpqK2+FzRnp0GT5Uqd02E6/8sVhr/B96nlmsy2wZn57a4HtYEWsGJVKK6Ga9a3
h/uoXQ43B1vk/2C4OThc/wX6+WB993VwHw4B6asJ2azVrz1I18kq3+yvv68F/WXLQHrPgbxlEVwz
NUthnA7XMJZjU3NwMcizuuk63QvS3iC4mT80Bxtsu6OQt0xGW3PwgAFbgftvI8hX+irMpqkMzcG1
IB02IDQHFxVZou625uC++O/NwbN0TU7S8S7VvrtApCtisTpEowMVhh/CeUsa3HNuDo7HpyMaLde5
XQ2v3lIF8vRr4RkNtoIHtNEc3LNnH3Tq1AvkOYQ5GrUAnm+XOfhooVrg70JR337+09o3Kkhsaf+5
bePGjTjnnAvR3DwVe+0188sAi9bWVsyZMxexmBX5tuS19YjHG3HYYYcpU3xLmaylKZkFmsJ2Qi5X
iZaWFgDAww8/rFFmLBzer99gNDdPxUknnbpJYEhraysuv/wqjBmzE2bM2B+vvPLKl9+1FxgSwg2Y
ENhBGWKDMqUuWqrpR+BB+TFoDq4BzWgr4MLRCLivUU4Z3WzQB26iMtYaHcOc7IuUiWZAAaU/KNSd
Az98z4D7Rx4JmsEsy34cmzpv51DovA3Q507ghxtA808cPFxGgAEIn0JkHhoaeqKoyBy7S1FobjoR
nmDbzMEJ8EDurEzefM3207lvBT9UToSb0Uvgvj8p0DzVSXFhAtbPgrEvgJe9GgweLschkTDT2pXB
s8/By4FVB+PtBgovc+Al+jrrZ5NA4aEc9Bn8C1iloELfq4bIfohGy7TvCQpzV/3b0uBspfPoo3Rg
0aQWGDJF4Z0ON0+frvCY/14OHhhgZr88KGyYL1kKFJhKIFKBeLwEkUgSTlel+l1/XcNf6f/20wGM
VF8D0ulOoLBcDdJXmIR4tuLSHPQbFBYT9i2gKgsKTCUKcw70ce0FkQrEYub/Z4EMFaB7QVLxVQ3u
k6GIRqNobOwKE7ITiQpw370H0vfjoDCUxwEHHIBo1CqmNOo7eQwZMhZVVV10XWKwkmnEUVfFd0eI
1CMaTYF+mWbOfxvRqOG5RHGa1z6uAn16DwMFqyxKS7ugqKhc17orKCSO1bGqwb1WDXN58UorFuAy
FplMHYqLq8E9OQrkByUYPXoChgwZEsCRxPDhE1BV1Qhechoh0gOJRF+MHm3rYmldzBRspQht/bMo
LTU3C+s3B5Ec8vl6jBo1FslkBxQVVaO8vCNGjZqCI46Yo3TWBJFq5PN1GDp0KPxybAJ9FjNnzkZ9
vUWGl2PChAmorTV/0wGgcLoXREpQWloPCslNSlu7IZWqw5gxUzFw4FYoKWlAU9MAvPDCC+rzaClv
vh1C4OtCXfd/evsGxIct7bvYVq9ejSuvvBJTpuyI4uIhoLC0UJnbAP1JoWfPvsrsLYLOqg10QyRS
jmQyj3322RdXXnklvvjiCyST5fB0BE9DJIMXXngBn3zyCc4//3xMmTIFM2cegsWLFwMAHn/8cZx6
6mm49NJL8dlnnwEAVq5ciX333RfNzaNxxhlnfOUcli5dqnCdAfoF0QG8Q4da8BBbCwp7x8JrY66B
H5I7gAd/CSiAmCB4O3hrrgJv7v3hWo403AftZnh05L1Bv/cojkrgAgPAg7ge1D54GgfXfln6i3Xg
4Wq35zvAIJC9Qb+nYaBflvV7MYqKzLetI6gt6aFzOFfXzA7UZvBADYXYfvD6vJaDcV9QAMqAgQed
QKHzSLjAaPVjLVLUagqHlSh+ojTVBfSxGw0ewiY4baNr0govPddJYdoPLjxZzVXTJFrwz19BYb1T
MCZADUoGIhWIRqejW7eB4IE5E+7fdTD8EA2DdkYo/k4OPntJn7tecX+awptH//79daz5oAbscHjp
shGgcGE+iAmIxFFaWoZcju+uX78e+bxpnvYEBaowQvNcxdO1oEbsBnjJsUNgAgbxORDUDi0EaT6C
wpRIG+E1abvrPN5XurA8druAgs5oiBSjoaFJ8X4DKJQ2gAL5lGCtLFWM7ZFFoA/cfgpfL5COpsKC
CqZNm6bvHK54uwYiCcydewJSqdFgEMNqkJ4P0n73AGlpJESGIB5PIBbrDF7CTkckchQ6d+6t39tF
zC5ZPcBL4BrQJ7IHSkurEYmUgdWHDEc3wLWfu4M+vXvBS/6ZUGlCeR14oeiv890RyWQOs2YdiuLi
MtDX8SEkEiMwZ85cLFmyBNlsBaLREhQVpdDcvD3OPdeCV+aCPsjTIZJBUVEGFNTPAnlUT6RSHVBZ
2QjLiMC9uhjx+Bw0NPTGlClTMHbseNxyyy247bbbkE6XgnymFSIbkMmMxKRJltdxJLinK8CI5jJd
k4GK6xQGDhwI0rDhhyliunfvpWt7G8hrOimOf4xksgSHHnoYrrvuOqxbtw6JhOVHnKE0svnbI9K+
o8N/WvtGBIYt7bvV1qxZg379tkYqtZMeEJafzpLc9tIDwpyxa8ADZ4EyujzGjBmLDh06K0PcH8XF
U9Cjx0Bsmk5lAo477jh06tQdkUgnUMt0CpLJTjjwwJlIpWoQiZyC4uI90NjYF++//z6y2VrwADoG
InlUVdVi8OCx2HnnffDaa699OY9nn30WyaRFyjL9QzLZRc0PVs/VEquOUCY0AdSwXKGwHgceeMeA
2oBrA9h/qbjYWpntHvAkvvZjWrX+4KG3DDwQj1D8fQ4/fLuAAp2Z+erhkZmWbmMyKJyZBqBC16VK
x+qnMPcBTYj3woMbfgBqvzooQ+4AN2HO1vfsoE+Ch9cCnVMJKMR1AAWRefp3Eh50cpL275oDakcG
aj+94PVvHwZLrZkpPQ8KQmGy6GLtp1TnaCb7hMI2Q+E6Gzx4Vuh4e8FzolXqeEnQXPop3BSfhsgR
iEa7YdasOZAvherZ4MEemi9PUlxeGcCR1/V6QmmgBDwMaxU/O0Eki3Hjxim8k3V+jYpLuzxZ6pAs
vKRhH322N6LRUvTtO0yfORSkC8tLCZA2m+F57iz/ngmujyjNZ0HBdhuFpRmeD/I4kOZ3gWtmwzF+
rnBZZPwCUFOcQ2lpB1Drac8+ATdXt5cses/gWSsbd4uuZwOooR+IoqIRoODcAGrzKKgPHjwWheX9
HgIvA2ld6wWg8FICCsVdwH1xIkRKsOeee8I1iPOCOZuFIgavUXyQ0oGZjn+u8Bg9Gs32hV9+Uvre
XO03r/026Hwatb/tUFhC710UFaVx+umna18/gMheiEZzmDJlCgpL6K1vsxajFK93IZWyILE6hdMu
mi/pO3tr31nE4036/jDQetOKROJo9O7dG+RZFlT3N51LCxgQ1F3hp3DIfWyBKKshUqIpcK4KYL4P
5LPn6posQDq9HUaNmoh4POQt3w4h8AYReUzoRRpWEPlPa5tRlNjS/tPaypUrsWHDBtx+++3IZsfD
NVEH698Z0BxyLygYWk3bKrgG7RO4qSUHHmbDINIHxcVWU9SSGLN4+LRp0xCLNaPw4Fqqz3rkaHHx
Lpg6dSoolD0LM+XR56cTIpF5KCurxXvvvQcA+Mc//oFkslQZ2HMQeRnFxZbVf28wGrMHmLS0Cnao
UZCogGtb3lUGOBg0lxpTuwM8TGu0/+e0n0/1+1fhSaPDNBZHgT552aBP8/EZAWqj3gSrYPwSPESS
oBDQW8foojCFPoGvwetyNoAaxdGgv+FeAdz7gZqDpOJwfvDdEXD/PcsTuBGWnLawDqlFgWbhqTkA
aiksArgjPLHzSqWLSfAqBA1wYcjwtlrxH9W53AkeIFvDo04r9P8EqKW2sY8HtT5GPztp3+ZvlQUP
t+f0uYMh8hESCfOJDM32Fo1q6XUsKbKZ4qaDwkYdKATUoNDU3gqR7RGNmlbSDuO34ILGkfrcOtDM
GNUx2+IsBR7cdvmoAk3px4JC3M5gbsLuCu+xwTw+hGsCjWbq4MnA7UI0BK5JrQD3vvVhPnapAN9r
wYO7CIVR448ofEn4Xm8FhU9BYXT0K/rcBl3jMSDdNcF9Qd9TuJZDJIWOHbuCl41DQGFrf5DWY/D8
nhu0jymgJjMDag4fRlFRmeI+jBqfCgp0G0HhJqwR/n19v6fipgSkrRz8ErcKfuELo8Zvgee2fAPU
THcGaXxfnYc9+wZEihGPV4IXpFbF8QFKQz0DvL0F8pJwLRohcgxKS80i8xRI84ZH05jaeL/SNQdI
bzUQ+S3S6Vqk0+k2sFm9axP0TgP5xrHwi/QEkJc16/+7obD2912K2xTIU9lvNjsYhbzl2xEdvFxY
xDAhLGaXk8Lk0VvalvadaYsXL5Z0ukZyuVKJx9Ny5pnny/r1FlF3vIg8IyLDhMrxG4Q1ImcJ70bF
wqhNi4wrFUaeDhFGrb4orHe7o6xfv0rq6xuFdT6ni0gfyeUi0qdPX9m4MS+MZLRIsS7CCMwNwujV
u2Tt2jr5wx/+KIzVOlUYDXmzsPbqzgJslHXrmuWBBx4QEZGOHTvK6afPl2Rye0kmfyjJ5AQ58cS5
OsZ9wjve68JiPI8LI3QfFyYFaBBGZq4W1kQdJazwOE8YRXe9MEryKGH9z0Yh21grIoOFEZijdC6f
6nwuFxYKOlhE/iDkdYcLU5BOEEYx/l0YxdcgrAfcQ5+LKR5eEJEpwtqga7XfEGetwni2W4URgOeK
yDgpZHv14tGvCfFasjcKI5YvEkZk7qb4KRIvStQ16KdRGAXcqn9b66GwVYtIlTCyV4SstFTxuVwY
QftDnVuJeP3TlHgk8PeFNPC+iMxXWBLCdf+TMMr1t/reWsVrkzj9PCeMXH5RWMt1KxE5VBgB2SRc
mz8IYNGM1cJI5p8Ko0stwvFRYcTpEh0/Jqx9/Lri6QdCD6J1wijJw4XFpzpLaysU57YGVhI+Lozk
vlFYAGpX7buiDc4sMttqYE8XZjE7U1g9tFEYwbtaGFG+Tljg6llhHd2TFN64cG2fEda/7SmM6v9A
WKzqLyLye12XmHCvTxHu418K6TAjXEMRRvnW6OfXiMgFirsDFW8bxOkmEsC/XOdwqrBO8gYda38R
+Vyi0SMlEqkWN8ZVCSPbYyKSk9WrPxHWtu0r5Ev3CiO94+KFuGIi0ll/V+r7X4hIo7S2Wg3kkGYz
wvrNv9Pf4XfdhVVfm4TR5MMU5lJxsSAtXDeLwrVm/bQK6fX7OnZcuE9+J6Tr2xQnkA0b1gj3b6Vw
/R9WGnpfxx4lrM1s+0mEa1EmIjdIIhFXeDboZ+OERcz+pnMJYVsZzL9YotEpEotBVq9eK4xmvlpI
Vz9QeBPCyPpHFB9dRaS3jvWUkKf+TUiDs4SJVi4XRncfKqSBiJBuRESKJBKp179DvG1p/662mXVL
W9q3vd1yy63wiLt1oLmyTm99u+ptboTeZtv6xsyHm4iuBvNTnQlPBhoGAPwekUg5Zs06XN/ZBtFo
J0ybtheeeOIJJJMV2v+9oPP2THiE5YHwRLHmO9IbhfnlroPIVBQV9cCoURPw/PPPAwDmzTsdxcU1
KCoailisA7LZavBW3h00H64GtQCh5sQic68E/ZS2Ax3G/w4GlFhlgZ6giakf6Bv0PVDruS28ikSp
9n23wjwR1JLsoXgL889Z7royndsb8Fq7FhhyuvbxOagNzXyJM2oQM/CAh+6g2cmiCN8ENXbm82al
rzprX71Q6Et4HGgSuwOu/cqBFT/eArUs5ts2XT97GJ5nsVjnv1Bp4yJ43eD7QE2EJabNgFq4dxTv
Nl4N6JtpvmNZxb/5FT6l/4/UZ8eBNHygft4dpkVGAAAgAElEQVQAzxsIhWF/MBinB7y6yj7wRLbT
Qdq3AIJ88D5ATUcjSOs7BJ//Q3Fq1TBM+9ag87lb1+kwUNNm1Rj2AbW15XDzfIgzM4nXg9rpJaAG
z7SilrwboHY0pnMxbVyDmoMtYfUIkIYOAbW1U8H8k38DNUJ5UMPXHdSGXqzPRRXmMxS2a+Hmzjyo
yZkG7os9FL79QA1emAA8Bfr5HQuR7RGPV2LMmMlIJksRj++BaLSnzref4uFEkI7H6zg1KMw/dws8
gfVche1WHecqUIPaG9xPk9GxYw+FbRpIK7N1PfZVmhgGasiWKL6Nx50GN/HG9bMLdDwmIk8mk4q7
p0BLwHB4hHwZSKe9dLyH4CZrc72xZO1ZnddycD9YQuYGMFrbAoxOC9aiDCKN6Np1gAa/1YA8gUE1
I0aMQiFvGQNq797RNTb/1ztAfnS/wlIUjLcVyC8mgZrUDhDZCZGI5TBcCZFWRKONiER2B/f5BFgQ
VHl5PcrKuiAWOw7cC3cgl7PayKUgb/l2mIMfaefn4c0K0f+tbWYRY0v7Nrc333wTHvlq1SUA+liZ
Q/ZPlDHGlBF0AAMeLkYslsOBB85CNlsJ97EqBU1HFlG3BlandeTIcco8X4OZ/RKJBjz22GO4++67
UVXVBdFoKeLxPCZP3lXh+g1cSBoFmm6vh1f0+ARk5I3KlC+HyDnIZCrx4IMPws1uEbjPTxaFvn1/
gvvb/E6ZXU8Uluey6EcTkIt0vDmgKTcPF6rMlFmj75nJ6M/wSMJa/ZkAmkkOAA+Ez0Cmb5Gklq4l
B6Z22BYeIGJmGStOb0zcyjLdADplHw0/yHroeO/BAwCsGkQxGPRifZ+iMA2FF7HvCxeSx8OjSEfo
fLrDheS4wr4VSDfjwWCK0GfQTIxJeFoWczOIodBn6nrQveAXiuNHwQPMIkM7Kb5qQOHZhMPjQfr5
HCL9EItl4cJkV7i5rD8Ky9SZb1YOLCEHMLo2Cx7cw1AYnf2Jwnyajvc2aA7fGR6VbX6c7+j4VwTv
HwJPO5OHC1iXwCOtm+DJfs03MQxmmhTg0AS/Rq2BmwWFm0fBC1oGFJotktRo3mjBhGKr/mD+n+Yu
YAEQuwWfG52ZP2cn/W0R8wKvNMKo1mHDRmDYsPGgb56Vbbwf9EnsoOtr5sUp+v+PgznfA6+o0lXf
b4JH24cpf7qhvr4fUikrwWbzsjKEFjk+BKSjnI53M8I9x0Ar69twEcOOO+6sf5ubRBoUxh/Qn3pw
j3WDm/6NLnrofG2PmOC1v+KsGu4msAwiCaRSFjBkkdwTMH363ojHM6AASZeCoqIO2G8/66cjPGjE
AqSGgQJbn2CeAAXW74M0bWl09tV17QKRLAYO3AbFxeVw95k/IpOpwIQJ0xRPDNiKRjshmczj+OPn
YcKEnVFSUoOePYfhT3/6U0AXXfTvzd+GBT/NwmyQF25WiP5vbXPLGVvat6itWbMGp512Go4++mgs
XboUQ4ZYZGUZ/PBvBTUDVv7qRvAQKgIdzJOoru6K3r2H4YknnthkjBNPXIB0eivwMK0EI9jK0aPH
YEyZMkPHexQUTL4PkcG44YYbsG7dOhxyyCHYZpttcNZZZ+Htt99W5hxWHJgLLxy/Di6cppRBWk6w
maAAk1TGMgbUkOyqz0b070NB38AD9PMKfacILoR0AQ+QwbDUB4WC5GmgtmI3ZV4Z7XcG6H+TAQXp
x5TRRhTWlTqH3jpOVOE/CDzAeihDjuk7pt1JgkLnT0AhZScdNwIehD+DC+Mz9DM7ECtBjdMUhbsK
PMjstm+4PAheN7QC1MIM1XHqwUPEqg3E4UESJlQeqbgZBPc1+zlIW3vpOpp22bRqGVBgvRfUmJlw
egGoqdlHv28ENYYTdM4R8CAbCtLt+YqblxTeBFzrlgAPWVG4LSr1t6AGdCQoYIY+U2XwwJoi+MHd
Q/GQBvfHI4rrLHiJOgTUjh8NCsbl8EjpLCxymIEJeV2bU/S7JCjM2HtFio9B8FQzfeH1fbcCD+Zd
Fc6JoBbJIrr7aB9ZuI8eQOF4mOLHLoEPBnO13JcCr3xj1VysjnGl4qEZpI0qUFDoqPiWdn4qFLeL
QIE3rUJLub5/in73LkgLScV7T53bNeAe+gUouNSDdJIENacjFe9b63iT4NVqxiKdrkAiYUFLovgP
o/StTOPOEImpVu0g8KI4HiLHIB7P6/wt4pmBJtXVNSC/ierntSCfWw5q8k8G99POga9oXvE9Xd/r
CI/qnQoXnrdRHCRBWivVgJEikJ5Jn3feeSfS6c7BfACRUYhEJiruZ4J87zqljSSo1dtD/zZh7j3t
1/ja9ohGTZtcD5E49thjTzz33HM46aSTEInEEInEUVSUxCWXXIKrr74afqE4DhSw/4lEog7333//
l2fGF198obg4SGnr2yEEttee3twA/B/aNyljbGnf4vbRRx+pQ3RX8NBIaw6tIlAbkQZv4sPAw6IR
1PiYk6/lpkorc+2O4uIqfPTRRwXjtLS04IQT5ukN0Eqx8cBKp6uVWWa0XxY9HzDAaveaMJfV3GNW
73IdaNIrB2/FG0CtmjnMW3LSDCgM9IHXv7UybWPh2gDTcPQAb7RVoJbRNFJ1YECFaQmGwKPkHtZ5
GbzbwLUPJiCUwTUTcXhpt4Fwzd6TcOFkrL5TDZqvquEl0UYF80spXJbCxfDWQfuwOdfBE/oCNMmZ
ZmIEvJ5qFdzBva+ufQYUNhrhUaaVwfsloADYrGNZKaoMePh2AbVkZ8KL3Y+FJxruGqxTvwCP5Trv
qaBgUxesXQ+FO63wjtY5d9HfdqCX6npaAElveCqPEaAwXK7fm6vBGP3dqOMNAkuZfQQKA2ZWywTr
ZBq0YsXbDMXH/GDNmxUWK7dnQRnN8LQhpm0bDgqjueBZ08yV6HyN1k3YshyDpkUaA9c2joUL8FbL
uY9+Z0nCAV5WEvp8KDDYWhst9Nf/q1FY+9XGNm1pt2CdTDgymq3VZwbAzc1TgvWpg2u/G0AzexXc
ZG409LrCuEjxY/W5j4Jr+8fBtYdm+q0H95LRkJn6m0HaGQ7ymQfgmr1meKCYBdT00c8Gw8saNsMz
EGRRyFuqwQtLOUj7wxQHJtiVwPmNaXsN19sr7hvhvDfkLRF4WUDnLZWVnfTZa0C+9aDOZwV4CasA
96qtkwU+jVKYs3D3mw7wyGsTdu0M6AmP4q8J1snop7v+7qWfdwW14/sikUjjhRdewIoVK1BT0xTg
4tujCSwPfiqFNVGWbFaI/m9tM4kcW9q3rQ0YMBC8RduN91K439JSMK3DIRCp05xNTfDkxP+lm7MK
Xr+0BSJTscMOU9Da2opFixbhoosuwm9/+1tMnrybMg6LKgZ4ezTtwLP62cfar0WRfqLPnw4XAIbB
0zlYRGNUv78HLgzm4fVLW7XP+cpY39DPlweMdBcw31ZPeO3NP+r3Zl67V2E4An5Afhb0mVPGuhFk
zObX8oE++ze4JuqoALYj4WY308y8r3O4AhQQywI4LCHw/aDpMq84rAUPNzMR/V5hKwNzMBrMV+na
WcTjBoU3ofPdL1inU0ANxEZQ43gZGLVrUaDD4ObT2xSu4XBz2Xpd+zId0/zV/gLPIWkm11bQd8+E
IdNGvQvX3O0Ip9kLFb/QOXcDNUGN2vcgxdk88LLQqs+byXWj9rdQcTJa4R4BCgAWrW3wDIUfcn/V
Pj4ED7x5+l0v+AXhY8VnRuFYCwq6JgyZv6VV8zgc7obQCmqTTdh/SnH4Ftz8V6K4Wac4TytsT4L+
Z9Xw6NglIJ0cAfogtiq+OoFa2pPgKU1KQX9GgHzAhJu5AWy767yS8JrZ/4QLrpOCdboMbhY2d47V
8AjzZTq3d0At2XCQ1g4GBRmj++sVRoOtCYV+wAeCNHGC9puE+3++B6+ZPQKkeUDkp3CBzdLMrNNx
TUtbAjcPv6b9WAR9K6iVNtyHvMV8bcdiU96yW7AOAPmBCefmF3yvwlYBd1fZCAqRX8Vb8tiUt9hF
pDfIKzsrXC/puhufvCpYJ/OxXaO4iKB93pKH10ZuAbWlKe3DcPY6PFl8yFsWgNpGXgRTqTpUVjaB
AqnAecu3Izr4WWGo1F9E5ElhSM8hXydQW9qW9u9sH3/8sTz99NPy1ltvyV/+8hd5/fV/Cu8yRv4T
xGvgThTWjFwjIhslkUgIvSDS+uw4EXlHn99OP4uKyPby+uv/lIMOOkL22We+zJv3tuyyy5Hy5z8/
JR75aJGr2wqj8+LC6FkRRq4NEkas9RdGukWEW22VMArt18Koz49FZB9hNN4MYQTjLsJoT6vjarBF
xCPjasQj9Drrz3qFbbm+n9XvR+l3xoO21bF/LowuXSCMSCwTkdeEEaj/EEZCTtR3+grvjfZ3Rhgp
Z99HhNGWa3QuffTzKhHpJTQ4lGqfFnFtuBsvjP4sUhx+KIy0tkjS0TrWOmGp8zXCes5X6vvb6nMx
ERkrXN+EFK7TdiKyTMcYr3/nhdHerfq9RW2OVzy/FfQdF9LOZwqjRS8OEdLMRp2/4WKizrNCPHq0
Vhi5arCFNGtrkxGu3Xsiso3Cu432tUyfjSjME/SdIp23ff8PhX2sjpUURmqu0p954vWO+2kfFTqv
JYrfOmG080XCmtAjhJHOH2h/NvYG8WjxrIgM13muC3AxSRgZ3VX/r9cfEdJakzAqPCHEPYS0v7WQ
lnuLR132UFiXCtcsovAuEEZxrhFGb0aEEdEDhOs2TfEdl8J16ql9l+nfov93V/yE67St4n21wik6
r+ZgLo06l2IhDSwX7pvR4nTfSZ/rqP+fKSI7ich5wkjTP4jIQTq/IuF+6q3PVgv301rtPxbAtl6I
d6PZhD6TUDz0Ea6rCNeiSDal2VbZlLdYtGx32ZS3rBXyX9tnkxSm8eK1lG2fR6WQZu3v9niLyKa8
JSHcs3/XuS4XkYHCutHXCddYtN9Whc1wUSxcA0j7vMV4gCicNo+GAGdN4hkj2p4Bi3X8VbJmzeXy
4Ydl4jwi5C2br/0n1gf+V21zK6C2tM3Q7rvvfqRS5SguZib/4uJeoDatL6iZaQG1EPVw84YFMeSw
7bbb6s3xTb3BXQ6aJUpBbWGL9tMP06dPRzpdF9x430c0mtFalGNBbeI60F/JnN3N//BFuINy9+BG
fA2oRbIbeCuodaiFmwmt/NWNoJYqD2or1isstaA2KAXeygHmH0vpzXgwqFWogWugrlVcvKNjngOP
fDSn+qfhFT8yoPbnQ1DLYtUQTNN5TzDeJJ3fGjBoo0a/WwTXlKVBDdMgxb85dl+o452ruO8Mdy4v
hZvIrkKhOcr8cergQQ+toNaxh34XB00/XyjudgWjNj8CtVS3gtoVM9t2ArWfrXB/th1AX6dWUAPT
GW6as1q1t8FNsNN1rFWgKc2iaC3g5Qm4qXwAqIncCGqKTBP4OkgHi+B52DopzhaCpi2LdJ2tePtY
cXsTqCGbCGqqGkH6slxna0CtidV3LQFNc60QeV5huFJhPBvUqh+i/5+ha7ce1NqZD2IWjCwHSG81
oD9nL1BL9TmoeUyDe+JX+vsRuCamRNfln4rjRsXnT0BtWTmoGQdo1qwGA6kmgJq4nUDtntFAo8KW
AfPS/R7Uvpk2cyq4d1eD2hpbJwuSeQqeULsPnLccBg9MuUSffUvxE9dxKnQ9ZoFa+z3giZ2N7k2T
bybsB+EBEg3a5zp9z7IG2H56Bl6tp17n2wpqDa1UXFveYmbacngOwd/qs7vBecsIeNBGyFss+MUy
F4S8ZWcwqMs0xBPhwWbGb85WeMeBAWeWmLk3vpq30FfPecv2wTq15S15nedH2vcceBDLufrs2/pM
EdrnLSWgD/VG0CpiAUqWD9X2jCWcD3nLLvrsQv39BchD+uv8jLdsXnPwc8Hfd282KP59bXPLI1va
N9xWrlypTs+V8Lqf98AjzizVQF6ZTQ/woAdEPkI02gmLFy9G//7D4OkusigqKsaIEebvwaoS3boN
xMMPP4x8fhuEPkXZbDf07GnMwRhSFoMGbQUPRLAAixhyOXO+rwYFjzSi0QyuueYauA9PFG6mSsAj
DC0C0Q5E8+uz5MwWsRs695vJzYSgRPCuMS/zKTKn/CwKU43Mg/tHWb1eG8OCTML5m1nR5lCkv2tB
xl8K9weyFBSOf08dYmlBzBzVEOCiBB58YPMxX8mioC+bfxE8YCCE08Y3oS2h/0fhwSDmB2bzzbTp
2/oPI0FN4LCScJasOhb0UwIvY2fraGZri3zOBZ9Z5Y1mOF2YIGz9GM0aLYTVIczXLqQDi1S+EG56
7gOnj+Kgf1sTw7PN3T6z1EeR4Fnrw1LJWL8VoND22wBmS/VSAb+MxIPvbC0sWMNgN/yHuEiiEBdp
MJCmD7zEWedgLQxHhkMLmgrXKQoKxu3RqAm/hoskyJMsEIn7Nx4vCcawNTVaNTOvzcmEofb2VuhP
aT6J5UGfBkuiDW7iwXsWEGZjmmtAyFtsj1rwjD1nWQMqgjUOaSwb9GemdVvDMJp4U/4Vi1nARNjf
fFBIrELIWy6//ApEIuGckhCJYNq0PYM+bZ2i2JSOU4hEYvA9YXzWAntsnWyvWeqgCaDrhfkxh/vJ
YEmBPK8T3JRscNg6fTvMwSLUaW5pW9q3urW2tsqSJUtk6dKlIiLy0ksvyfr1LcJksR8Ik78eKkxs
u0BEfiOeYPkFoblod+2tXBKJHeXll1+Wv/71aVm27DW5775b5ZRT5srQoc1SUVEjjz32oDz88P3y
1luvytKlz8ugQYOEiWfvEJEvJBK5WrLZVikuTgu9KB7Xsc+RDz5YKVT3X6vw3S4iSenevUlE9haa
AzeIyCxJpzNyySVXCE0N3xMmrS0Smi7KhaaGmH6+VGhmaBUG9A8Smk1a9J0ioektJjSdXS80QYwV
mrrr9btWYSLnj4QJT+8VmnOi2t+HAeY/0M/vFHqNdFXYavX954VmRxGaeo8VmhQHCk1adUJTzZPi
yXs/F5GzhOakjfoT0X576u9VInK0MGtVq8Jxp4jcLyIHCM1uMaEJeA+hCe0UxUGViDwgNLH/XWja
y+jcugvNZ0kdMyVMXtwoIvvp+60iMkdEXhaRe4QJekXHu1yYKPYexamZ47cXJt3uLzQ/54Wm/ZzQ
bPq5JJNpIV0sEZHLFLZSHS8uNLU16vw3ChPcLhcmcP6H4nO9uDmwROd+vtDctlK/q9Y1OFFERNLp
tDQ0lItIRDIZo69WfX+jkCZFcbS7kLaeFiaBXiVMCP53ob7gVn23St/tJqSrUQpDSnHzjNDdIarP
J7XfATru/cI9s0HHmCH0Tvq70FDVSUjDWaE5MiJMIny70LQ9QSorEzrGHcIEzM8oTLZWg4XHW0pI
dyJ0G/iLjgXFe1ZoYh+h+EvqZ5aIOadz/EBoOh8iIlN1nqX6/BdCM2Kx4vEIEXlMIpEB0q1bR3n/
/Tdl/frPZMKEicL9Cu1/rYwZM0T72UFIxzS1NzY2yIYNn8jJJ89VPPbQtcoK+VqdkB6bhSbpnOJu
osJnyb5v176vEpHDJJ+PCE36zwr34ZMi0iKVlTUK/yChqbhC4ews3OsPCfd7g+LtHGHC8GcUHnNB
iYhIF4nFymWXXXaWE044RuLx/voe3S9SqaRksyWKu0FCvlIiLS2tOr9dhPvgWcVJhYgcJiIb5PTT
T5a1az+Qo48+ShYuvFhh3CAiUZk583BZtOgOAb6QO++8RRYsmCtvvfWiLF26RJ599kl5550lMn36
BFm48AJZseJNueyySyQSySgO60WkXiKRtEQiOR2/s+I5KtXVHXVtHxQmz/8vESmSurpOwkTqjUKe
/bmIrJNcrlX/rhCRFfp8RGnjT7K523Nf8fd/atvciqkt7WtsL7/8MvL5TjCtVk1Ndxx88EzwRh9G
+40FTR3dwACMPArzz7kmMJPpjsWLF385xqmnnolMZghE7kMkchmy2aqC+rwA8Mwzz6ChoR9isSR6
9x6OV155BRUV3eDRdXmIjEQqVQfXQFh6hTiOOOIIuGajHIUJU8PSTpODW+zJoAlrEuh8PBmePmYp
PLAkDqZDMUf2DGiiKAVzjf0CnqIkHTwLMBggD5q3zgBv+BeDSaHr9MduxOV6gx0avN+iMPTTOd2m
uC6DR9M1gGaZAQqH1eTN6Hh1+rdFlFqOvYvhpcrqFZdd4NoY0yr0RWGSbauXbOlw0qAp05y3z4A7
izfCo7lNE9ATnvfwUrgWxnKVmaZEQBqzflfCNQsVYCm4n0Ekh+Jic+A3DbZpOaNg5G1rMF6N9mFm
tlbQobwWNNdbVKzN3zTOR+qzOyqMHfW3uSj8SN+xpOHjwXQjpgnspzh/TPuPwCPIc0FfNn+jvV76
/04opAvTfNWCtGORzaGmM6NwfgTS+0EBLs6Fa3nqQPrIQSSndV+bQHMdIHI14vEKff7WAIYxoOYq
D5rqLgfp1zRkYc7EI+CaMAuG+FDf/SUKE12XgNrFYnjUtc3FtHU5JJOV6Ny5J1599VV07myl60yD
lEJFheXUtICTdRApwXbbTcSUKZYOxyJZB8JpNQ+vMW1a6CFgVgSL7Dd3k3Bv2PpZLdxaiCQRj1fB
eYsFM5mm7Tl4oIbR21iFtRUMfOkNj3xlNHtRUUfMnj0bkYjVLGe6nUgki3S6I5jj09ZpJ3hKJcs+
UAGa/ldCpD8aGnp9yY8//vjjYD5VsKwBlkC/bXvjjTfQ0NAXqVQ1EokMzjvvYlx22WUojBr/ACIx
RKPl4D40XOyB0tIK0IqB4PMO4F4erTi2bAS2vgkUJjlvUHx/M5rAf9VahNfGleJXTvv5fDPC9X9t
X4/0saV9o+3jjz/GWWedjaOPnotf//rXWLVqFQYO3EY3VOi3Mx6JhB3EZrp8F26eqQYFm/dA1f1o
0F+kBiJNSCTKMHfuyQVjl5d3RmgGjcWOwdlnn7MJfIceejRGjpyMY4/9AR544AHkclWgcLJM4dsR
paV18DxyM0FhKoO+ffuCh5b57ZwEP+BmwlMr7AoeKpZf7lnQr8zy1D2qcI6Am/KWK/O1yMyecDOY
MaDfwhNhl4OH2lOg32CZ9rcUPEAOBQ/kvymMy+A+gcmg7+dB4dFSTITJZm8ChYos6NN4KSgQVYEH
c1+4385R8GhGg/ltxW0a9IM038hhoP9cC+gHZ36SLdpfd4WnP3ioWxLdELZHdM7LdYxyMC2OmeIs
7YuZEA8E/ZF2AM1T5hNoiaWb4KlKYqAgcHcw3jXwdB2hT6CZVcNkys/C67N2AgX2nRQ/lp6nC1yg
vw30tztUYe0B+jPZRcQiqK0yQmkA21JQuLLE2Jb+w3K6JUFafFa/f17fGwAK0q1wn8CIjm0RqksC
GLoqfi0y1EzWRsv76Xxq4YIBQGHUUrT8OOg3jx49LC1Kha51maZnysCjjQFG4UfAvXQeSBM3wBMk
Pxg8+3Mdrwr06WwEfVstB2Fbn0AzXZtP4DJY+ifOzVMzNTW19Tf+FKTlYpBmTfDdCJFyTJy4A4qK
xoI8bx3or3eA4uIO0Je5IliTXyCRyOOAAw5DOm3RrZVgtKr5BDbqfJ+GJ/O+ESUlNeAesPUAGGFs
KXTK4XyiBB6pbr7EGbj/bzO4H4ZBpAQDBw5UOOrAPId/gsiuKCoqRWHy/nNAf8IMXOi8B2bCLS6u
wpIlS77kx7fffrviotAncM6cOe2eLwMGbINI5DxQ0O2GSKQMNTUdQb63jcK8L0SiKgQ+E8B2NSor
65Vm5ivOj1Nc9Nc+Vuka7QXS+uv6vUV6tyq83w6fwO9a+/dLJFvaN9o+++wz1Nf3RiJxIETORzrd
gG7d+oLCXx3aMupIxLQglaCWrANEKlBR0Qmu2QBYNqsXTEsTi+2Dk08+eZPxucFf/HKzRiIjUVpa
i169huDBBx/EunXr0Lv3MCQSh0PkfsRiIxCNWhDDocoUP4DIQ2hqGgLPaXUheIDXgAfRqQFslsol
p3N4GUwFYvnZXlVG3EGZpWkApoLO0W2rKBwOpq34LdwH5ezg+wfhwQUPgj4tA0FBrbPicwyoTagH
BaxO2m/IqJPgrb8ePEgs91uZwmvP/kQZ6+VwX5oyUODoiUIB9RW4D+Gq4PPZyizLFD9HwG/otr7V
8HQOAA+anvA8c6ZVHAFqjdaCTvYl4GHcDE+/Y6l55oBpM54CLwcdte/7dC2HgQeyCYxTdK17whNW
/zyA6QrFQV3wGeDCRYOu+ShQk2P+Sb8BD50r4OlLcmA1FCtRBlCzOgak4f+C5+0b3mY8y5k4CtSu
rAI1IebDdTsoZO0Jzys4V/HVFRTioHCEGo5j9f0u4IF6DCjQWbLl3wXPXqZ9h1qVF+E5JAdp35+A
mkrz72oNnp+KbDYLHrjbggLKcfB0IhZw8A+QDszHzgTiG+HavMmgoLUSnk/RNISvgg7+FkRyCQph
zoP0si74/ICABu5QfO4LkTQikVKQZu3ZS8GLVRa8LD6s72fR0NAPnt4F4OVhkPZttLhDwfrG45X4
3e9+h1yuh36WBC+d9syJEDlL/x4P8gpoEmvTlK4FBdSt4Lktx4Bl6bbVeSWC52eAdFKpsB2kc74F
IjlUVlYqjicHcKxXPB8CCr3/BHlKB3CfhjRbhuOOOw6rV68u4Nlnn322jhk+uxUmTpzY7hlTVJTQ
uQ8Fhcw/gDSXAi9SS8Dk0uYX2U1xMBMiPbHddtuBNN4P5Iv9dfwG7fdwxUk1uAc66PqUgpfcZpAO
T1JYtwiB/872tQgmW9o3166//nqk02Fpqhd1I1r0ZpjL61BEoyV6W7MSXTuia9cBqKurVyZk/dyp
mxUQWYtMZjjuvPPOTcY/++zzEY/3UKY7RpnZeIgMQCRSgquuugq5XH/4QdQD7eXyisVOxKRJu4CH
1of6XQs8d9jWcE3JjQHDeTfo6ygUCm87whMxlyqDMXOxRTCugUfChg7zOVAI+xkovFQp4/oDTDAm
Q7N8WyX6nuXesmSspqEYB3fe/xF4qGcB0TwAACAASURBVPwIHlSRBzU218NNlMWgNuJOeGWInPZl
ueeuAQWWLApzefVQvFnwTxI8TMx0tlDhMfOm5Rsbr+szS98z7Zw5xJtT+3ilj+tAYWFX/d7y00X1
73Ltf46+czxca9g7gOcDfb9GYb5R52amu2JQgPsxqI2z/HM5xc9iUDiypLmm/XoHnqh7vwA/SVAD
0huuETJh3YISVuhnf4dXlwmDA0q0392C91fr++aucLLOowso3HeHaxMtT2ANeKgerM//CB58dE/Q
9+mKuygoVPwVLoSb831UcWXm7ASYJxCgIF+L+vp6ffY6UIM1Gq4drYZXPukJXsBsLuaCYBew/vCA
g37wgKdQ6OwL7r2Q9ixPYBqb5gmsRSEfIj6j0TL4JbUFIrsgGq3Rsa3uLutd19R0RaELww/gQvyz
oDBZC+czf0VRURoLFy5EIpEDBdhyFOYJHAFqxFeAQsorEPkzEomc5rILcdEH6XQZfP8eqr+NNvOg
Vu0K7cuCSEKBeCf07NkTvGSODObyCSKRBKLRSnhgk11EwjyBL0IkUVB5w9pLL72k7xbmIL344oux
Zs0a3HXXXfjpT3+K5cuXAwA6dDBB1WoE3wJmVtg5gHetft9B5/oYGNGdxXnnnafBPaalz4PCXxjY
FQPPgnXgfrG9VY5oNItIJIJvMk/gN9FuECawejH4rFzoAfmq0Fu0NPjuZKF3+yviSX9E6FH9on53
WfB5UugNvlToSVn/FXB87ULKlvb1tksvvRTJZJis+EPdVC8qs7OSZv0hkkdZWQNuueVWNDT0R2Vl
d+yxx/749NNPcdRRx4KMfUfQXEO/q5KSychkemCnnfZES0vLJuPfcMNPEY93BrVsoT9IC0SmoXfv
AYjHQ5NNHTytACByAhKJepSWmvYjhcISTaN003cDtWPNCttWykyeCp6dBhcCW+DlzCxCuAK8fZug
sg08VcxHoCBkGemzytA6KT77wSMCx+p7s8GDIQ8eyOtBTU4JBg0aBM+y3xXuA2bRlwPgpaoqQaHN
tAM9Alw0gwdzB/BgN7+Z7mC6h1rQ/BLT73ZQmE1Ishv21vpeV/BAMz8+y+7fpHCYhtT8dkywfRI8
kLbTnxx4wE/T39vAhaQRoAbHhGrzNzXNysEK29hg7TYqfrtpPzVwM5mZ/ipATVsNXLANtaJmArXk
4fXwiNwYKDjZsyb4dAB9R+3z2eAhZn6h43Ssw5QGbtK1fg4UPtM6X6Pv1+FRsaEm+AldH4PHKoZY
1PYAeIoMOwBNK70AvMylQC3pOlDLUqUwPgtekI5CYYqWpfCI03EwP9ja2q4oFLSWw30kc6BWZxS8
RNdweNqn9fDqJlmQNqwedFq/M1/D9SDN3q5r1h1WMYR+nlGQ5iaDdGlpi0YF+HxN4X8Anni8B0RK
kcvVwrVg28H8ySZNmg7u4+Eg7ZTCa/GatcC014xUTSZ7IZPZF4lEKRKJPMjLSkBLQxMKK39UwqqZ
RCIxLFxoGs/BsCoZu+5qPolVIG80YS8DCvOGe0thVAxPfdOKSGQozjrrLIXBNOZXIxIZgMMOOxq7
7XYA0ukmZLMTkMlUoqGhAdwfHUEeUAmRGK699lq0trZi2bJlWL58OVpbWwEAAwZY5afREClFeXln
rFy5Er17D0M2Ow6ZzN7IZqvw1FNPoX9/K7O3HjxTahSHw4J1WgbusSHB3DZAJIOyshrMmLGXzr8f
RIpRWWluGQNAwfpTxfV88Kw6F+QJf0AslsfUqVMVD9+eiiH/v220MAQrFAIvEJEf6N8nCjNeijDc
6HlhWFGDMAutZVd8SphxUoQhfZP17yNF5Gr9e09hGFh77ZuWWba0f3N75ZVXkE5XglqSl0ATarNu
lnP0/3Lw4K3Bscce124/7777LvL5GkQiAyAyBMlkKW6++Wb87Gc/Q9++wxCJFCGfr8HPf34XAODp
p5/G0KHjkErVgBqkVcqECk02ZWV1iETy4M38XmXao0Eh9X6IZLQuZFIZZg48cF8GS5uZ1qgEvD0O
h2s3b9J3zgZNQXnwYD0XvKU2gzfUBCjozAOFmY/BrP6mWbP8gxvgedvssLZ0B3bLNeFmOHj4zgcF
B5vzZ3Ah5Eeg6fERZeKmuTJm/yQ8LcaioI9fwuv2dgUPryZ4ihc7UK4Afey+B2rZ/qH99IUHJWwP
VvnYDTyMIzr3AaBAbqlJrAydaVvXwX0NfwZqM+YFMC4AD/U6fdZKQo2DC/H3w4MifqpwXAAKRyaE
XqNrfUjwmTmrW2qLCv1tWt+P4QLmKQFMZraPKS6WgML9biANVIICzg/1/1vB/VECHsyz4JUqHoMH
sHQDfTw7g2bFMv0ZqPOuAentXMVHZ51zGDjxIkibsxU+Bg3lchWIxcYGOPuVjmfpQ7LwUnQ9g/VZ
Aa/jbLQ7SPEdmvnGgq4Ui8Agqt6IRLaGa/kB8o0Oioe74JeAHXT+veGH/eeIRCw4pTM8xY3lJawE
hYPzQL5gNXzXgNpn+o8xmCIL7ourdE0sTZDl3TsHFOTz8AtuBjQLzkFxcQ14CXwR5C2nIxKpwD33
3INoNAteqPZQPE2DBzONU1xVQESQTI4P5ncP0ukaxb/xqD9C5CDU1NSAl4NnwD26D0RSiEardP4n
QuR8FBUdip49+8LTcPUGadkCukLT+COKv/MVtnMRj++Mvn23wrnnnotIZCT8slKOSCSOlpYWtLa2
4oknnsB9992Hd999F01NTfAUUua7nMWZZ56JsWN3QCpVjVSqGuPHT8Xq1avx6KOPIpEoQTRahqKi
FG666WZccMGFKC7ePcDFLRgwYBRisSS8MgggcjiiUaOBaXC6T4I0GgZ7ZZBMViKVKge1p+ZrXA63
tli/D8MvqK5NzmZ3QXFxMRhEc6jSyHejNUihEPiKiHTQv2v0fxFqAU8MnvuNMBa+ozAXg7W9hLk1
7Jmt9e+YMEa/vfZNyitb2le0Dz74AJMmzUBJSQ26dx+Cxx9/vOD7yy67EtXVTchmK5HN1iISsejC
EsyadSjuv/9+pFLmnJ7WDWmMzEwGWXTsWP+lNu/DDz/EDjvshpKSGnTrNgh//OMfsdde+3z5TklJ
DcrKTKNkUXbMXZXPd4D7LJnDvDk4Hwje4D6GSB9069YT7hRt0XHmUxTmx7K8VnYImNlE4LnbLDdV
A3i4WDSi5bMzTYSZ7EpQmFsvAwouqWD8rPZVDgpBKVAwMgHQYDUcmMbMomdzoH+aHeK/hwuQNmfr
JwYeIuEhbVoAq3GbDd4385olCLZcZmFuO4OrB6gFMBxbFKMJ0IZPEzpN42RR2IbDEPcxeJ408/fK
g8x8UJs1NfPvLuCh1xEUmG1uJfD6v9av4SgX/BwPHgCfaT9xfaa2Dd76KrymWbkaLiwa/AabwE2c
Icwd4dqscnhNYot0DfFmUYlt8wxanrpxoHZ6DzitZYM5d0Qh7Yd4OyGY1wp4bjgT8lpAs+gIUGvW
Cgq8FsX6Cmgq3UbHe0L7+ie8nKL52vULcGJw2HzM+b4K9FfdHdwLxfCobIvUtpyQ9m6oHbTo7TA3
oV24TNC3PIFtYQj3r0WrCwpp20zi4X4P+YWZwa1P2wchbwnpYiQ88rhbMK/J8Ihb25MhnHlQUO0H
p19+V1SUw1fzMhO2F4O8LAcKkBY5brST0Hm/p+t5MTyyPMRFVk3Hdvm07AqJAB8hLoxuQ9hM82yR
/BkU0oUFzrVAZLDmCQy1xyk4f+oP0pDxVIPLxusICnzH6WeW4N/ygybAC5yZmTurosDo5bsrBH4S
/B0J/r9CRPYNvvuxMEHXUKH52NpoYRIp0X5rg+9eE5qb27bNIfNsaW3a8OHjEY8fA0Z13oVstupL
f4w77/w50uluoNaiShnHMvCmPBUieaTTZrq4GdRiHK8bbRnoc5MFb+GN2HHHnbHbbgeirKwesdhs
HfMexON53ahP6vuDdSN2BW/jV4ACnjGYNHhLfhvUwnUGNXImmDERKANHykCNzzvgjT8DD5B4HvS5
6hMwlO/rs7cGTKFRP2sBo4fN/FMCHtqjQIa6FPSr6wgKJJX6bB5eu/J3yuwuVrjP1+8uVRhM2/YU
6B80HH54Gc5+CQodF+jnfcEDuwSeXudEUEPUS/F4lH5ukX0PKxy1oHD6N1D70AfUelpE3TugP1ka
NGmWgZqqN0BNj2mk9gK1jA/CD600qCV5G9S25UHNYbPC8RQo/Jgv2WU63nlwc3En0Pz5CsjgUzqf
4/TZO+Da0pzi9y1Qy2aH48762UVwQeV1UIN5BEhD5o9lAtF5cCHAonlbQdOgaYhLQWFlD3hkd6mu
xdtgEEA66OPXiqN94NqI7RSWJ3TdLdn29Tq/U3XdIuAl4K+g9iw8eA3mC3U9XlGcdQW1HduCPomN
oP/kMjC4wIK0lsJNuj1BOrL9aH1fD9LcVgrfJTqepfq4QXFTCQqMhvsjYbzF/TWzYCDMm+ABfDKc
zjoo3kxwScF5y0nwi0NvxcNfdV5ng/TbU+G6NhivQufyOjygKAdq6KfoWlyoYywELRmT4QLW9ABn
FYqbIdr/1freWTqvftiUt5gWvi1vMcHi97oGFaC/3rYg/S4Dea5FQ1+nuH4J1Cpn9HOjqckgT9lf
v7tAx7sMzvdKdQ2HgzzLhNkaMK3La4qjZtAMa+v/OUhvi3Q9Z4La1l/D6ftGHc9qVwsKeUs3+IWz
LW+JopC3jAN5l11cDlKYczqHcE0s2nu8PmO8pRqeuP0KOG8pAYON8iB/qgC14G/DhfKZ4F4aF6zf
7/Tv70ZrkK8WAkWYMVVkixD4nW5ffPEFYrFiuKM/kMvtjltvvRUAMGPGAaCT+znKwIwh/FM3znzd
1GEEWat+90+Y+p6H8Fm6oS8Cb20bvnwnGt0Z9Lf6WDfx7xWmBLw8HEDmKCDDs8/WKAMZDzLc6SCj
nKOfbx08C7i54pbgs1/DSy2FjuXjQOFiQfCZFWNPgILIFeAhNQleWH0M6D9VBAY/TGwDQwYUHHuD
h1CtPmOagCuDZx8HmWNRAc6Ig58qjGWgRupJhWskKADcBBeOO8HNut3hwnQehQEAv1DYytrgYpj2
EQa/vATX2n0WfD5L1ykMWlivcxgIL7UFUEix/ICjgn7qFBc3Bs9aBG0Whb6b2+l4IY2+AxdEl+ln
x6GwwPylcIGgN9xUth4UcPeEa0K76zy7wHMfLgzGexqeDiZ0st9TYQv94FbCHd3/Gnx+nsIc5nNs
1efKQT9A+3wRuM9S8OjZkYoje+YGUCP6Krx6ywfB90dqv8yJSTyugKc1mq/PbQT3VU9dv13htG7+
YDMUpyvAC0FW57gxGG+q4ucY+F7qgEI6awYvgieCgu+oNriwPHT3B5/frjAB3HcWrDZQ8XNB8Ozz
cHP3UJCeuwXfA3RXuAdeYiyM1D0W9F02ga8tb0liU95iwmxb3iKgAAxQcG/UvytAlwJ7di7Ig22N
54CXqZnBM5/Cg5KKQGEwhM3SRLXHW5IojN5/Std1EDzq/05QqLJn1oE0sx6b8tlWuKa5LW/JoH3e
EsemvKUU7jqxl875QGxKx8foWF2wKW9Jg3Qb4qKT9jMAFOIPCb6z4KqrQcFwGQp5y9cvBMb++0e+
lvae0Ay8QmjqfV8/f1eYfttaJxF5Rz/v1M7n9o5Vr4+Jp+HfpJ1++ulf/j1u3DgZN27c/9cktrT/
XUsmkxKJRIRL1VlEWgV4S/L5vKxYsUKee+4poTzfWZhh3tqbwmVdKkxf+bYwdWVMSDqrhRnkoc90
EZFfich8ISmkhZUizhJmo39LmOqyi9D99E1hNvgWKbw/dBAqql/XviPCyhdxYYWDv2p/dwurYER1
bmuFWfU/1XEy2oe1N/T9DeJbYaOw8kNMWNmkVfubq33tLCJ3CSs9lGofK4QVCN4VVlSICStePKU4
6iyMu2pRWN4Wkc+ElQJ+o59tFN6bQlxDx35bmOG+VXGW0bE2CiuvrBDGZS0V3slGaB/vK6yfCrdq
P2Hlh9UKo1VmsPEq9buPhZnz1yseq4WxY+GzIr5mAxVWg/8N8XVarnOwZ81j5DURmSWsoDFLRE4V
kR8K16m2HVyI4m+Fft+ifUs7z8aCv7uI0yyElUZeEt5pFwmrVCwQkRsVT0XCyiwtIrJG+y4W4r6z
EOft4SImpMnuOo7R2WsBLt4UVoYo0b/76zOv6jP/ENJRUng/X6XPhzT7upBe4yKyrcK2IYDDYMrr
7y/EcV+p4ywR0nqRkEaLxSvJQER+KqTXlUIa6CxenSavfX6i4y8WViLJCGkzoj/OWxw2w1tO+/hI
+10vpPH1wjWF8FgJecsahTOk2TcUnvDvdUIa2SCb0kVSSN/36+/LFI6sENdvi8jx2kdM36kK3l8p
vk676pi9hHs5KpvyFpH2eYsEsJUI99un4nTRMRizq8KzTEj3i8X3m9FUXsczXmdVkFoUx7E2sL0p
XrFoaZvPOwt1RfU6t5cUB+F+Ltb3I0I+ZPT4kZDnWtWiC8QqkrC1x1s2CukxhCGq7x0rrO7xF4XT
1sTo+HV9Ni2FvGWpeOWiNcIqNJ8LafYXQjqAkF5tXm/pHKYKq45M075+JaSP705rkE0DQ8z37yTZ
NDAkITx9XhcPDPmzENsR2TQw5Br9ey/ZEhjyrW7nnXcR0ukmiCxAOj0JW2+9LZYvX45YzNKaZEHz
ghWVPwm8qY7SzywqawzoKN8Z1KzMA2/+lrQ3qzeyfUHN2ViIDEAqNRm1tT1ATcyn4O20RG99WfDW
/TR4w7XcYyWg5mwePH1AGDjwLlzLVQLeaC2YIAPeclOglvJouGnGNGYLwBt3CagNGA9qDSZpv3YL
/RS8Hb+q89lGn6uHm0TL4f4rZjJMK+7S8FQRn8B9IC1v19xgHvU61imgFqEbeIO26N758MjVEngx
d4Balf6gpsJu9m+DN2rzRZwDmptzoAN0FtRMLNBxcnAT2F7aZxWoPbOqJPNAzWYWHiiwrcJsppku
Op/vg3RlReoBmrZ6g2agOaD5rgq8qR8L98eq0n5OUZyb6SkDmuFPgidOTimO5oEaoozC1AQPynkD
pKvhIE08BWq1joNrLrorLgYG45nZ6AdwDWVW4TsFHsls5qTJCodp8My363jFaRqenmWojtcET2WR
B022x8D94zJg4NXToGYvpd/PBOnAkoKfBU86fgqoOSsHtSElIE0ZDSXgflrm+lGq/4/U904G3RBq
QXqZDZq0HwVdHbrCq5/MB/eH+Ytm4LwkB9L2fF3LXUDt4RS4799w/b4JHm2dUlwcrn/vDQ/6OULh
ND/UNMh3TtDvo9qH7b3DdC7zQfobA5pGJ8LTn5wEWjQ66HhTda1PUdwfrv93xKa8xfZ8W94yTH/P
APdTmcIxo82YeYV9iK5bKxgElwFp6mRwH43VcXaF++2Zm0Qa7jMc8parQH5ZCroMzIXz/G7gPtsb
7vs4Hr6fdwB5opm1h+v8zMxsri3/BZptq+F8L+Qt5mtXBrpmnATSmLnBmJ9piz5vVWxOhucOTSuu
0jqHA1CYRH6AjmdVch4EeUx/eOYB25t94DWczSXEeMt3wxx8u1D0tmvXwUJ1y2JpP0XMPOF15RUR
mRR8biliXhMWQ7SWFJGfi6eIafgKODa3/LOlafvNb36DBQtOxbXXXot169Zhn332AQ/KRmVkB8Fz
XfUGD5jT4KWWRun3ZcjnK3HFFVdgzJixGD16NJqbR2PixIn43ve+p8zBzHhrEIkwgmzmzCNQaFpb
pLmuIvCo244Q6YBkMqlMbneQWfcCD+sm0LxkfnvlyrwqQb+TBaD5NKV9meNy6PBrPoUR8JCYBka4
bgDNOudhUzPLcGVSc4M+uoOHjplKUwrfEPBQ7adj1Lfpqwd4qD4HMtgJcMEwAgoK5iRvaVm2Bn1+
TlPGlgAFlR4K83Xwsmpmslmvv0u1773BQ9sEi2Lt/1gw0vcQuG9TM3hYnwHmulsFP2gMn52DvyP6
OwygKdW5dQEP+426bgfonLaDm4teAQ9t628wvDSWtPk5CGTqDSCDN6f/RaC5fCF44Ffr+KH5KqXv
hubUW+AmqQp4jr5Gff4s0Jfsh6BvYl7nazkDO+v8DAf2Y7iIBr/jIL3NBOmj7dzKwQP7HNBsdp3C
lEGhybXtu+aCAcXFr0FauQwU3iKgILEPuJ/OhgdenQnu7R7wdEHzwf0yCzQ3m8BvuREBOvJbHr1x
cH/bXqCZP6tjHwXSpAWjnB/M5TR4oIAFTFli8gpQ8DUz+R7wYIKrwb1+k8KVAvddXOHZAR64NAIU
Ts6DB3BshTAamePtB89hGIHzC0vubDRkCZm/B/KAriBfsJye4bqYj+1puv6jQVPmXfAk3iZwms/b
sAA/RrOdwMvNITqPI+H77Bf63H0K84dg8moLpLgwgP8sfU8CXHUFaZ17IBKxijGHg4L+aSDtCMgH
uyusIxTeUhS6MNyOsCSn7yeLyp+v/Z6hsJfoc4sVvmvhKZ6asKmgVgzS1ARw331fP+sBXgxG69p0
BnnsDYrTU/X5GIqK4ojHkygtLUOvXr1w0UUXBTj5cv22tH9T29yyz5bWTlu/fj1GjhwJHrZjgw18
szKWDsEG7oGysgokEhnEYmn07j3sy6CStu3RRx9FKjUo6G8jREqRTJZj+vQZKC7e6UsGF41eim22
maSb/FfggXUbRMZj3LhxymCeBP0BrbTVRfAIM7spjgKFl1DQqgaFSNOuJJVpWGSb3X67waMkF4Na
ox/q2D8BfWLuUEa1AwojmVfCBRiLWrPaq0l4Djpzpl6nDNIOy/NAYXGoPmcH3LHg4bu1fn6hrsdf
QF8sqxpyODyPm1X7sFQ4ln+vC/yQnQ9qH3YFtUj12r+lZmjRPuq03ypQW7YGnnahGfQ3+gR+0KbB
Q/ZjUCizg8H8hL7Q9bM8hCNAbUUHULuyBryEGEOvBg/mv8Gj/ywPoAlKO+n4lmtuO/BgnwIKWaZV
TYMC31pQ8LFo2hGgpvcduOY2CQqIQ7Rvi1DtBGorPwUvC0YDY/U5Sw0SBzU8eXg+NQs6GqDzqgY1
RPNB5/iu4IGeRzRqQsBA0Nf2PfDwsijOH+j8jgAP7Qqdix3gP1V8Wwonw0UYDfqo4mIBPDXM8aCA
sQconNpcrtf+LJVPTuFdpms9HnYpJM6WgdryJlBzFAYcrIBHkIbrVKr4SOkaNkKkl6YHSYMCx476
Y757KcX7ZHjwVrXSwVTtexBiMdPON4I01AUekT8ugG25zjf0CfweuP/SKExrtBquCe4IBlh8AMtN
6BaMaXBBOAPXTFWAwROrwEuZ0aNdzE4L3p8M8qzBwZp+pPB2U7jaXjC7wy8fA3TcgSDtvg4KRv30
3T6gRSYH0nhXRCJbYdy4qSgsgQmQ5uzy+yuQhhZCJINIpBzuOwqIXKVpvYrhvr/L4XvC9u9UkPf1
UxgrQE3oZPhlMwvnLUfBU9ncF4x3Mjy6+k6QXn+s+H9VcXIJKByPQmlpLVatWoXRo7dDLteApqaB
uP7663W8A8DLwBYh8N/ZvmHxZktrr61YsQIDB45CPJ5FWVkXdOrUQ8u7We6853RDvQrXaJXpRkph
9913x8aNG/H555+3239LSwtaWlqwevVq1NZ2B5noI6A2ZyxEKhGL9UFxsUUZZ5BMVuDFF1/EwQcf
pszsavAGaJFsdmiYc/0gMCLsGVBYmYlCU9C14OF5NgpTm1galDr4jdQCEqyWsN3ai8AbpaV2MS3l
hWCuqrQynVEg428Bb+HFynis2kUWZMAm3OXgWo4cCit+3K6MzerRmiC4CF4qy9JoZMDDYxEozOUU
N7MUPjskFyts1+g7EfDAvUnxnAEFrong7f4auFk/gcKi9uaM/TMwAKKXrpPly5sBZ8gb4NUwHg8+
v1jHHAke4Nconq3/Sl3fTtqv5RYco3OdC9d0pkEB+m54KbgYeDDeDQYIhBHUpt2zYCHTaJqmyCJ7
86AwtAg8DEzzYJHoNi+Lth4KRh3O0z4GwPPF7a/zGwQKBp3BYIbL9Jn9QI3FGeClqAh+gTCB1Eyq
ot9tr7AdAZEsYrGE4ud1uGmrTJ/tDgrhZ+p4s+GVL0zLZpq5KpAGfwSv2NFB+74WFOjKA9xn4Hvz
MFAAtJrLdpHMorBsmgXUWBT+L+AXuipEIiWgMLwILgRYVPTP4BV8bP/uCF4YK0Ah9l5Qc92seK6D
a6OyulamUTVh5kBwLzSCQuRu4KXgd/BUI7Ph5euugSf4fhEUNs0EOx2exmoUuH930/+txNtFcFO+
pR7qpetkwUKG4+MUF826PiN0zibE7gTSVArc0+eCl4BwjxhvMe2mVeEBKIR2AXlWKXj5oXA4e/ax
IF1UgEEXrMDTtavlljTXHKsFbfk3zwV5bxpDhgxRHLaCF7ruOqcrFbZLQW1oZ/0pBy+5pv0crf23
x1vGaN+XgHsvhVhsMLjf6uGuJDZn04gy5Ux5eS06deoFXgRC3mL8+QLF4Zb272rfsLizpbXXamq6
gdqfJcpAqpTxfKDMwzQJlvZhKhi59ieIlGLs2HHt9rthwwbMnHkkYrFixGIp7Lbbvrjmmmu0v2ZQ
M/QZ3NeuSjf7O0ilJmHOnO9jzpw5ylxMa5IFmXizbs7pCo8d+LXwBKCnKUO4Cl4wvQwUQI4BhZx3
QcHRaklmQH+XD8DDKKubfh/wQGgA/U6sdmWYUuQwUCBcr8zrcdCEMUiZ11E693K4eSgLas42KEO0
A+a8oN+H4NHBYaTkKu1je9A0Xgs3tW9UfO4LMste4IE1Mng/NAffpP/fCZr7p4PCzolwQfUOxcsJ
ugbbthmzBa5l7AYv0m7fv6JrmAGFg2fAm7wlsl0CCkuWQsK0lEfpc1+AqXFMwAxrFY/QdQqj/F7W
Z7PwElXQ/vaEVxdoBbU4JhSUgabKA+B1VcvgGp9W8JBMgodhf7jPZEbn/1Ew3hSFrVbXam6Ap7YC
8cm6psfreEvggmXJ/2PvvcP09PmCMQAAIABJREFUKqu9/zXP9Hmml0wmPSE9JIQkJNTQCV2UTiQ0
6VWUIh2kCRw4gFjAo4giqEDgHBBQFOGACiiIICAQunQQiBCSTObz/vFdi7Vnguf9Xb/DkVcP+7rm
mufZz953Wfe617368vXo87/A72bSt7HPYVjh8xzsa9/msNnF7z3tz++GDuGL0UG5N5kup4U0Tc/w
Z7f2sQzy9iItSgti5vtQWqgwqX4GMbcxv2MLz++IGN12xHA0oRQzlyPm5xDMjFKpaD1YUliPqwr3
LyVL2C1DzF4xY8FihHtLkKk6fM2u8d/fQns7NEy7IWZ8o0J/oaWv8vldhhiLsxwW53v/txOl0LSG
u3m7NQjPYkyz/P7BhXt/IFMjFWnLPv5sMc/nX8mcnT8k8eJMf7bJ5/R5tB9bEM0aSFtmIUF/qP+t
T2oZmxDDeAdmG1JZGamD9kSC1GyEE4Y03TGG90lm83sI50Zitp/XYQ5h9iLE1IGYtmKC89+Q7jTv
fAgsVmMgbZHm8Qgf1zqY7UtVVeQIHYf2aivat/PR/v4+opcL/bn/G235540O/uT6X3AtXbrU7r77
buvt7bW11lrLAHv55adNbqCXm2J8Gi1jhPYwRc5dbHL97DO5f/b432H22msLP7SvM844x6688jfW
2/tZM8OuueZOW7jwBtMe2sbM9jazhaZYozpTwZoZZma2ZMk5dtllG9uyZYvNrM0UuRfXOyY301d9
3PX+e50pJuknZnaHKQqvze9da4qG3d3M/t0UsXasKSpuiCkS8DRv/8sOh+3N7KumyOA3TJGxF5ki
zY40sy3+BpSrvd91fAy/9nbuMLNbTdGH8x2Wlf7cFqaMS6W/0ab5mKr98x1m9n1//2x/7zMDnq81
ufNONrMFJlfgRQ6rBpM78HsD+vx3U5TerqYow381RdVtYir+Y6Yo3otMkYiLLSMXzUS+2kxRtoea
2UtmNtfMZnn/EWFdbcKtOjPb2BSdO88U4bydmX3XFFsW+PgfJlyJ6MK4sIxTM1sZfr0m/Pivrni/
0p+NsZspgv2iD3vJ59JrWr9OE2yX2YeT8AZTlOWt3t98U/R7tPO0Kao2rl+Z2VFmdoUJdq+boi3X
KIx3DR/z0g/pD1N10JNNa7qfmX3efzvJhDPf8PcDH1Yzs3/zd690WPzOFC39jo95dcuI2TbTmtY6
HMwyIjiuU0zre7/P83rTGm1pirx8yNvb3cwO8//zTLipZBOwwrQnn3UYLvM+B14l7+NvXZjZIabI
eEx4HZGfLWa2oc91azM7whTJu6oJt0s+rivM7Acm2Eafx/icey1pSES7jjDRjbies8yWsOJvjLPC
x/dTMzvXBOd3/4t5LTOzg017bbGZnVeY7wMm9/5TTdG+H8a/VJvZdBP9/Y2ZbWqC0xLTehzgz/3A
VqwYaaVSg/X1HWWiK+Zt/+RvtN1sZruZ6NVkn8uPTev0nyYa1uh9ffhVUVFvcKCZnW+KUP6hCW9f
M9Gl1f3eCuvqarFXX/22iaa/bWYP2PTpq9lvf/uYKRJ5lpkdaNqH53n/801r9LfHoOu/os2fXP9/
r7+vyut/8bV8+XIWLNgPSaM1lEoj6OgYzr333uuS5yUu5XyW/tGvS5CvRpj56skSXudgtg3bb7/9
h/Y5ceJMsiTRGf55NhUVYYJtIn2W1qV/HrVrXArsRFqH8GcLM9iBPuZRZNRpSPFVpPZwd2QaDY1e
GWkYLkFm7ciNtbuPr5osD7YMSa/mbU70/uaRFTTCZHMWqQX4F6SVOA9p1TZB2pliwME3fS4tSPLe
HZljismJi+bgEpLmI0lqJ9I8nIA0aQ8hjeoupDk4TNIgjU0FqYkL5/ao6NJClsF7pDDOfUgH8dCE
PeewXerrOoo0k67rz+6GtBYdyESznd+vQWafSOr6VZ9T9BH99iHtQWgvii4AnaQfYdF8Geb5c5Dp
d5o/vwlpDv4KGRHbhDTC1yPz5Hxv96eFcXyPrMTwKZ/n7qQv3mGFZ6/1uRyKNK7XI61y2dd4j8Kz
EUxT8jGH9rNosmuivX0oDQ0dCOeqkHbmDaQ9no1wMBKSX0+YgwWLGNvGKGAo+r6SDABp9LGFhn9b
snpEC/LPjPe+6mvd6Gu7O9K2RG68MsLrMM8e6GNa15+ZQfrPRqRzyWEWfns/Lqx/5H4sk2XxQhsX
lUWuQM79UaGi7PP4MHPwDLTf49lG0rfxFbJkY2imI7ghqv/c5rD7AaKJB3lbeyK8CAvBGb4mOyBa
0EplZQ2p2d6YrOMcbiGBs6swevREslrHVxE+NTB+/Hh/50if03pk9oTQbEYgVARnFbX+4TdbpC3D
HYbQv6TgLEaMGEHmWwSzJ6iubmK99TZD2sPziKTQkydPJqPwK8kSdVeQUennY9bMLrtEDsk1kEvB
VugcuNDvhzk4/DSDVjWQOS3DbL8VojuTMWukrW0oGbm+LWYNlEr11NSMcNgXc4vOJWtGhyY/zo5x
DuPDSZeQOl/rT8zBH+X1d2aF/vdeJ574Zaqq1kHM3Z8Rw7AVc+ZshA6SiIZ71zfRCERAp/j3mZiV
KZXWQMT7eHTQl3nsscc+tM/OzrEogCI23b9iNoXGxgmMHDmBUinKyzVSURH+M58mozq/68SwC5m+
IiXD1oU2H0LEMpyut0Em5id9DhHNdi0yPRSTF0cy0kgbMtifH+Jzn0n6O03y9iLg4+c+xlnoAOsg
kw53IPME6MAO/6XvFfo+xYlZPTJLb4YO+jB7b4mI9hifb6uP7QCHx8JCWychxnxDJ15bOHHbBB1u
vyPqlGrMtyAG7hzywBhGpmT4U6HtA9ChtoXP9Yv+7L/473/yOW+B/AjfQSbPOPSK5quXHBYrEIPd
jQ6yCDTqIpMsv0v6IE5B6WxeRwxLDzLrnIbMTrEWI338I9HhNop0qm8iS3AFro1HjFTg+gMOp+lk
IMNodAg1+JpsgXAsApAiuTQopUgbMi3NdnhOQIdtuBr8EuHEnqRZ9FCyVN0U7/MXmDWy55578+ij
jzJ69FTSHzMiKuNgPNjHv6bfO9rHHDWuz0GBDM/4nMaS7g+tZIWSkaTpuMzKyamPK8x7X4fHvpjV
UVUVeB8uE8HAB05t7b810tzc7f3e7Gv+HZTAuUz/xPCn+DxmokCZdlK4m+X/J5KuIOHjO4QMcIjq
EuuRQsytaM+Gj2Un6edqPs53C89GVHM7Mm/P9fenkALCINKF4fNImA7mtg0JZbXIBSLoQgfaW10I
p7bEbA7bbbebz+f3BVjsTENDA2J29kW08DjSD26Wr/N4JLhFZaSvosCJSzFroFwOX+etkUBRg/Bn
R5/LImQub2T+/PkOn8MRHR/NyJGTePbZZ6mtbUcCwPo0Ng6ivb3dn70R7WEFhowYMYERIyZRWdlO
dfUg9tprL668Mqql9A86GzZsAqVSPdqP4Qu4A2IUexCdiwpI3Q6/KA8XQmKkqepC/tHjC+tbRsIT
aI+OI7MQ7OtruxjRtB6Ed9uSTGAjmSHhf/b6xBz8yfXfvvr6+uzqq6+2Rx99zCZPnmQ33vgL6+09
2WS2MpM583J78MFHrbq61pYvv8SkXu8wswY78sgdrK+v12bOPNaWLVtmRxxxgi1efK319X3RzK4z
JYc1q6ycb9dcc401Njbabbf93FpbW22nnXa01tZWq6rqNSVAftZk9qszsy5bseJBO+WU823hwuut
qqrS9t13X9tiiy1MqSgXWppDTvDP55lMbZubzLLFZKdtJhNInz97mskE0Wwyf51oSmB6pT83xGTe
e9PStPVrf+ZlH+O+JvPFapZJdF80mWwjWegGJvPcSSaTWdnMzjIlIV3fZL56zmRiMlPi1v1MZqRe
U+LtSG56j8kkVzZlanrDZJK5yd+9w2Q6WeHj7fN5x9VuSvP5vmVy6tUc9kMdLqt6u2tYZnk6ytJ8
9b6ZTTCZlD5lMvk+YTLLLjGZ36rN7BFTsukdzexfTGbaPpOZ7jVTKtE3fQyv+Ti/7rBdw9IMt8j7
vM9h9HOf3+o+5mcdTrWmJLH7+vfNTQnBn7DEj41MJtkn/Zm/eB+RMLjPtK5LTTi21Mey3GTu+o7J
NHqJv/+Cw8JMpjR8bR414UGHw+A5h9MMn+8R/v62Jpzo87Ec4O2FWX2Fw2WFj38P7/s1U9rV75rM
ccvt8su/bd/97nesqqrBx7CWyUxoZjbeZE79tSl7V5OP9T1v9xu+LmMtkxlXmPDuXZOJeaQJN2vN
bB9v/1yTOXqZw/1xX9PLfE5NJhrwV1OC7W6rr19iixfXmxLtmgn/GkzJts81rf9mZnauvfPOn81s
kslFYhNTUu2jTXvtVDO71OF8aQH2W5r233xfw/lmtpMpgW+FCR9vcJj+0ddtqQkf/2LCmzha2034
8Fczm2baAw+YTNdmcl9o8M8b+XMtJveQGpOZvNLkJlJlSir8hsP3+6bUuAtM9KbGtKY3m/bPzMIY
ppsSFm/na/hXM9vabr31+/7MdmY2xWQG7bQlS5aYkuXPMuHoeIfPnd5PJGe+zmTyXOFzO8oicf+7
7/aaXB1eNLNf+FzbTThyj89lupmtYffdd59pj9xjwq8Ke/bZZ+2UU75iS5fO8/mW7a9/nWmiqTNN
Ljqnm/ZElY0dO9T22WcfO+mkk83MbN68eXbHHXc4DMNNo2RmTTZhwiCbPn2c3XjjLX6/ymTmHWJy
Kfiur8vL/tsjJjefP5pwpdq0/y5wuL3t67GrCcf6TCbpjU2JrV8xmaq39LX8tMm9YU9TcurXTPt7
ugmPV3NYV9on10d3/Z31Yf87rr6+PnbbbR/KZeU/KpdnMnToJPqXTjoasym0tY1i/vw9keR+PGZz
6egYxdKlS/u1WVsbAQw9ZO1ZMDue+vpWSqVIgttNZWW3p2D4nEtPByPTSQPV1Q1stdX2lMtTfWzr
sM02UVYrErp+EWk0diTLH53gUtkQpB24AjkOr480DtX+/4rC2CLK8hVvYx5pWtrOJclO/xxmlNAk
nejvNiMpvs6fD03F18h0J2F6iEjUJn/3RDIR81x/fnskhYezf2gZTiTrlEZesBuQQ/YYJL3XIs3C
5kiKvcOfaUGangN9HvsiTVSjr/MupJlxCDLxgzRD1d5WDdLsHliYa7P3W0zouo6PpxGlDTmK1CYN
TBYd0vM8MglxPZLsW8iErpFqI1KgnIgk+NWRRjNcEI7wZ2v870mfx1KkPWhGWpf7kVYt0myElvhY
JO2XSfPPLIRzQ/1+9HcYmYR4U29nPP2TRZd97hOQ9iiSI4dWs5gsejIrJ4uOyOfRCAePJ7XuxziM
dnB4h5ktonlDW74vCl6YgbSi1/r9WMNx3nc9iniscxh9yddpGNIqdZApO/7qfVX5fGYj7WiUWmv2
Nk9EGvJGUqu9D9KENSCzZ42P/0SEB6GFGldoJ+ZU8ntVZORm7Kc5SBM0EWkIy2Sy6APIqNoO+pcj
W5VMoP4VZA0YR+bZfL3w7HYIZ9vJMoMXe/8RXHA0wqF6MsF0JCGOOUVe0GKy6OHe549IK0QEuZV9
nSNopgPti9+hQLMuMjq4Ee3BExAtXh3hbwPaH/sjnAw3m9jrS72d4d5fJJ/eBeHA1ki7dgKZfmp/
h28X0kr+GbMaamvbHBbHIpeAYaTGda6v0yTM6th5553JRPSKft5hhx38+b1RZPgpPv6t/P+uDudG
X7/IA7grci2oQ+4W6/g7J/oYq0it/ReQtr2M8LDZ5yWcrapqplyO5OdzyGTlGyI83QG5H3wa7ccp
Pqa/T2DI/6brY2KT/rmvxx9/3HMx/RpFdP6a2tp2T8HyGUT8G6io6ODEE0+huroe+XlJNV8ur8GN
N97Yr8111plHVdUxTnQ2Qwfwz0l1fBDeh8lqCJ+mGBlYUXEGW221I7W1LchEAWbvUy6PRgfAfiRB
XugbvZaM7OzzDVuBCOAMdJhdQIb8BxHZ0McVRP4YxPxticzMo9GBebnPIbLkV5E1j5f75l/bicIl
/kz4u9TTP7JzSyc2E8mErs97m3MRAV7D2xxD5pWLyLd3Sb/EyP01GxHaSJr6lMPhAsQQtqBDqA8R
7ZO9rU6UFDjGtsCJVzNpMoqUNVVkeouhiMiGKTbgt5TMH9aFGOxo+ycOizBfRRqHBoQvgRtP+hya
6B/ZeShpyonoybd9fFEJJZ69tACjHsS0zvT5GjrY4tkXfVyN9Pdti8O+2/82IJmyNsTgx7MnE2mL
FEGKj7ED4Vykq2hC+6LF4RaRnX2+5ubPBiz+QCblXnfA/ajP+kuES284fJrRwRRjuwAd4n1krWrI
PGrF+tq3kozIvYWxbeMw3RoxPO8jYS8O3qJQ9QWHZzNiWHf1tQkGoBjZ+R0yijtpi/DnILT/473T
/fdmMm/jCp+bIfNymHJfIZONF6OOzyBTN52MBJxLyLQswxGzMs3HNRLhULE+b0RxB3MwGDF2n/Z1
ikjivXzMv/d2gtH6C2kuP7XQ7le9r0q0hyLSO3wQw0XlRZLhLCb/Xot0dRhIW2qQi0IxUfeXyEot
gVd93ka7/7+OTBi/J0lb4vvphfYuQgLfUyRtKNKW3cmcmdHmayQ9Pq/w7DlUVJQRHd8LCRebkgJG
0S/8RtJfuAsJ/JE2ptrhMpC2DIwaP4zMG5u0pbo6sjsc6/8DD3qRUFdHCi1RI7kHKQH+55nAT0JQ
Prn+W9c777xjfX1VJvPFj01Row12ww1X2a671ltz833W1tZqxx57iB111JHW27vCpHI3MyvZe+91
2SuvvGJvvvmmHX744bZgwQL7/Of3tVVXvcuken/bZCY53GRCarKMCBxlMoPUm8xMYz4YF4yxt976
q1VVtVoWpKm1ysohJnPG2MIswqy43LLgTIVlPda5JpPb2yZz03iTWWMNUx3WJ0yq/A6TWegOk1lp
rJl9y8y+5nDZw8y+ZKpZGdG3t5jMBGeYovje9n4PMpkirosZ+TjjGmcy+Y2yNBkMMW3pJ0xmiXtN
5swppojJOjM7099r8PFWmky2/2kyxRxgGfk43Md5hMkE+q6pPnCFjzPgvXzA2MZamtkne99b+b3P
mcxSVSaz5CsmU3qtw+UbJnNJj8lEsrPJ9PQtk/lv9ID+KkymoqmmyMrAjRGWpuOBcKs01SUNE1Gz
ycS63DLy2Py9ChO+XGsyK55gMiObwzZo9B+93b4B/Y33/70mU9vOJhyKyOtWk4n4ClN09wofT9Sm
rTdFE1aacOgVU/TsGZZRoiMLsIg1KcIiYLbCcm3i/juWuPWayRRXNq1P7id9ftvfHeWff+f9V9jK
++lt/624TnF/nJl9wWQ2HO99VdjKOFRjaYrbwmQmq3ZYfNg6mRVpS7YX5tZlpj1glpHjV5jo1ihv
Y6ilKbfLn6n8EFhU+fjuM+2NH5rM9s/670+Z2YMmF46A2zamaN9jTSZZ8zZuN+3VR81stvcXY3/H
5/q2aU/E+FtNeFIxABa1Prca0375tYmOTPLfxxXabTfhxWK/h2mvzSg8W6Qtse+L67SKP/Oez+sB
n/NfvK3FJvpWNtGkoZa0xfz3gWu5yGSe7rMPp3vm7cQe6nC4FPHfzGyMASb3iG/72K4z7YO+QlvR
b59pXb9uokGPmnAH094cSFvivbjGWu7XpC11dYO83WH+v9t/qzSt6V4Og1GmdcO0XhER/cn1UV0f
j6rsn/x6/PHHXWqMKNfnMWtg0aJFKz27dOlSJD0f6s/9GLNGzj33XGpqOpCWRY7KF198sTt1Rx3W
8zBrd2fem5DEvwdmU6ioGIJMCROQJu9BzEZx1llfYdSoKVRWfhmzF6iouJT29mEuSXag8muLkCbv
QCQZ7+Zt30jWwywjCbgZ5Xy7EZmfm/3zd/zZmS7BzUHakFaknbqxIC2ejaTyCtLktjMy7zUh81Yz
ivx9hkxY24A0Kc+iyMFwEq9HDvXPOwzCQf5OpFn7HdJu7O/j2A6ZDf+VrLc5BGlsHkcSb1SU2Nfb
vY40jdb7ul3k7d6LpPINkPT+n0hCjojByQ6rMOPcjCLhtirApI+sDrMPCiZoJMtnrYnMUB0O22ak
uXnO22tHUZsN3vbzSPJvQuai9ZFbwT3eXiSAvhAl5T0TaWt38nHej4JtppJJto/wdq8mnbcj+vIA
+ldw2c7X7hdksM9IpBn6HMKRiJRuRK4I2/jnqd7fmT62rxb660JuCU+SlSGakUbjeWSuj0TjDeQ+
2Y3E4yakWXkO4d1qPtYtSHNm4MUYpC38IzK5nV7oY00y6XIF2qd3Iu1FaKk7kUvCs2g/dCJNYBMK
XFrh82wmy609jsx2USKyi9TMLSdLpQ1BgQ9/QhqeSP5+IElbGhDujkP7MIIgvkZqbXcnE6FH/eLv
ehtHk9HgEynSFmlrGpAW7gXkdtCANLFfIXH7T2QQ1xxf523IsnFhQlyENP1h2VgF0ZMJaF/cTWqO
XyCrCbUg94Tfoz1QRhaYJqRNfQFFGYcJO2jLE2RN9oic3xZZDhrJ3I1BWw5FuLEPwtHHEG0Z4vOI
AJpJZCDNDIf9y0gzth2ZazJoyyFobzxI4tk00iVkIqKBQVtCW9eAAkheIEzb3d1DEO14GAXxjWXM
mIhyDpyfT7pmtKEgoKcQjYiCAMW8ffuhPRLBgz9HOBM0eQ79acsMb+didOaczeDBq6C9Pgzh4ZE+
96tcU7m3j7cTRZCP9/YDtp9cH9X1MbBI//hXX18fF154IbNnr83UqdPZZJPN2GijTfjSl47jmWee
4Z577qGxsZhgFRobp/Lb3/52pbaWLFlCqVTtxGAwZjOorV2bwYN7nBhFJOePKZVaGDNmNd8UX8Ds
EKqrN+CAAw5gyJAJlEpNVFa2seaam7DVVuH3MckJykjMxjJ27FROP/10enrGU1/fztSpa/PQQw8h
Yj/OCUoQ0vBt2gIdQNMQYxB+STv7/WItzUjiG6XBghiuSaahaEDE9nInDJF2ogEdWLugw/ZZ3/RV
JLEuOwG63d+ZR5pJVyPTGcT4R6OUK1OdOLUgRmwCacpYRvoXRpWMSIfS6O200L+0XZi+wrcwTItR
NWAd0jzZTCbC7SKj8p51WH4Nmf06EfF+DBH/GtKUt9h/LzmuxNivIk2gAdtm7/sGdHBOR7i1uY95
GcKfSDy7HVnCK9Yhog3Dpy/SxFQV1rTYX0R2BoMQFTLi9zkOpwkIDyIiOkx5T3g/s+hvcj2cdBOI
dDUtZHqXgHesVVQgiPrOLT7HCpIpiojUGOO3EH70IPN/g//tgA7qb5F+kMW+wjVhNdJ1IirH1CJT
1jj/Pwcxgi95PwGXOrLWa1EAiP6in1iXiJ4vmhl7EKNSHF8r2iO1PsfWAkzC/SDSdfyMxNN9fCwb
Ixye4+s0lNynZTKVVYxvKjKfR7LvwI+o9bsqcjHoQy4D7aQPYsDCyD0S/sEhSETakF8gJiwSSDc5
7LsR01Lrfcb+bUKC3hJvI/Zv0IehZAm3IUj4jUjlYoWeJurqIqXTMG8n1i8Ys6bC507SJNxA+uOW
6V/GLRIyh/m/odB/wDpcX5r8rHgdMYpD0V6qQriqFGCChbJOzJgRsGkgXBpmzFiT4cPDh1ewr6ys
c1/DIp1tYty4aV4yMVJ5vUwK7J1kNHjRFzPKxMW+baWyMlwIVLaxVGpi8OCJyNQf5TWbqa7uoqqq
FpmoB2M2yRNQBw69F3jyyfURXR8DC/WPfd17773MnRuO6gcg/5cmxLgcSnNzNw888ACNjV1kXrpb
aGoaxFtvvfWhbW6zzc7U12+H2e1UVBztBGAq0oB9nyJTtvrqs/33VTAbSkVFmaeeeoprrrmWurom
qqrqaWxs48ILL6SysgVpWW4js/i3Ulu7OmZnUy7PYscd53Puuec6Mav1zRZl0+KgjWoI4dsWkvrj
ThBDK7GiQCCHFIhEDZIY/+JzeQUxL1FbdnNSwgZJofN87Bv7pm8kq1kcgxjPeiT1giTV8GFaC0m/
ZyONTvjpNCPtwi9JP77wt4tUIZE+o8Gfme7z3YD0k4lybJG7rA/lLqsnD6aAWS+SYg92WM4pwBKy
YkgtOsineH+diKEqPjvHYVmsOPAYefB3+jNRgq2e/il5en0Mn0LMeqd/joNmNmLAJpNO8jXosGlB
B3+k86n0cYcGL/KJHYUY+xMczjG34QgnQrAwdFAV51fv8C7mc7ySrDAwDWkcJpDM3hx0MPQh/6PI
fRc4+TbSao2if57A98iSe1Gtpc/hsQHae12ICR3vcImDLio7VCPt3RfRAXU20iiH5jCYhBCsLiUZ
91iXwIvRJM48SJbCa0B4vR1RSk7+VPuhwKTP0T+9Sj0S2kKLU0P6zfZiNpmqqiqfV8DidZLBb0Ua
tb3IvHftSKg4m8zvuMCfn4k0l2+QFTQ29fe+hPwWww+1jHCzudBfjD2CuoIJ3NDXerjXKm5DVooY
85kOj6lIY3Q90sK1ceyxx1JfHzWoa5EGNHzWfuXP3oMEzUr6+7w+R+6Hu1Ed3B0L6zud9OutdfgH
Q3m8wzVwMzRXWyH8b6WyspH+fncXU1MTeVbHIjzb2p+/CAWmDEJ4eYzPOdJf9SF/1qjfvRai8Wej
PdRKVVWjf29BvqAnk4LtMCQMrkep1Mpqq8309d8XaXO7aGkZzPnnX+DvRM3hCLQZRFq7vk/iSzPC
v3UIJr6qqhXh/Zd8PdrJ1DFHOuyaGDNmAtXVZYrBReVy5Ks81u99wgR+lNffmYX6x736+vrYe++D
aWgY7pv/iMJGvt6JA1RUHMcBBxzO7bffTktLN7W1rbS0dHPHHXf8zbaXLFnCYYcdzciRk3wjbURG
W7YiVT4owWgDIpKXoMOnzP77709dXRs6kD+LVOm1vsFmI23guujg2AoR2FPI5MHNvsGb/N4apFq/
CZmAliGTYEQCfwYxfZsik+F16LBqRIfTOGROAWniIlBiEDKPjfZxTPa/Dm//GjL5biR0rXYYgxza
x5LmvD0RIzgeHQhRk7bXvMVlAAAgAElEQVQTHeadyDTdgw4y0GG7ur97nd9vQtqRopZmEjpIIprv
bP99PTLf3QoyH9Z6ZCmz0LJEGbF2v9+AzIC9pFkzzHCrFcY/nSwZ1YtMvBGhOAQxyu+R0bbtiBEF
BbqEFrYRHXjLkQtBIyL+a5N1mht87KORifwlROwjgXI7Yk5n+jNr+vq2k3kLZ5C580YifAuGLzSM
oWEN7XTk7VuOXBvK3u56SGB4hYyKrUe4s6XDfn+Es4FjoDyDLT7m4xHDH2Nb1cd2F8LlcDGIfRIa
u2FkLsozva0QNELrVRQOIg/fGySjFQmdRzvcApdXKczpQsS8hJZysLe7gKyt2uT3N3TYjyQ1ss0I
F0NTNouM5uz0977m8xxEOt5vQdbr/iMSgA7y9prpH8CzO8KhMaS2/3VSM1z2uUxFTNrupLb1MsSU
jySj/K/wNbme1F6XEZMedbnDZWIVX+sOKioi4KBYA/kYUmPbRZaXm0GpFObboGGBUzUOm628vzEI
ZzuRifp9zD5La+sIuroiinc9n+tbaL+thvb7pb5eR/qcQ5AARcAOK4xvLqFdq6ysR3gWpSY7qKqK
QKvQ+vchnK33/tt8rCGY96BAnE+TNZGn+Zxn+JhGkFrFyJ0Y47vW39vSYfdNH28NYmrjuVuorR3E
HXfc4W3MQXg1FeHMjoVn+9D+Dg3uHCSstSGBPhQZG5A5Q3voH8DzHcyGUVFRpqJiP0QX7qRUaiUF
pTcdRz65Pqrr78hG/WNft99+O+XyeMSQtSIJLaSV+xATAGaXsOuu+wCwYsUKXnvtNVasWAGIkXz+
+ed58cUX6evr69d+X18fTU2dpNT+jhOXgX5iNUj7FPc+R0/PEKqrx5Eh9CAmJ1LSrPB2BmP2H2QC
1c/4veG+yceTB+5UUqsyl0ynsTZpxrkYVXcY7zD5PJKqt0OHazFVRESEtqKD48uFOe3ic93E272f
ZPgiyXIwVW+RRLye1KTt723d5b9Fuo17SDPdYGTOADGkYaLoQBJ/aIg6EYGN8Z/hsOgiI5ejpmyk
bwktzrWIyO3lY4mo57FkMffhDsNJpMbgkAI8DvJ76zo8Ksh0FoaIa5O/uwZpPhvotxNalShSP93n
HBGEV/l4bvfvf/Ux3Uz68q3pcwlYHIfMXccjohyVKn7k/c0stP8DMs3NnsgkFwJBGTEsQx0Ws0j/
ynmkdjH8AuvI1Eh/JquWbExq/U7xdaoga1ufWIDrrqTf4YbIlymiDq9EjGgbqnkMYlqaCvNpJPEM
JAiGFrZYCWG2j3eDwtguI+uwxqHWgnB1DcSc3Yx8uu5n5cjdPiRsBfMVKVSe8XvT/Pebvd37CuNZ
gJiOo/zZYYhpiujhDUnzabFe7nEOy6KpeoX330wmw45kv2WfZ5hVx5KR978msxjcj3CnASVOj30X
FTXGkbj8M9KU2Y6E35MQXu/oY34R0ZCTB8BqS5IxDyawSFsion00Gf0/i8bGHk+xdTUSWMP8fgP9
I8wjaryN/jT5Uof5hYh2hoYx/FjrEc0ME3L4Ji4ttLE1ojugOsg9SDMYLgjz0Bn0F+/D/Jlwr3iJ
TPQ/AUWyR9u/QfiCr3cL2ouNJF0GCSnNDBkyDp0bePtTfX49ZJaJm0h6GpaKFUiDGfs9hKlFZKqk
YjGDW9GeuZXY86VSK+PHr06mKmvxuX5yfVTX352Z+ke9Lr/8chob5ztBGe6bt9I38kSkfbuD+vph
K6V3AVi8eDFrr70pdXVd1Na2s+WWO/Dqq69y2GFHsemm2/OlL51EZeVAxmkuOiRDM/FbJzoPF545
mp6eoZRKXcgJOu6PRZqR+B7VOsJ3KPwsmrzNGidMr6KDK9Ki1JPpHIrm3ZAMZ5AmzBXI3DLL27+H
ZC7GIEnvEFY27XwLSdhRxYHC3wbe3/eRX0po5UIL8nnv7+v+/JWIuS22EdrOVu87NJ0RnDCQAE+m
v9/OPf7utAHtjvK2D0Kaud8i4htanMgh9iLSKq2NmJM4mPDxFJlQyELqTUizezqp+ahFTvZ93sZj
JLMeqVVeQ5oAQ4dj9LfCn4u5Pu/fiwzMAmTGGezrvTH9K63c7mMegUw+U0hthdE/TcnLCE8aEAP3
O2SWC9N8k6/9I8gsGtqCKYiJ+U/Sx3ToANjPQYzTNDJgIDSO9YiZ7UC4ESlZvu1rVkz/0YKY9fh+
DMLDX3m7Df79T74m1xaevZHM53iEP/N10sRZTPOxyJ89hyy7Fv5sh3g/V6CDd1vSjPzrQhuXkTkP
i7AYjRiVbyO8baN/LtHDHT6roX0z3ud9PaIl25I+XHORhvAnZKqbJm/3T95Ws8OiWArvR35vNV/L
FvqXPOvzOf3Gx7Iroj/Ffben91dMf7ScFIJGIwbkEIT3p3p/OBzvLLz3nQH9H+dzLMJtI+/vJHI/
PUepFDTxVb83A2m8LyStCfjYI3XQRMRg/ieiKQsdjuMLz0/w/lrIwL4Ob6MbuSv8CdG6BlIzCGLi
ryEDpx72/v6EmEVjZb/SyB96Ato/v0CuBqvTn9kbRTJwnUiwf5jIrVoq1bCygLkBEiq7EV2L4LJW
sioLiCa1sDLOjiAF87t8LqEhX4bo0vOY/dCtXBVob77kc/3k+qiuj4Gd+se8HnzwQRoaBjuyDkZa
jvfRIdbgm6WNPfbY60PfP+CAI6itnY+I2hLq67eks3MENTV7Y3Y19fVbUFcXkVAhocVBOQoRtKi5
OdOJjfwwNtpoYzbddCt/7k9I4hqOGNNepD2bQmpBahEB/IJv0oi+O7+wSR8incUPQZL6r0liPN6J
zhjEdNUgorizE5l1yIS1oW0cRWpodnFYvOPzafFN30PmmXrIn60hzXZlMrFxtROhVZz47E+arEOb
8x1/L4IkIrdfK1kbczIpKT9Dmrne8TFG9FwDOsRAh2QnYmiCeK7msAxNySGIwXodMeVHk2WgDiAT
Q4f2630kaW/iz63tv40l85+1O+zf8LYPdniEM3bUN+4mtU6LfMyX+LheQofEST7uMKku8uc3R2by
MsKbjRAjvwzhYTBbe6IIzK+SDMMoxPz1ocMnGIYh6ADv9vfD2X02wqH1fH5b+vdB/uwIMtAgzIG/
cviMRRqMXyIXhBBcyg7P+8k8lA8jhrCMontBPqgDGa3j/fkpyEw2x9saTia2PQz5j67j7UV5vjFk
8FHsk9ccFkcgrci6ZKTsKw6XzyBzYhtprg8hYOA+CX/dO0imPOA4DGnAWn1sdyHGsowYkuWkK0U3
mQx8LYdzo/8PfA6tS8wl4FLt97ZCe/49MhF2MAu3+1pECcRveXvjfL6reBtBc57x9s3n/rTfv4AM
iIpAjxBu5/vcf+PrEbBajGjTBvTffw30py1hfh6KGL4+MlF+J8KFPsQ4dVBdHb7C5yGc+TTpfzvU
4daOLCQrkOZ/Atrrh5IBLkUfxBD4LkVM4BhER1rI0pT3+3iO8vvrkmXzBhfgFlkK3kK+heFnOQ/h
QVh3yqTgcwtZdm8jhI+r+TqtgVkzpVInGaz1vD8z2Of7M7T/vuLtNCNBshdZY6aTAVzR588cDtPJ
YK5mxOT1oZKYsz6AUVNTWJGGItryCRP4UV5/Z1bqH/v65je/RVVVvW/solQzEjEZV1NT08nZZ5/N
3XffzQ9+8AMeeeQRAKZPX5/+JoOrqKgYTGr+llBd3cygQaOpr++mpqaRb37zW1x22beprm6gpqaF
jo5hjBgxwTdgO2YtlErDueSSS7jzzjupqAj/stC+BONS6xu3m9SKneObrts3e1TuiPF83Z8bGBiy
tz+7a+HeUn8utBcRzXuOtxMRY91OsOIQCf+mNUlH8RrSRBuMgpHRcmFmmUCapEGH5FiyVnFNoc9t
/X+Y8pYjwnioPx9RmKHBOZF0qi9GRAYDHQ7/1f59JFkT8zJ0mMeBHj6NEUwRDMrFZLqV+kKb0f5Y
/x6Ec5G3t/6ANmONw3w7ytcnzFuh5Q3mKPzgYr61Du9iRGI3OhTC3yiiXaO/Cn82TJ0grcHqpFah
k6wM0UTWOl6MtCZWaK8bMf8RDFFG2o0THDaneTtl0q+yvtBGrFNEmFaS7gAgwSTq85YK8Ai4heYm
fG7PRHhyW2FtQtvagMzOpxXai7RG3f7cjxBDGoJQIzrcX/HvkfQahIMxnkak2e5De2otMsK6hmTU
Ajda6J9WJWBWS5opW0hfURCTHab2OtKc/Yy3E4JnJcKfuLclwtkptLT0kEEd9aSANoz+dDFg3Oaw
ecjv/4GM9G5DuBIMUkSYlxEOhm9eZEsI147ot4vcM8XxtJJuE3VIALuLjOANXNuGiopIgxJ74ieI
2ZlMCJvrr78ZACNGjCF92hoplSIYYizJ/BfpxhyH27ooZcsoMtIWzH5JU9MI+rtcnEQya7FfY39H
QFVo8t7DbHUqKioLc4gKPZXcddddVFQEnoQWMQI8WnweM7yvYLQzIlpKgqfQXm6isrKe2tpiZHQI
puGechNJk0RXt9lmW5Iux1jKZIL0mUhZEL+XkZIDzHppbFydlpYWMuDqEybwo7w+Tp7q/+mrr6+P
U089lcmTZ7Deeht+wMw99NBD1NV1kYT8dUfc8xCh+xQVFd1UVQ2iqWlHGhoGcfnlV7DLLntTWXmk
b/Q+dEj0FIjBMurqOnn22Wd5/PHHeeKJJ1ixYgWLFy/mySef5LnnnqO3t5f77ruPurp2KiqmUSqN
oatrFNtsE5GDPWRuvVG+OT+HGJQ+xMA1I5PW80jrdKCPfw/EKM5CJo9weK9Dprk+5Is1rUAkrkEH
20EkM1NGmqoRiMm5CWl5XkN+JW/5OOuRD88iJIVfSDInGyIt5+dIv50h3s6rPp4wjb/i41qMJGVD
DEklMgP2klF0J/rzbyLNyyx0WLyEmPgH0EH2MFm9IPzcVkNE8nZkdrsXMc8l0p8vmJwqlAuuCvkt
fZosG7cK0uLd62OJAIz/QOa1nyIzXUTPFQ/VtdDBNhn5K52BTGeN6OA4hwzyWM/7WxdpRb+LtDJV
iPAfixjWG5CmogIdum/62F4nCf1EkhkMU2KkqgjT00yEX6N97ceQTHwbGZjwDtKk1ZOVby5HeBGp
O77j6/wGGYzThBi755FWcjDCwwN9nJ9G/kUjfcyh/QThU3VhbOEbGT6qc3zuw3zdohpJtR/yk5A2
qIn+B3iU32vzti9He2qxr9NPHJbHez+b+VivJg/wKUgjeS8rm9K+jrRZZ/jcTvJnIMsc/pKKig6H
WbwnrUxPz2gySOYdhFtNaH/MItPhVPu6N6NDvxVpq/fGrJ76+smky8BfqKoqBhxE+plgvq5Aloh9
fC3edrgMRRrcRxwObfQPPgoGvwKZG2OfL/F7n0X+oa8jfB5CMuWXklGxdVRU1CCN2Mbe9oMF2Jzm
+PAo0rhfgNmNDB06kYULF9LYWDTfvkpNzSguuugili1bxq233kpd3SDSb/K7dHQMo75+CNLMvupw
/Lrnumuhf9m4Tjo6Orya1L9jdicNDdM49dTTfZxrF8b8CGK+7iRT99xLptd6sjDOs8jygC8hWvJn
zGo5//zzef7559lss838ve/7M4swW5PW1sEceeSRvPnmmxxxxBHU1m6ImPTrHd82QntuMXV1o7nq
qqtYtmwZra2taM8/5+v0ONozTzp+RZaJzamqavb16iGDZMaTTO+bjj8Lqa7u4rjjTqKhYRVUEnUj
1l13HpWVlcjqcif2CRP4kV4fM6v1/+618867+SY+C7PDKJUaeeyxxwA46KAjKZcnUlm5vyN2SGth
+vgLOlAewOwRamubeOaZZ2hoGIQOoNUQER6FDsSfUle3C3PnbsFZZ51HTU2Z+vpBtLQMoaqqgbq6
LlZZZRrPPvss22+/Pf3zR4VUHxLeGYj4RlRnOF7jhDFyNUXptZCKewrtRRRkpJ0IE1Uxf1a8G7mh
AgZVpCauEfmyhEYqpP+IIl23MJdou5rMo9eHGMmIGBxJaiBCmhxFRhEP9mcjiq7ox7KtE6JI1zGK
rLfb5e92OBwWkpq7SIAbpqCi1ik0JkVN4Le8ncGkVFuDmIx1SM1F/BYatl3QQdvruBEpWAZqAsOc
HZGVIYFHXr/QEtZ5GyNIrWhoykoMlNb757gr5pMLeMd6txZgMB75mn7K1+dUkqkIHApG6zykpSpq
VkMLGxqjSh/nWmT0dURndtHfX3YciZsxnvBza/KxXUjWL40AosiDFu8FHCO/XGioax12/4JwsMFh
fGVhDNf6vTrESLeig7zT13A0/TW25mNSFKvmNMTX/VusrAmcVVin2JeTEDMX+zi078Xk69/BrJVS
ae3CfKtIoS7+IigptEehQftmAdZHUSqNKLTdS1VVpEQp+n8e6O2E6a/F21ubFChqyb00ubB+obWO
AKY2+msCw/pS9HG+wH+PtQv/5aJGL2jjVEQL3iVT3MQai4mvrW3m9ddfp6GhHTFbuxXgEUJPHfJD
BfkJK3VSRUUdYij7kMvEZqRQXsTZUWy22WZsuOE8zFqpqGhjxIiJvPzyy4hpij0YriAT6Z9uplwY
02ne5rvoTKlENC00Zor6b2gIn9VY8/C7DbhqnSor66ioiH1YpC01pGZWtKa+PtyHGgu/F+n4Noj5
fQXt0+1JDXsXmUv0RwRO6fsolAsx3H+krR0yZBXSQhDa6U+uj+r6mFmt/zev3t5e3xxFwno42223
PSAt4ZlnnukVPa4i/VmKWpt5H7xfXz+IP//5zxxwwKGUSjsgaWYpZufQ1TWWGTM25OCDv8Att9xC
Q8NIJHmdiQ6Y4Uib9EUGDQqTwxeQtL+RE4FlpC/e7qRm6VBk4l2GTLqb+uaNyMH/cILxsG+siUg7
dCky9wbjMAVpBvoQQR+DDr3FvqF/6u3d7USgE5mgVvV2w28HMtVJDTrg33NY7OB/tfR3Fo8s+XGQ
H+Rzet/hc4KP6yV0oO7gRGUSYvwe8Dk1Il+k5YjJnI38tMooShRfl8h3F6bnw/xzO+nnsobD6Ic+
v0hvEWkcyqSDfMAsIh8byMPsOjKyc7C/P9TnezPJYI8jzXdGf5/AA8koyO8jQvoc6Sc00CcwGImi
387qZEWDot9ORPXNJfFsJ5KJ2t/7P4Jk+IaRPoHHIRxazWE4mvS92svfibrUPyjAblvv6110GBZN
pb9HzGZoVqchLWKvtzmIrEn6KYRPUWf15z6nt5HWNNqNdBnD6I8jGyCftXdIBqMbOdj/kswVGBHQ
B5PBJNW+nq/7Oq1PMtFbIP/Gm32ddkOMzy98DKP8f7P/Fj6Bs8j6ykWfwCbEsN7p6zYCCRyhzY8I
zIMQDfgy2isv+lpEVHUz2s/BuP4r2jvNiBl+AGmkInJ5YGDIVg6nm/zevSSztQbpY7sHwsFmsq7t
s2QmgDb6+wQ2kVqs6G8PMlVNkbYM8vlsSNKWrUkfxw19nC1kre1rMKunoqKKiRNnUVNTdtitj2ja
5b6mC0gcHoL2Lw6XMqlp7kb7pBFZJ36P6FSZxsYmGhrWdlj0Ulu7F/Pnf86fjWC0P/qcw8/7BV+n
0xFOBeyir9inH0ZbtkD7KfyNN3XcqEdWAFDAVgPaAxPo7288Au3B8GN9HuHsAYjJDdryNTJVUJwv
SXO6u1fxPiOw6gGEQzchjfPGiK73OCwiGO1fHa5RG/kTn8CP+vqY2a2P/+rt7WX58uX09vZ+cO/9
999n5TQLX2Hjjbf44Jmzzz6bqqov+G/LEbMWWoLfOBF5DrPvMmjQKHp7e1m4cCG1tZ1UVk6kuvpT
NDZ28fvf//6DNs8//3yqqw/xfkO6f4RM5xCammecyBS1ErchxmaiEw7QQTaP9INpJqPp4m80UuU3
+IbfFJleQvqrQJquovnhVEQgt0HMTbG9aaQkvjPpAFx8pgcR66sL9251ItKEmN5fkOavMjpkd0NS
dhwyEcEXbXzRxwVy3B5M5kCMHHPnIAbjckRkVx0wtgne7uGFe1c4/IMIbuww+ZETpEGIIdzI+5rv
/T5BmqPP9GfXGdBf+EstRGaYMwvz70AmocuRSWs2Ovi+Unj/McR4xPcWxHgc6P3tUvgtooObWDmC
bwzCneLYJvuzp3t7+yKiHMxF8dlNvb9jC/ci32AXmai22OfGA9qIlD9F39krvb8en8sUZPodj/Ds
4sKz9/v71Q6T8DV8rfDMVH9uSQEWEVm+Fslc4XCfT0ZatjsMZiFT2P5+r4ZMPbQU7aMWMjr4awjP
fktGHf+ATIvS47CfgA7kkQhP2lg5OriFlfdcCAljEbP1PcTMRwqYbyCmaTIS/DYj07uADv1w8djT
5/CUj6PN2429sidJTzb3OSxGzNXeCP+LY5tBBj7Evd+Q+RGLAt8ChEN7FO5FdHCkiNnf1z+q9Ayk
Z+MQLg6kLZE8vc/HuNmA97p9znu6xaaZTMMDYnrOQkxd+GQX398Y4eIfkbvIYDJQZwrSho3x+fXP
PDBq1GpIwChqDbsQPSvSoXd8PX+K8GSaz2NzhFMfRlsm8OGZBwa6mswmfRi/4usSmQc+LDp4J/on
vV5BavIj0CzcnupZZ52NKJUGwmxtH+NUX/N/JbWE8cyxSGgp0pZPmMCP8vq7Mlwf9/Xqq69y8803
c80113Ddddd5/cKomVrD1Klr8PbbbwMwevQUpCH5LdIktHDNNdd80NZVV11FuTyHJGLnkc609VRV
1VNd3UhPzyr84Q9/4LbbbnPicgFmZ1FT08oNN9zwQXvHH388NTUhNZeQti82wjNkKooWJNkfhYhu
EI7jfQOvhxi6R0mpu+TEYzg6OOPAetTb/LPDYadCe98lTZbTSSK+FB1aW5C1doNBfMHn/xsk6UXi
5SbSJ+xx3+SROy76OwYd8tXoMFgPMUMRqdiFDqU9C7DpIIn9Ul+vtf37+Yjpi1QnWzjcNkfanp2R
pNuKiD9kLq9GJMEG/H+FCOfvyLQ03/TxlNCBFKbFbtI8uwZpyhmPWWjmgil5yN+Z5mMBaZiGO5xq
SU3Zq2S05sZkmpNLSMY3hIe/ksEXI0nz+i/JlD8Dc3lNY+VcXq2kGfJMX+8wQRY1ym+ROQxnsXKe
wCne5xwymOQEX9Mwo/+ONOuFmbEP4W/0WcwTGKbHrUl/tXP92RbEsFyG/EpHIu3fUz6nV5AgESbu
R/z9XemfV3A+YvoisXQz/ZNTB1PWRP8DfE0yqfhyxJQUrQpXkCbGMaTf2IlIk30rWSavmE9zBzKX
4jXIhHwNGc26a2EcJ5Nmz8lo34xBe6wTHbxBu35MmoWfLozzFLKm+Bt+7/eFdZpKBhxs6vCtJSta
vES6TGxfGNuX+fA8gZFCZQz98wR2OSx2ROb0byDmp5PMExi0pRkJHPtQNGkns34/YngGkT6tf/D3
liAaEFrRoi/hTkgQgizHF4Eur/lY/kDmPV3fYdOftlRURMWeGNvpTJu2tj8bKW4WI+ZoT0R7IzDv
ekRrYkwPI9yeTpZeG0hbNiULG/QhOjPRfwva8rLPdx6ikVsgrdxXST/zYp7A8YgZn0R/2tJD+shu
j4TiSHwuTWhG5r9G4lzQlghkqiVpy/mIuTUkUIT15Z/7esbM/mBmD5jZvX6v3cx+ZmaPm9lPzay1
8PyXzOwJM3vMzDYr3J9pZg/5bxf+jb7+7ozYx3XddNNN1NZG9NZER/pPocP0h0Rd20033RaAt956
iylTZlNZ2U5t7WDOP//8fu2tWLGCrbfeiUy82oAOwPE0NHTzk5/8hGuuueYDpnK99baivznjAnba
aU8AGhqCUYr8ZgfSv9zXrxBhDJNUvW+4VqT1W530twvTVEQRzkGOt6+igz5Myuv6MxN87jVkBGcQ
kWLEakiJQ+hfwP4S/21zb7eoYTifjJJsQea1SC3Ripid1fyv2ccSTPn6iHCHmXE8edi1+VyGkFn1
R/i44rfQAIa/YzBN75PaxUEOjybSXBcwHowY2WfQoRFBL6v5fHZAhDHWboLDIMy2ZXRoLUEMVTCj
McaARURytiAGdk2yGkSkwtmAjBIN7dUYpLmKSNxg/if5e+E32eh9rkFG1Hb5s7MLcI1o0u7C+kSV
k3MKa3qVjzVMUOugPfBFMtl3mCOjvyakXd6CrMIS8IzKLhGdWPLPMxHz2EhGAzf5s4HrYRqNdEVl
f76KZAzwtQ0zezsybxd9EBcgBuI2Mr/jRB/bWGROi2jSBsRAn0NGjDchIewVxPiG710zYnaG0l8T
dgZiMN9E+zCSAt9H4klEMTf42k0k/T/DN3QnX8tt0YEeez6izgOmg3yOE729b6BDeizCoWAUI9gr
GIbQ7s5FeLC+txnm/w4yMrTO24qDfX3S//Zwh/N0X7/Q1lZ5G1sgRmM4iS9R/7YTmfGvI4N4FKmq
cnLhL7oV6Z8Z1VNCkC8jIT3cMVYlA1HCLzlSxyz0d1ZD++jryK2mngy6GuPz6MJsXaqqYj/NIIOo
Yu0iIEj7d/Lkqf7+qghnuxk9ehoLFiwgq4uE0BPRsmMRbWlAQk/g0U99zuHfHVHL6xNCUqnUSGrb
1nKYvObvNJF1fztJmr60AMt6UgERGsegF2GOjupAU8gAwVVI024HopXKYVkqzaWhYSijRq3KyrQl
zNsBi3YqK4MWxd7852cCnzYxfcXrHDM72j8fY2Zn++fJZvZ7M6s2s1Fm9qSZVfhv95rZbP/8EzPb
/EP6+vtyYh/T9f7771MutyOG6ceOcH/xzRV1SqdjthXlcvv/53b7+vpobg5frmuQRNNGff0gmppm
0tw8l56eVXjuueeYPXtT0gcDzL7F2mtvRn19lyP3oUhyDnV9Nzoown/ns2RestXQgfVvpG9UOyKa
Z/m8xvrm+0mhzx+R0VmXoMPnQjJIYgwygbyHmJxmdIj8GjF3h/pYRtO/gP0Ib2cG/c0w+5AMZjim
NyPm40rEIP0UHWa1Po8axCx/CTm4h4YpzGvzSDNXI2mW25dkGOsdbr9EhHbgeIMRa/bxXYIOycvJ
urSRO60bEexI+bGFQCwAACAASURBVLKZt3suWWpvpLc1Ch1kw/17sfrCmaTT9/HItHEYGdDwI6QV
udVhGA7sV5H1NiOaczRilruRFvZ3/n4E1szwtS+RDv9dJFM/jqzTakhjGvn7og7rI6RkXjRf3eRt
j0A41kialuchLcg4RMgP8d87kYZxBTK37uT9jUQCzg0ID6odppf6+p1F+u6V0d4IWERQwJeR8HKK
329BzFokWAcx47XIfSESeUeak9Cuh7lwkPe7p8P6U2RC32A8g9kMgSwYoPALG+nr8/lC323IR/JI
/xxamJ8gzW4f2l9RkzsCJM5FuDAbaQrDIT/cIF4h8+pFcFcIWJ0IJ0Jj9bDPL/bBXT7eGaTfYxnt
/TXI/QTCySO9vUh1U4/o0i6En+/48ZNJBrYSMWSHIMb535DG55d0dIwmhdndkTm5iVKpRE1NMGCf
IzXTP0N4dQpi6D5DudzssAmcvd/XNtJVbUaWk3uYDEyJVFmxB4YgRmYH0t9yBWbbU13dzqqrrs7t
t9/OJptsgpip3zj8/ohZiW984xvU1bX6XAbT0tLDrFmzHP5/9LE9hNkQjxpenczluSp1dYMBuOGG
G9hyyy09mvYJFPxxEFnDWPkxKytV27eqqp3NN9+cq6++mubm0Lhvi2jieZi1stZaa5E14a9CGtY+
n/POPtejHW6xZ/oQ3T2UFHSe9DHcjeh6KFJ2d7gdSLoUXEb6Xq7ubc1DuPdlBg9ehf32O9hT1wyk
LW2IVq3juPUZOjuHUyqVfC37fM3+ua+nzaxjwL3HzKzbPw/272bSAh5TeO4WM1vTzHrM7NHC/V3M
7Bsf0tf/FN/1sV7f/vbl9PSMo61tKAce+HkWLVrkYfkl0lQVTEpIpmUiKW1n50imTVuLlpYeRoyY
wk033cRLL73Errvu7ikCypRKLdTVdVIqNZNF0bWxKyvTLFNZeTLbbrsr//Zv3/aNdws69CLx82GO
1BF92oIOnYjYqyYLlAcTWKwY8kXfpOGgXoxcbUBampsLzxYjuYoJk8OcWU1qSCLatxjRWYOI22FO
EPYna312+7P7o8MvtALh0zcIHWatyH/mEHSwnOz3IiJ2JFkTNExERSYy4PQN7yPgExGB6yDiOQQx
KmV0IN+NzCGzkeksTFnFaOfQtESqnTjwv0b/yOXvFtapCWm4wrcrIvB+SBLVcHoeQvpahm9VfaGf
Rofjzt7fhv59DulHFSaXiEKejw7mYk7AgNcg5McI8lUKB/Iwb8YcGsi8cWXSF6jO1/t6xKCGGS9d
H+Qj+oaPIzQ58UyVv7OFz30SGTA0lZT6QxBp8bmP8Pd2JKNFi3skqggUc+xFqpJgAO5CeNZNpsB5
iWTKA2+Go2jPdxBTsRtZ+zX20uv014o3Fb5HRGzkRQzBLOZTRnjxBXQo7kPu39NIRjTgPor+KZei
r2Csij6gODynIW3ePMRIhia2mpVTcbyAzNOTyECcvxY+d6I9uBVZBSLWIMZTjxjUGMOJhfuRYzI0
VEcU4Kh9VlsbaXhivUIjXlfoowkFEvyMTDY/1OG8K6lpe8vXbiLaZycjxvhEpPmPOryxHoFDJWbN
mkWpNNLXJQTLbuQy0k6R/ip6NlINdWI2ivr6LubO3YrU1LZgNolx4yYh+hUWiBWIFu3o7y4mE0o3
MmHCdKqrOwtjuxj5dq5Pujv8ErMyNTVFuhqwivcmk1rUahobIxtB0Jcesu56N9LeP+3vfYak6ZFB
IdYs8vatcFhtzYfXDm5FdPkc0jx8mv9+DUHzamqGIKa0i6Qtw0jt8eUftN3QsCmVlVWkq8Y/PxP4
lMkU/Fsz29fv/aXwe0Xh+8VmNr/w27fMbHuTKfhnhfvrmdl/fEhfHze/9pFfirAdjrRXT1JTswGb
b/4pGhs7EfGMQt+vFjbtnb4RNiGdoD+DtGI/pb6+k5aWQSRReh5pntZEzMVMJL3/Fh2qicBmd1BR
0U5lZQMiYGsgJmQwIrSRePMgb/fHvqHPQtF1TUjL8wKStproH7CyP1nx43v+3FRk7nkOMZ3NiNkd
hg6M7ZDmJWoHh9muA0mbj5Pm4np/5j6/P5NMxxKJe3t87vF7JITu9PYWIWbmIHT4hk/RuWTakPGk
luZIn8eVZLRuIyLKNyDmajJJ0P/Nnz/ex9WDmICnfW0jDcWqKIL0dV+jIKLn+vsXkvnjuh3+j/ua
jfdxv04SrF+T5bVucXjv4H3/2PvdmSyaHmbQLZFppR1pN09Fh/gjyA9pJJl49ngfW1SmCQf5du/7
OcR8RTDCXKTxqkH4NpBQVzh813OYzHSY/MjnfBfyY9qENKlVkRU8wsfxUeQfFjkhI51QEzLfPYMO
ijigNvd7t5OpauqR+fQFtI+avL8phfbDRFhGuPMC8lUKprULMXBPIm1cI2kGH4KEiF39++cKcFgT
MScv+BiCQTyPyFmm/bgfYoBuJnOx/QFpeCKIqOjP9azPI5j1oC0bkwnb6xAjMZb0ufy5v7s9wtMm
xNAFzLp8zSOtykKfx7UFWEQKm38nmfUWREtWkHnm2v3+z7zPT5Hmwa18vHcU+nsOMYcbkXuqlf6m
vKtJN4NNfe23IHG2A+2XRSRtaUbanufI2rMLfJwTSHeI1dEeWtvX+Vekab/R57qOwyvG8ztSGz3P
x9yEGPGkLRUVFQwbNp40KwcuRQWWHuT/+wIKVGtEZ8gLmEmbVS53+Ri29b8i47UjMoXujXBuGcK1
p32c95CVPPZFOLfQYfELJPxNQ5rp2K/tCJ8W+W+H+3iuQrh6P7I0xF4YixQHD5GCyiX+zlmIgR1N
qVTv72+N6Pn66Mz8jt/fBbM1qKgIZr+TFKquoj/zPs77exhZrr6OrG/hA9iFfGN7fI5roL3+JUSD
uhAtO8LnGAF4T/nnf+6rx/93mUy961l/JtDM7E3//wkTOODab79DybQDYHY/FRXdlMtt1NWFE/cw
qqqa6OgYTP+IxXAsbqYYUVhZeTAVFSPp74/R6xt9NiklyfRUKq2JJOvl6ADqRkSwmFLhe+ignYQO
2WI9060Rw7c5/aPYVqCDaBhifI73zbmADIjAN/5fCt/383G8QZqABiOGJXLk1dOfqP+edHovBknc
TfqQRA6yrxd+/09EVNanfxTrgz5XEBH7ceG3k8nSbxHBF79F0uMtkenhZ04MvkGWQYuIzj5Ss1Q0
xZ7ka7U9mf5jDpJchxeeg/A36h8AcLePOTQ580gtyPmkw3hoWyJy9laH71VIiq3xdvZBOBpO3puQ
Ec+gAyq0XUVYzCCDIfYv3I+owUn+7rGkP9hwMrH5zaRP5lUIJ8rIRHQ0/euJPupjiHJYFyEzTzig
F/F4Z4SrRn+f0BfIZNHFSMtjfGwbFe71IbztoH9uyytIH8niOk3yuVxQuBeBMbUOqx+gA7KRZOD+
ihj5xgGw3YaM8C5GnC5z2O7ra/fDwm83+HhbBoxtHcQEDqQtgxGDO5Z0eWigf63cP5M4/Ezh/nFk
apNZpEtEG6mtubDw/M3+W7X3WemwWQvtqYMLz4YWuZH+WQBO8HmABJOBe6oHMXBPIaYtfNi2Rvi1
wOFTw8q0JRjlUxBDsysSTociDdQCh88UhC9TEWMHMlPO9vU9yN/ZjP574jVSi/24w28gbdkA+0AY
WYv+uHQvGW1dxNEucr8HPQ5lwuqkD2KZdDvp8jGHxrLB1xlEF7b29SlW4IkE841oP38TMdHBaD2K
6Hkz/V1dZiOGM5JMt5GpbEBauUmF75B7vJL0TwUJOi2Fz0Mx+wo1NftTXV2N9knkfBxKasQHkTkA
QZq+Lb3t9f3eML/3ncJzP0OMH/7sNqRWMgLiQsv+P3tV/U938H+5XvL/r5nZQpNf3ysmM/DLJibx
VX/mz2Y2vPDuMDN7we8PG3D/zx/W2SmnnPLB5w022MA22GCD/+bwP96rvb3Zqqqett7euPO0wVh7
9909bObMK+1rXzvH3n//fRs3bpzttdfeduutTxTeftrkXlnjnzvNDCuVFtmKFZWmmJ0+MyuZwFwy
s2Z/dl1vY6j19d3i71b5MyvMrNfMvmKK3Sn5O5jZG/7ei6al7DMpgxtMFv1Of7/Sn6kws7fM7F/M
7D0zG2Jmu5rZEd5HVaH91b2Pp/yZdjN72IRij5rcSN80szFm9r6Z3W5mN3q7UxwW7/r7RRjhfV1l
ZnuZXFGLv48ws7VMMUnF+y0+9j7r7/baZWZL/P/Tluje63M2H+diM7vEzM41swV+v8rvzS08U/Z2
xvkzjztMfmtmg/xep997y99p8rm+bmbLzWzRgLGbmU0ws0v9uZhzsz+LaW1inubtjDB5Y+zu33vM
7DLTGpxhZm/78wNh3OJweNPkHbLMtP37TDLhsgF9Vpu8QUZ4G38ykQ9MrsPjTPFmZmbXmlmtme1k
ZquY2U3e38B1NBPunWxmh/r3VjM7oPDcU973M/59INyqfAyBF2Zaj3oze84St182rfeYQt/mY+p1
OO1q8oQZY4IfZnabmV1nwt9JDp8VDosuf+ePJtxebML5oWa21JKc9nq7R5r2U4UlbJ834ckPfJzF
dXrK313q7W/oY/+TvzsQ/7t97n8ws7GF+7cNeK7R5/O0mY0s3H/XhENvmI6HXh/TEP9tSaGd9/1/
lZndbML7KtO+LNnK+FakG6v4/ccdDkss6VxxTy0zs/H+fZiJbq4wszYTrRtjWuf3bGXcqvTffmHy
anrQzE73uTea4DnWtAcuMLNZ/t5UM/um3281re+TJnp5lZltY2YTzexYH0+DvzfRYVekLc/5eBb4
mIt497TDcJGZbWTaqxMcFuGN9aIJ33D4nGBahyP8ufe9j528ncvN7Ns+9w1Ne+4JM9vTYf+8mY32
Np+25uZKe+ed6WZ2pgmfzjazOh/70yZcXm7C48EmOvOGP7uj919r/ffkX0y487639ZaZveOf+2xl
nI0QgxE+t3+3UqnPzCpt+fJKM3vE2yuZ2QwTLegY0OciM7vbzJ410Zp3fBx3mc6oYn9BO58ysT4n
mHDhcdOZ+wUzO83+ma8G02lkppPsbhPXcI6l79+xtnJgSI0JexZZrto9ZjbHv/+vCQx56aWXaG8f
RkXFfKS56UCmlocYOnRiv2cff/xxlzJ2QtJmmK7k31dRcRx1ddszYsQkL5U01CWZ45F2bxZSkTcg
c1Y4k29KRurtjSTGt5E0uxHSzEWEY5tLRF0uUY0i/TGOcOlnMySVD0amtwgw6UParQuQZmuOP1eN
pPQTkHmiEfmBHEHWOC1KgtPJqNNrkbZwIjLn1JFO2l8kKx/MR9rGzb39Pb39dqQ5uwtJbZ8tvLcb
mdNsDJJWbyJrBV/s/Y0nSxZ1e38NPo6RZCQfZEmqE5CEO8P/D0KahPlk2pfxyLR2I5lUOCKkTyCj
USNJ8wKfUwMp8Q/2tW5B2ovD/J0tkbahzdfhGL+/gz8XSVdnFMZ+CMKRfR1WhyItQ7evednHdBLS
3kQC6DDRb+V9RvqLuwttz0dakiakHYiExC2k1rnP597ic2pFeyEcxet9LkVN8L/7c4cgjWZEwoaE
PghpBo8jzccVZOqX7fzzft7HXIf9CDL4o9PHsx/pr9nk87nP17VM+sFejzTQ45A2o5L+9Xm39LHt
ijTQx/qcR6C9vK7PaU+Hc0Rkx7jWpj9eHIA0aeFnFn6J07ydowrjDnhGhGQd0p7F2PYkathqXB2k
lq/JYRYa+3CNGEdqf1YgXAjf1PNQYE1Ed05G2uDjfW6r+Di7kakyXCgi8XKrj2MX0gWjA+2pJp/L
zj63eoT/B5JR6uHach/S8kWUfr3D/4uklrqKTNMCwo0owRdBCjd629uRdLaK/nnrImBjE0TLRnhf
bQ7zDoRL9UgDdSLS/IVbwuFIMzccuUYcSUba/wZpu1sc7jMQDToBsx5WWWVKYW1jPBdRKoWGdiLC
14iUrUTBMb9GPn63+XzrfE2OJ4Jkbr31VtJEvxMZ6Hem3z+KDLyY7+8HXJ5HeBnBMAf6X/j9TiNp
5ijMBjFhwmRfm119ncOcHLRRpRkrKsrst1/s3418zIMwq/Y0aEFvD8DsQC+9GHToJCIw5rTTTvM1
2ZssJbm7zzWSckNl5bpk1ohP+5r9816jTUzd700qmy/5/XaTuPhhKWKOM4lCj5nZvML9SBHzpJld
9Df6+5hYtf+564EHHvDSPxshhq0Fs7uprd2TnXfeq9+zV1xxBfX109AhsaEj2DzMllNdPZd11lmf
Cy+8kMWLF3PFFWGW+iJi8qaRZa8aEbMWkbeNTlCGkVnpRRzyMBmE/LwiM/0miOCFiaiBrDjwTScE
Ee7/VKHNk9EhMQgRupOQj894xIBtR/prReBFmVTX/5JMl1A0BdyHCOtBvnk/57CJw34MYsrWJk0J
wXze6GPaCx1KpzrcIn9eONNHYMr+iMDGwbMmImpbkoS6+NeOnIx/6J8rHG4LkYmk1ce7AB2C4bRf
NDN+nfSlanUYtZJEcjQ6LIIBi3QJ0x2u88jSasXSXLO8r1V8/q0OgzfI6NXjkOljezLJ7yCHxd6+
prFOAYtNfUwRHR3RjVWIkTjan78Mmaq70UHwFOnwPsf/7+j9H1xYz2AuAxaRZiiEoh84fAf5OtWi
HH7PIqamGJTxaUTMx/r3SHsTvqetiPlc08d7EhJsatEB9AhifrqQz2T4HxVNeav4vaKZ8Vekn+iG
yO/1LO870uac4/en+7rVIGblRh/HZ5BP3mD//jPEaLWSUfwRfX8oZs0uIDb7un0Ps5GUyy1oP05x
mLUjAWsiYiRuRcxAPY2NIaBsjXDmP8gyWVORoHUCiYdN/txtmO3BoEGjGTVqAsm8RkqhiLivQ3sv
8DuiZz+DcGssGdC0EO3X8xFOHY/oTzPz5m3O3Lnrs+mmm9I/w8CZ/nwItRHIAGYTqayciKJdz0A4
PhcJgNWkTxlI6DREuyMwaxvMjHK5zWG4M6JHm/vanOLzWt2fv8BhOx0JwNdSW9vNDjvsREYOG6IZ
lRxyyCGOL19DOD6Y+voIiiu6MBzocxtDBMh1dY3mxRdfpLNzLP1Nrv/C8OHjfbwjvK3hmHV7ipjP
/x/23jpar+r4/5/H7T7PdcmN3Zsbd0HiSiBIIEICBA0JBIp7KBKcFooXKPIBWooUK0UKFArFihYt
Dk2xpkUSQgjx+/r+MTPZ5yah3wp8vr/1W5y1WOSe55x9tsyemT3ynsizN1JW1kg8nkLDMUYjshv5
/I5cf/31vPvuuwwYMMAyaa+OvHchweXsaAFDI79j8zLS1moMIl2IxbKccMIJtv4djaa2RiTP1Vdf
TQDg7o9IHcOHj7a+hVKCmcwcdt55Z6Mzj0XeGpGEZT+XbJ5KiKQZNWoC3boNJBYbj8juxGJjGDBg
BBdeeDHJpB9yTyYW68+wYaPo1WsAqdTWiDxILHYSdXVN3HvvvZF1+/+3Evi/ff0/UtW+u2vq1D1o
G9txGbFYiVGjtuWdd95h3bp16589+ujjUIvGLGM2P0IVNxC5mTFjJnPuueczatQOTJ26O3V1nQkZ
k5WEihQTbCN2J1jeqlDB40Jqnf1WRJW0PWyDFlCG/z7KGN+x+zkCaKmXI3Nr1Ew0tuk1QvxQtE7l
YkKNSc989nJQzuDaRe57IG+UOT1g984nBNn3RJmtB717Oaqv0RNlAmWyHngejafxOCAHak2gDKzO
1uAuQpyQ15estH46REwdQaB2tnt7okrOPwjWrcEEYXiEfasdesKfgipBcwnWjK4EyBO3fEahC7zC
QQPKTHuhSpJbRV34eRyfY2N5pttMG/+LNveOieYB6flIm+1RJaREUAR8jQZYHwehwrAJFeTHoUrC
ETbOKlSJP82e9SzgPKo8bE6oQeyQOJfZ71ejFt6LCVh6HntWRQDZLdJW4EwiZIOPRQXSQLu32vrq
eGNplE56E2h2CcHS5nTUhYDp50H926HKV521d2ykD/cQKuuMJVSm8disHoSEAs+cLaK01Gzf8wD9
GvvWj1CroidJ1RASc7oTsnrHEGoB11n90ymRvh1DoA1f0wpEOjB58mRyudGRufgkMudnWjvurSih
io/TmH5fs20PsvlqQpVPP5h0snna0tbkU3QvlBOL1ZDNVqJ7pkQAtW61b56PWpcSDB++LYcddjSz
Zx9IIlGLWm+moYeZUQRe49aotSidnxWZh3ttTXYgWCpvRg+JfkgooN6bz1Hlq0TXrn0JSXTtECmS
SNQR4j197xbJ5ztSXl5LIlFDIlHHtGnTWbfOK1rkCfspxXPPPcduu+2Je38qKtrz97//ncrK9ujB
cgeUx2xPiHG8B5HFxGLH0rfvltxxxx22Vteg+6ZAc7Nb1X6K0vaViOTp37+/3Z+Hewu6detHMpkl
gPi3UiiM45Zbblkvqzp16kPbA88vbK3vJBgNCta3lbiS2NzchwkTJlJe3kR5eTMLFizgnXfesXEc
gdLtvogMoEuX7kZrO6FGiUPp0mUghUI1Aagd8vnp7L///sTjDoXlvCWHKo8nR9Z/IsOGjeazzz5j
r73mMXDgGGbM2JMpU2aRz3ew73jS2Sjq6rqzYsUKjjhiPoMGjWXatD354IMPmDnTlXi36n9/fVvX
/ws97Tu9ttpqGnqi881yBz16bEE+X0E2W01tbSeef/55AM4++2zbOOejlqVuqKKzFrVmuOI1G1Xg
uqNMdBxquTjU3veT4I8JcCtFQiDrUAKukmcGVqMWoVtRgVeLuijqCDUoPRnhHNQi4Bl/o1EBVk3I
wCzaBr6cgCCfR4PF30LdmkVjZA0E2Jactev1b+cT0NvdwtEdtRCcHJmTDG3LcR1NqJ7xK0IG5yT7
d4PNodcHdvdZf/u7DhXG7mKIzq8rWj9BrSnO8Av2/gxUmFyGKvRu7bocFYauzFSjiRNXEuA4Sqiw
+w2h3NtmqJLuQvkiVJgNRwWQW1IS1rcyG99hhPq8F9radkOFZIXNYwVqIfoNbUv61aJZh9fZM+6e
386e9QBph7m4ELUcFFAF8Gi774k+7W0ceZTO7kSVAAeO7oQK38vtvS1QJWnDgPG4ffdqm7tqNEPR
s4BBrTnVqAJ/TOT9jwkA6N1s7c4lCHuf+8ttHR1HcVcCiG/08DPF5mIv2irgx6MHP5+3FuvjnYTK
JO7uPAWl5YGEpIqOqGX8IgI0y3x7f4TNg1uKq9Bgdq/64fMzyebwTtSCXCDQ/wH27+HWdh+UX6iV
s2PHjgY1tYfNRU+UzhxH7ybUElMkwDfNsrnYhaB8O5SL75Mu1u+FBKE8hJCE5AfBEqrAODzSPHQP
9kUTGX6B7uvbiMVqicX2szWosN+utTZOJaAfXI7SbpG2h8uTCRmqeXTPj0J5ZNbWdLfI86tsjn3O
jrN5OcP+7oXSzjno/uqDKjVF9JB6PSKV7LPPPgSeHHhLr169DEblHER+ST7fjzPO+DFduvRG98Md
qDU5h/KvbSN9ayUWy9CnTz8bf09UmTkL5dsbJp11tbrEZ6HKvVqO4/Fq+vTZ3L53GSJ7Eo+X+PDD
D9fLtZtvvtnm61Trqx/MHW/RMUurjEbUOHDLLbcYPJryllyuniuuuALluU4XS9H9283a9/6+QmNj
D84++1zy+R6IXEoq9QPatWvhxz/+MRvzFueDz0fauIzBg0euH8eiRYuoqGhHPH4Guk/b8pZ4PLtJ
ua4FFcpt7N8rgd/m9d1qZP8Prl/+8kby+RY0RuhJcrnupFJRWJVbqK7uwOrVqznxxJM2YFB/MkJr
hyoay1BXV2cCzEGGtvEom9vG9b/3Q5lpI2r9ewVVKMtRweIWlUn2/ArbxA5a/SkqtMahyqe3+569
54zTLSOOZzXUvjnYGICDBgeGpf2vt758iZ7ulhHAg59EGd1WqAXJ3Z3/iLSzk23C9qhAX25z6Nhg
f4g8u4Cg9OyPnqjXEGIej7V33WraggqtryNtDLHvRbMZXyFYZt62sf0cFQBxG/dhqHX3XJQpOrxM
1J1SZGMsr/a29n5K3dnms9re8b67JUdQC90W1sZhtLVOPYsKqqNQJh+1fq0kVJr5eeSdawkWIy/t
1YoKmRiq8P0ZVVCuiLx3qq2bW5hH0ja7fInNxeYEegMVSq5AeCyWZzkXUeuGP+tg5p55ubnNRYvN
xbaR8T1MUFBei7RxgD07yPo8l1B5xuM9HVuxB0oTlYTsyVZ0DyRsvo+wNs8jgEV/HvneNLs/PXJv
ESE8IRpLeTwqWP3vLwhWueG0dcn90u67FfUTdP8+ibrvx6B0O51QhzdL29Jse9hcjEAVpLmoAuXZ
vFGw93NR/tNAcLmuJcQnt0Ot6v78yzb3L9ucrUCVoLPRPV1CD5dezaSIHobPt+cqUd5Qhlqx/4Du
x1ZCBrB/60pUeV+LKgQNKI/bFVVGx6D7sZONf4DN64soDT9E4C2bRcb3qo35Hev/4daO09hfUPp7
0tb4fZRmoogFvyKZdND6jXlLInFo5N4r1NQ0sTHCwL6UlVWgtHEAyiePpS1v6U7IYH7f+uMoDV8i
Um6u1egaXUuwJlfamvcln9+aG264oY1su+222+jVazBBwfU9fyjKtwagB8N90T2bo6mpNxvylnHj
djQ4mDpbI4ficQ/PvYi8SDY7giOOOI5nn32Wc845l913n8vRRx/PU089RSaToW12v/OWCpTmW1HZ
MILq6sb1Y7jsssvI5Twbvp6NeUv1JuW60sV+9tx3rwTGv+sPfH99d9fuu+8m559/nDQ3HyxNTQfK
HnuMl1xuuGh2mYjIDFmxolU+/PBD+etf/yob0xOi2U7PiGapdRSRKaJ5Ok3yr5FHTDTzTUSz2W4V
zb66UET6ima7Zez3r0Szvbayv2tEM/iimX5+rRUN7/yraAbiz0VDRFeIZrUuFJE/iWbatdo9T5Ne
as+tEM3gyopm3xVszK0i8gPRzK1q0SyxNZvoQ6v9v4toBmCjaNjp5d8wFwXRbL4BkXtxCVnHr4nm
Q2UkJL1HVmBfQAAAIABJREFUr3+232Oi459n7fS15xeLyA2imYBnyTcn/Ce+4XvLRGSavfe5iBxo
vx0vOm8XicjvRTOoM6LhuGkR+YVo5u839XmI9flMEZkrOi98Qz++6UI083WS6PjOkJDV2EE0Y3OE
aDbkp/9Gm6tE13uwiBwmIgPtt9g3vJO2fg8Rke3sfZGQy3aIiOwogY4fFl2nY0VpXkTp4GTROZtt
/Rgc+e6WopmP33R5dv75ovQ36J/0d8PL1+hfeR5RWlj0f3nuQdF5P0JEnhLlITeJZjcuEcXx39SV
EN2TG/brXx2LiMhwa2ND2ouL0spE69tfRHlIHxE5SHR/Rq8W6/9Dopm274jywKtF126RKA9YKZu+
EvadlaIh6UXReXhclL7Gi/KLBmtnpCg/nCahSurHIjJWlA7H25gWidLk/SLynD3v/OlrG8sa0Uzo
ja9161rte/uK8uQJontFBJaJyDGi9PnoN4wrJl26dBLlqWkR2Vs0uzXzDc93EpUXg2wcuvc7d+4s
IteKyM72vR9IPp8VzSD+zMbZIGvX/m2jFqdPny6vv/4nqa6usTFEr4E2nhNE5H9EZH8RicmaNas3
aieVSsmUKTuK8rm/imYI72HvTxXNVh4nIm/IzTffLhMmzJFTT71UFi36u3z66WIZP36qrFrVSRRt
4ZUNWkc0A7hGdI2XysqVQY4AsnbtQlEI5I3lS+yfknzrP/vx++s/vL5Lo9z/J66XX36ZfL49wTLw
OvF4lng86k46Dz0Be2ZuL4LVaDVqseiEWob2sNPTnbR1B9+Oxg+5q6sGPQW7y6YMtUhchcZUdUJN
6b+2326373mQfVf0hHkm6lZsbye1KJ7gHLufQi0JUaufY1WNRt3U/QnxM1779jeo5aHO2ogWeb+a
YMXZwvp5CsE9W7DnozUnh7GxO3g3a6sctTjtZOOLxm3OQS0HnlXm7uBDaOsOPpfgDo7GNv7UnnWr
WhUhvuZ3hIzDGtq6g8fZGGcQ3MFF9ETvrkl3ReYJCSje77etndmotaOInqJrbHy3Wl+n23Pjrd87
oTGHXuPU3bjuDo66XN0dvB/BHbg5oaj8mag77XH0ZL0/msxTY+uatz7faetYIGRQ3oxasXI2Z4tQ
99ccQjyZ48ddRXAHz0atIDnU6lqFug4dJHeQ3W8gVIKot3XyDHXP9jvM+uZrMRO1+CxErYtbEKqr
TLW52Nv6NwKl20tRmmtHqEIRdQe7ZTzqDh5gczAKtfpG3cEZgptrc9Ty9HNC/NO19reHXBRR3pBD
sz7dElRCeUKNte34jW3dwconPCvzcgJWZQF1Kd6E0osn7RTt2ag72JOFPGziNpQmZ6K00oi6Up2n
bYVabNwlfo293wnla7MJ7lmPPxxv/+5k7VWj7uBrCO7gswiu0w4oDTpwsYeaeGWhMgLu4hIbq++7
9oQKEl5G02PNVqH0Mgfl1YfY/RcIpezauoPVMutZsV472a1fOdSafAkidQwcuBmplLt378D5+uTJ
k4nFoskXy4jFUhSL1bbGe9ra3Wbv5FGr3A/R/ZvnkUceoVDwwgXdSKdLdOjQB01q8navJpOpZfHi
xZuUaeeddxHZbA+Uv/zQvrOPjScaalJGhw7dyWTqiLqD7777bmKxHBrrDIpHWUS9C602H0PRfez8
bjXp9CDS6V6oVROb3060dQenUX52Abr3cuTzpfV9P+qo41BefBmh0pbzljratWveaLyLFy8mmfQK
SD82mvz++rau70z5+ravhQsXMmXK7gwaNJajjvohK1eu/JffPeqoH5JIeCmdcmM0v0cFwnQ0vmZH
Y1JFVKBWoi4Rd4d4+bQmQpKCB8Z6skMt6iZxYXEEKsSPICQOdESzH5+2f9cRAuLbEwrPe5xfJSF+
rgOaObjONmxXVCA6I7sddeM5sn0F6obpiQqzA63NLqjCswVB0cujbiBnRK8SMnPPIWQuTrfvjUVd
ONW0hRxxwN8KG6/Dv0yzuTja7kVdcFdZP7xM3Xx7dh7q2klZfx14dQtUWS7QNvt6F1Sx2j5yDxvf
Ehu3K0clVBnKEwSNxwimbG4XEmBwita3PSPtPo4qOlNR5a+P3X8RpakGQsWKQ63dLgRX1zKCktRs
/ZiCJuWsRemhYL9VEuBYoiDcb0X6HQ3A35aQrTzH5uREgpJUQJWmHdB9EI11WkuIBd2JUMqvBk02
8ecOJpQ5K0fpIkWIt4wG+j8Xec/Ly/W0Nd4eFTaeMe5tnIfG91bYt3MEYN7H0dg7TxSqjsyTw234
3ikjxLuVEwLZxdrbmhCv2kIymSWfryGd9lhCP+RkbU22tf86W5txQphHlO7G2Hr/PnLvkEh/K209
ZqH7M5oY4vA3vSPfa0SrXFQReEcnQgLSRBvD7qjierz1sTuBf7nS9VNEysnlqtFDw84EyKTtUDdx
g81RNQHK5QUC6PmphMSQbQl76ARU+doV5XX9aAsi/gCqvMVoW8ZzX4JLcT56SPGDSwXq1vZnL7Kx
R+FyQKQd7dv3oH//IVRUNBOLVaMK0sc2pw4d1GpzW7Tf/f1niMeddnui/KYWkSEMHjyYbHZc5Nnl
JBIZevZ0CKYuKN11o1CoJyQZ+n8tHH744ey99/7EYilisTRbbjmO7befQTL5Q3zvxeOTOeKIowF4
7bXXmDRpZwYPHscpp5zF2rVraW1t5eqrr2Hs2B3ZaadZ/OxnPyMo8P2NNoauX6dYLEEyWUd5eRML
FizgvvvuszWN9m1L9FDwts3TP2z8L0Se2YlYLOo6/4IQm+4Hu0o0yc+f+SGFQh0Ara2tZDJlBIik
XVEldgbKQ0+nb98RbWT3Bx98QF1dk5Xsm0MIn/j++raub09L+w6vzz//nNraTiQSpyHyILncDkyZ
MotFixZxzjnncOqpp/Hqq6+uf37BggWkUmkSiSTDhg3n+uuvR5ngxaiiM9WIcCZtLTuvEco1VaNM
dwjK/B3f7jYj4rmE6iKTUAVzG9Qi4hm/eZSRbokK3Ekog3Sl0hMC/mz9cJykG1ChV4Yy6y62GZ+w
fnlWYM76KAQLgf9/EiokotAFv7B3B9A2seJpAiTNx6jlYCZBgF5n739q40naxv2zbfo9UCVofwJU
iCu1CVSh+jkqtH9l39oGjc/5BGXGHqCetW93Qi2LgwnxhpeilRCG4KfMtjAOB6HWoWpCvdy7bC4d
mf9wu3+t/e1Z1asJsWZltI0p8uxgT+KYi570K1HlrgeqgJYISunz1s5xqHLWx9ZpEGo5OQlV2guo
4LiEEEfq3+1FiLv6ggD7MYBQCH6BrXWKtok6e9jc7xC5t9zu7UiA33FLWiWBOR+L0oUrP45l1gNV
cL29BbaO9xEq39TbmqyzuXEr6q2osnkBIvsQi8VtjU+0uXCImByqxKy1NfGx5QjlDytR2qpHBVXc
/uuFSDmZjGd9b0bIBO2C7s06a38PgoXx9ciYfoJIgXx+DKlUtcUTH2Nz7XBQHrvlmc6uSBZRHErQ
GLYyQqKFK8GnEDAoTybU647Gbq4kxCu2ELAIOyOSI5FoIlolIpHoRCJRZWt6XKSdtwil4yagtF5h
azgGkQTl5TVGD6fZczfbu+usT2JzHlUY/HC6A2rNPMPan0WItXVL29PoIXhT8FMb8hZHAoge4v5h
4+8cWYevUQvuGTZHHm/6R0SyHHbYYetlQV1dF/v9TZS3RKtyDEf339GRe29HyqK1GK0olNOYMWPs
+ePQLNzx5HJ1zJo1h2RyF5vDM8lkJjBmzHh71vf6NYiU09zcTDLZHt0zz5PJzGTXXfehU6eeFItD
KCvrSb9+QznxxJM4/vjjyeUqcciWVKqFgw46kkceeYSTTjqZSy65hOXLl/Pee++ZZa/cxvIQoXZ7
o83rrYjcQi7XaAmRGTR+8CSUlzncTJ6AN9uNWOxwPJ40Hu9DItGMGhpA+YbXmd6HRCJtB5RoBa3z
SKVK3H333cybN8/WchEqi8eiB/EzETmdVGoX9tprXhvZv8sus0kkTrJxdUF56fdK4Ld5/a8pcv/N
dcstt1AsRhnD18TjaaqqOpBKzSUeP4Z8vobHHnuMuXPnEjJwhyJyojFN37ybo4rM+6iFxhnfH+35
AspM3bVyOMrc0hswp7UE5py35/YhZASOQ0/JN9p7RVQhaUSFwhHW/lhU8Djg8Tb27nRCeaIh6OkZ
+/1Y25if28bwTMuxqGDpiJ6kG+x7D6EYeR1t0w2yb7WggrKVkOLvQsnhWmL2WycCrp5bqC5FhfBm
qPK1BcF1VG9tefbyEJThdLffB9r8pVDm7hiGeTYN6Ooun1cJ7uUCysgd0DVvc+sKQxTy5UTUBdYf
dTcebP8uosrKcwRQ6xrU6umArifZ/Y9QN/MP7NsDbJz3ojSStTHXE2rKHoMqta7sFW1cJ9n8F2wO
61DBeKD1xa25XxFobnNCkkKJUH92mM3pWLQWqdcZdgvhZWiCyjS77xhsRxPAtJ2OO9q/50a++xUh
S74vasW9FVUoniUcoAoo3fl7iwjA4OXoQWeGPTcNpQWfCweL7mvPOwSMH5iyqCAHVVbLULrIo9bw
owlZ4HkCJuQygut7M9Ri9cPIfJcIZSbXoMrFCZHvVCDSkXTaFahrI+PzWq1uKZ1g7XUm7KcJ6AGh
yubGLeVeBq6MeLy7tXORzedMlAf4WI5ErWRR6+UWKL9Sa/7WW7sSWmn9+iMh49qF8hJ0L7gy69bC
CnQ/FmibtHKKfa8M3Xegh+ACAZrqIHTP5SPzOBu1Sg4muFyLtAWiH0qAQHLe4sDw0YPLYgKfLUMV
Gj+cdkD3WRrldVlEsnzxxRfrZce0abui+/RnBMD651Bruie+5VE+/RQimzNo0HDCPj7B1qOe5uZm
YrFG1PLdG5FaYrFsJFP20PXrdN1111kfe6L07UrvHHTPuYW/F5079+Prr7/m8ccf54orriCXqyaR
OJp4fE9CgpfLqpRBqxxDOj2c5uZefPnll1YCtW9k3lZH1umGyP1fsNVWUy0cqsn65ut0rNFBexxE
PJutIZPpbDTSn0SiF7FYGfl8d2t/GMpb6ygWa02B7o7Cnd1JANku2HoNQpXNnQhlT0cjciixWIHf
//73bWT/0KHboAr309aGJw99f31b1/+2PvcfXbfffjtlZVtFCHkpImkSibagm926DTEG0QdlxO5q
+HuEgO5DFbZyQp1Kd0W667eICte+tkEWo6fifgRLzfvGQBwmwftxJCrgmghu0jW2GXvR1vJ4LcHN
5VaYdShjH0HIDr4dZUjnoMLkr5E2TkOZbBcb70r09Jyz/pcTFIXTbV48nmwxAQQ5gVry1qExN78m
1GF9BM2EfBVVuhywucHa748y2n7W9zdQwVOLWo9qUcXLBVEFIn9DlYtuqDWgjIBJ5wCyawhK7v5o
/FgDKkAc562j9cUhbcps7t5ErR1p+/dKG5sLTs/4LaBCeiCqoJQTgE6bbGwFG1vUGuJ1RXM2np4E
HEhXhqMusL1sHB0IdPkpAZi5N8Hl30gIW/gFqqQ/SlBy/oEeKAbZ2HezOZ6N0utEQlZ1B/TgMMie
y9izt0X6tr/1YwEqDOdYu2/Zt4+zed/C2ncldHKkjRcIAsvp/g4CMHQ0a3waquwOiDz7N4Ibai2h
Tqrjx7XfYP772vPRrPFb7Hsx2lpUZ6F7bwzBgvaKjWMBuidG2HpXEjKysft3kUp5eEU0G/s6gkt3
bwJvusjmvsX+G0Go6pEnKM6tqJJ4MapET7Jv9CHUaI7ylqNQd3Clfe9+RPYiFqtkp51m2Po4hmGd
udBSG8zbZHuug31/FSpg3cq9n83/B/aMEMIn2qG06RikF0XaPRMV/ljfLkT3XD3pdNHmeAC6Z/Ym
xLcuRA8Uf0L3oRAgoxz/tIDupZLRQSXBilyO7uXROBD9iy++uF52NDX1Qw/n7hLvSbBeaXb/xRdf
TD7fSCpVx/Dh41mxYoWtVTRkZQeDKXEIMVBvQ5JisSNts8aPNyiYPLoP8yh/KaEhDqCK8wBEdqKm
pgsA7733Hi0tfW1crWiYTBMBYLvG5uZuuzcCkQ706bMFNTU16D5z+v4a3TcjUSuk9+0qJkyYYhZu
d/GvQun0aVuzZnQ//w2RpBVfuNvabiWXG0v37g6X5t97F5GUhVDsREBMGIuGDdxufb4SPeD4ey+h
ewNErmTs2MltZP8JJ5xKLre10cFO9tz3SuC3ef2vKnP/6bVs2TI6duxBKnUoIjeSz4+ia9eBqAvN
ifspgiuyQFv3iitFf0DdfA+iQiSOKgIv2obYwTb/cDSOp9U266HoybESFSQnoszQlcCo+fty25zd
I4S+zog4S4BjwPrjiR3RhI8dbLMX0JPa9baBxqDM0wXRaoJS1gtVFJM2trz1wRWmn6ACtX/kOw4b
4wDYUTDSlwg4aFFIHFdmdkWtKwMIcBEbYkT9hKCURwVRR4JVZ6jN+WEE62s0xmcsQVGtRgXPO6gy
X7Df/4gKS7cadkWF3X42H0MjazUCVYimEqq6bKjcVdv7viYn27x7fMzvCMXZp6LxVGNszt+zZzxW
7xOCsh5HXS3R+S+3eToWFWKHoC7TrVBFoAMBG9Atm9H5GY+elHOoAuL3Z0fmojdqzaixPtQRoCx8
ncpQWhyLMm9Xsl1wesH7Bwlgy2Uog7/e+umVU/qiDLuAWk3d8u7fOw4V+FElcp2NLYkKLi/j9RNC
CbuH7dnnCCDb0QSj5wiAxb5HPojM416RZ5cRIFiWovvdq/X8PtJeNSJ/M+uLj/lSdJ97vzK0jcf8
M6qIDicolJfY3GyIr3kAmvAUVW6PtLmsZGPeUm7WKFdy1xGLtaO5uQ+qeP0CDdi/zawyBfQAB0qb
lQQrc87mexS69wr2b3fLT0RpaASqVHxg4/GQlOvRg+x1qMLiyW6NqALh49nD+tSCWuQcON4TSP6E
KiqerFdAD55foIeFMnQPb4kqkT9HLdU19o7T1p8RyXLrrbeulx0K9/I2aoFME8oadkUVLGHFihXc
fPPNXHnllbzzzjsAKC36GEDkUMrLy21OojSbJpWqtjW7CT3sXk1IqLoCpa9r7e8fo4kVu6I8u5bq
6o7cdddd5PM1xGLb2DztiyqvvQj891fWxjgCtMpq0unRVnWm2t67CccgTSQ8ie5yRC4jl6vl5ptv
Jp9vZGM+696mETb/GuOtsDYX4jw7kzmQhoYGlO+xvh8iCVNi3brbHj3kL0V5ZwPKvw+MvLfU6EB5
y4ABo9vI/tWrV7Prrs7LjuJ7JfDbv/5Xlbn/5vrkk0844IDDGDFiEpttNpKRIyegSs+zqFIwGmW6
Xi2gAWWIH6KCKGeEORc9MbWzv6PgmO8QSjJ1RYXVnShjdIzA+agS6OCjedQ68jYqNNoRrDtzUIEy
h5DR14gqSm+hCtQZ9tsB1tdbCSW2POB7NCrsDiQIv81QweYn6jxqgm9FhZQH53vAfCPBWnYF6to8
1ebA3bDVqEL1HqGGaqXN5weEOp7uIr4btapGgZCjMYgHEqpM/My+eab1ayEqGJypFWx+i7bZP0Ld
GA6EWkAFwT4o8/+99XvD0k4O3ptCma27gtehgeUed7groaLF2fa9iyLzFrX4PEPAxqu19ofZHPQg
VD7oHnkHlJnfhQpyV07yNu6PUFrqY327GbVOtLd5OJRQpWRflB5dcB+D0ooLlqdQpj/T1uk+gkDN
oFbMboTayHlUaX3X3o1mN/ZCrcBvEsqOtUeZ+JuoUM/aPLsl0mtau3u2ytpLo4eeGagb9q+oIucu
2BrU8vgheggYhFp/j7e59GQLb6/WvlOJKoiehf+0jWVLAghxiWA5cWDvEuq6/wC1RuVsvK+jikkT
If7QYwn/B5GTqKrqSDg0tth61KBKVMHm6AkUt260ffMMAi38xea+hB4c3keFbhkaGvIRKmg7E8CO
Pfs6ylti5PPNhAPKWvL5zlZRI2fz0ongQr/X/nbX6VY2f7NsLWeh1lRPRtsKteQ/jO4DQenw57ZO
81FLuSfvTEeTmcoIJe2OtPH8zL7lyRjP2tyNomPHnrZOA9C9M4SABLB7ZN4cE7RgY1oS+a0PbQ+1
INKO5557jtbWVv7yl78wY8ae5HLbo7RbZut+EXq4zlEoFOjXbyhlZWPJ5/chn6/hkUcesb7tYOv0
ECJFhg4dauP7lc2FZ7rn0b03Fk+oGTjQESU2PGBehPLjsXiYQD5fT7FYQ8gsX44evMajssvf/9Lm
oG0FD5GzLQYxh4Yy7YDz1F/+8pcsWLCA7babwbRpe/LYY4+xdu1ampr6oPtlEMrLylEl+mcov/bk
nRKx2GCjEw1pyOdrmDp1qo37TpsLRRTQfdIelWNX2Dt3EgohOED0feg+nInyLuUtRx557Cbl/6RJ
npz3e6OR769v6/pfU+KWL1/OkiVL/qs2Xn31VQqFGmKxMwkQJO1QxncsqrRVG+HdYUTuCRZZgjVj
KSIVVqonCiB7F8qUQF2ldShDT6NMNBos30qIJ6lHBaErZZUEhu8B5JNQIeaxEQ3W12GRZ4u2ge5C
T1kDCOCwDmLtEBM/wRmZiKBKW5ThlFBhfrnNx1WEcm0V1uetUWZ0OsrUuxEUTxfCdxDgWByI93QC
488R4FjusHvHE+rm5lGL3Ej7Zh+CItZESKQ4055xQeuBzlU2zxMIJ9ffEGp4RjMGZ9pcOATFH62/
0WDwWYSqFmttTV05rkSVlcNR2lmOKmj7EoL8G1GaaiZAibilNRoj9yQhA7cHKuSqbdyepVxCFcw7
URq+G7VMOR1lCWECyxCpiUAluKLTgxBPt7l9ry+qMLtSdoH1Z2uCkuTZxp4lXbR3z0OV8GusH1mC
ldBL0mUIFTB2Qy16HqPXGBm3Z+EWCbRQivzflRYvweZ0tMLW7SoC9EkWtcC+hypbHh+XtTYaCJVB
iqgAvYVQxafS/vNyeT0JMEqubE6y9fcM6r4oLY0jlfI5H4/SbWdUYSojkShDaaq7zcN0VAHsjipA
rQTkgYJ9px26F7oQ6N09Ge1tTT1zv4Arhel0GVtsMY5sdjdEbiWb3YWhQydQWVlP4HsPWlsOer0a
VUJ72dhcgViB0s9dNsclVIlob/Mz0ObYD2e6brFYyWrZRjPFjyGE1Wxp89aZ4CZ3S12RuromsllX
Sje39WhApAupVIoAFv0Pa+dcgmK7ItKeH8Q8WekRRLLcdNNNjBu3A7lcA+l0FdlsDamUxxC3oHtP
+UfPnj3J5SYT5S319X7g8ozs3oj0Ztq0aYRkugaC8nQ7QSZsi0gLI0eOtWc9iWIpIRErmo18Gdls
A7FYkraWuWmW4NRAAOs/j1SqmtraFkKSzBcUCkOYM2cOyjv90KPwPh999NFGcrS1tZUBA4YTi+2B
8sgTSCYrKBbrKC/vQOAvU1C+61bn3yFSxsyZezBlyhQbi/NOjRFNpepQpTkoqBr3WjJauAyRccTj
FSSTJVtXd3lvTc+em21S9k+ePBndj72MJr+/vq3rv1LK/pWrtbWVgw46kmQyRypVxogRW7N06dJ/
+s4zzzxDx449SKcLDBkyaj0hz517ELHY6REC+7UxiQfRE3sGZXLOPDsagcZRphtVkvqzzTbbogxv
e9QSV7YBAfdApEAs1g51pQ5FLSi/RBUbd9lE37kIZWIuuDOoYpBDFYHzbTOdiyoQfuIfZuM5DmVU
+xvzqUddaz9CGXMaFYJR5huz8XkSwTu2kW9DXc77Wr+uQ5laCnVZvI0y+i0JjHg6evqsQpkWhCy8
HKoYrEXjkfzv6Ly6W/pMm1cXIjujp8U6gmIerTjwgM1Pzvp/J2p9GmnfPjHyrMPDuEJ1GaHySAxl
KKcTFC3Hw1ptc/irSFv72DfutDbX2Pj2JCS5NBMyvqOu8e1svB67+RuCopFFlRh/9izr20BbM6/c
4kXco7FftxJgRKJzu5ll1U5Babpkbbgw7IMeWvranDfSFvrlK0LZsWjFkNNRmq1AFbsfITKERMIh
fs5HlanTrZ9uFe1tz04mBPU3oYrsXbZmrvR9FPneCbY2E1FX4DHW1i42lpnWd2wOXYEsEPa075sf
R9p9wp5NECqfqEANdZ2n2Vp46EQOVR5PRS3J1QRF+jqULt6hUOhs7+9KgIPaFZFKnnjiCau/60ro
Fzb2oZE17mX9TxMUA1D3vxBKQjpWqVd9KbO2DsYPItdeey3FotJPsdjAiy++SDbbQNvwmL1tjhzv
1GNKs7SlqamI/JD6ek9Segg9XF5s343ZGrrieB/BUhqtZnILgUf4nHqWdnvU7VtOsEQPIygRYwkV
ijzxZSRqIfJY8Br0ELMTquydRUgiqyAcrKoYPXocmcy26D4poQr4FBv7WwTesiV9+vS18W7IW0qE
EIquiOzI5MmTSaf7E5KyPEHuL5H3T0NkB7p06UGoV30YSt81NDR0tHV6CLXSPkRNjSdqeYzlG4iU
6NmzJ8oTPT65BZEUf/vb32hp6U8m045UqsS++x7ENttsY22MQfdkD0TK+NWvfsXy5cu5//77eeCB
B1i+fDkffvghuVwd0RCkUmn4+qSMu+++m1JpAsrDo2UgP0WkgkKhK42NjSj/a8tbFJKnLW8plbyG
dxUhia3c+nAmStsHIHIRiUTtJnWCLl26oIaex4xGvr++revb1fg2cV1zzbXk80NQxreGTGY2s2bN
/cbnFy1aRCpVgTLi7RApp7GxC62trey55/6oy8QJ7CHUetXBNkoHYx5e57McNc97tuTVRvh3k0wW
2W03z7jyMnFZVMFbi57u8rahTjQifh0VHh7zMMK+8+tIn05FFanVqFtkKzTYtgvKEJsI1kvPQttQ
aE2wvrgw8pPYIlRw/S7y7DxCndlOqCvF3bhb2/udUKZ+CSHgfBQhe7Rg4z8YNeFfgLoaO6IMt9zm
tdHeHWD3Otn719uc3WEbvD0aV1aKjNOTK25HpEQmU7S+/QN18YxDFTnHSZxECKavsbl4y+Zyj0i/
L0AEWNySAAAgAElEQVQF3pGEzLHu1j9XTAqoEtqD4PZcjVoQSoRYowwBCLUVpS0Xyt1tnTzGD5uT
SkLAMqhl0+M5Z6KxVO/ZWFygdkSTbNw6U0Rd+N7GNQSBeYXNrcdAunWvDGW2fydkG+ZsXb2m6PW0
hff4O0o/+6D0fAPBon4ZShueNPQVQdEqRxVMB7f2jF23UKxDhVzM1rgHwfLtWZ1jbB7+ZOtyCMHC
ONH6fzLK5KfaeixHLZP9CEDS01Dro1s7HF/NFZRK61s0nmt7VMEcE7n3BgEjMqrMzCMornX2biXF
Yq212xV1Xb1ta5cmn/dwBVekD0YViwNsjt5DQwL8YHUASn+vIpI3i4jvr7mIHE087tnd0YPSfJS2
PDFnLCJF0ukKmpt709b97Nnybn10SKgyYrFz0cPOHxApks1W8uCDDxLCQkag9OMxttF5A5EiyWQF
KtAXo3tiAEFRPwV1SU6zdXDX//M2v3U2Xs9KH00AnxZ0Pw0meEpArYp3o4rACET6k0y6VftmlDdr
+b5Bg0bi5ddUuSxDFSiH9NoelRXtmDFjBvF4PVHekkg02Pd2tv4/hkiReLxAItEOPdC8bb+Voftv
Baood0akA7NmzSKElvTEPUKdOjXZvwfZ+pXTo8dAohBHDtDf3NyMKq+fWduvIZLl1VdfpaKiHWVl
I8jnezFixNY0Nbl12r0eixHJcNppp9HU1JtSaQTF4nCam/vw2muvGc35gXYd6XQPHn/8cQAeeOAB
isUtbNzt7burUOPAFNLpQ0wJHMmGvEWzjjsQeEuJigqHnvEyfK+gCU7uSToDPWiWE48XN6kXbLfd
djY3PYxGvr++res7Ufyi1157zaPtCfUFOnfu943Pn3feecYkPicqVD/44AP+8Ic/kMvVo5aS3xGP
exWIZlTIboeat39MEIp1xnhSqCCPI9KZTKaaUsnT033jnIQyWI8ri2a/ubu5jxHifShzm2rEeTF6
CizYt+LWpxye2NDY6Ej7jQTF8RdsrASORF2qNxFqDEOApfEYOy+mPhR1i84ngMx6AsoaQjKEK1Tu
dnsDFSoe31NArTSXogJrFirIHW7ja1Qx8tPxclufZlQBaLBvH44qsoMJgfE323O68Tt06E4IlE+h
jNFx0zwBY7F9y92b7k4ZFlnfSgK0jcd+FVDLw602V6cR3NFuHXC38+EEwN9a6/PVqMLhlTnOsnUu
2NpfhSpS5SiDrEMF/5UojRXs3uYE96RnnlfQNltvuLVZiSbmnGdzX2Zjchy8jgTXf3eUpr2NZTZu
B2ldYe9NsT7Osz73tza2tbWdhlqzRlm7XSNttqKKdwZVut1V9cPIukWTmcYSKjL4mt9GiOPx8STN
aiY230vQWNOoorHa1jJl/Xe3fhlKZ2UkEq4Q59AM35/aHKZQgdPNxjzP5usntHXDLSXEsL0UuX8W
atGoICi5b1iGayVq8fJnf2NrdRttXbreNw+NuBwVpt1Ri5zTW9rm0ZN0lhCsJG65fDTyvUsJBzyP
hf0rIjlGj3ZculPRg3LJ5ihuc9IPVZTak0xWEYvFKSur5cgjj4wkQ5QTatI63/CYQFeq/4hIhkzG
Q148o7+A8stae66WYP09DPV8PIUeqjyu7zmUltYSeItnI7sVtBw9VO9rc30pyqfLSSR2sjmvIfCf
DJWVHWytW1G+PQzlKb+xZ5/DeUtjYyOxWAPhMF5HCHNxlAJQPrEzsdiOxOODCLiKHi6RWL+e8fgg
hg0bZW24lfADAiTNVMJ+OsPcwQX0MPIZyp8bmD59Okqfh+G8JZOpZPDgMcRiHrO8llxuEhUVFajV
MLp/S1b95PD191KpQ9lrr/1MWRuD87pYrJyXXnoJgJUrV9Kr12ZkMnvaPDqI/yRE/ko63YP+/T2M
5gB0nw1EJENZmVd+6oPzwp49+6AKbvQg0R31oNQQspRvpFjstEm9YNiwYTa+1UYj3+31fe3gb/Hq
2rWTZDKPi69bLPa4dOrU8Ruf//rrr0XrWlbZnQEikpbVq1fLmDFj5Pbbr5XNNvuZ9O9/upx33hGi
NWgzInKdaD3GHUTrxc4XrUu6QkRukGSyJFpvd7WI/FUymS1k7dq1ojU1F4rICyKym2ity9UiUida
u9SvCtEamO+LSK1orcoPROtgrhKRl0TrnB4j6XSFaD3ciaK1eD8QkXayaNGXInKZaA3hA0Xr3u4o
Wmd4OxG5S7SG5V9E5DgRGWPfvFZE3haROdZui4icJCLXWF+vFpEFInK3aE3fdRJqESdFa4d+KEra
PUSk3n7rKSLtROTPItJLtN7rUtH6w3tZe5+J1pEU6+dI0dqZQ60vA6xviNbw/IloLVCxPqTt3+NF
a1QeJyJp+eyzxSLyI3tnpY3tPNH6p82i9UFXiNYDfl+0RuXOInKK6DqmJNQp7Spac7ZcRO60vj0o
Irvac3Fbm7+IyK9tTnOi9V2Ps2c6iMjmorRwpOi6rrZ2P7bvN9q6PSZaN3OSiPQWrQ97q4j8UbS+
6krr2402hqWitXG/Fq11+66E62Ob+11F5D0b2yx7PylaH7iPKJ1XiUiZrclrEnjhuzaGCfZ3VrT2
6msiso0o7T4hur4rRev7Hikit1vfdxNdy0Uico5ovdj5tnbtrA0v6jnR+pUWrX36tmit0mfs/jgJ
az5OdG9cLFqb9EkR+YOsXJmTqqoq0bqqFdb3lZHxrBJds7+I1ki9R5LJjORyWRGplEwmLXfccaOI
FETX8XzRmqkr7b2rRes8/0a0nvMZNo5bROQ2m+O5IrKtaP3S/UX3wO2idZ07CPQU5QEiIj0llaq2
Z9+KrN3borW5jxLd01+LyAPWh7S1u1yUlueL8oL2tj7v2pokJdRLrhCtG36xrF690r53pGgt8Mds
HOtE90cne6eziLSTp556UUS6ifK+Y0Wkn6xbV5DAn6aL1gYfKYnEalmzZrW8/PLTMmvWLGlsbJSv
vvrKnuth7SZFa0DH5NhjD5JYrIeI9BetJ3y7rFq1tY2zXJQmD7T5+sq+WSaBzitE62u/L1pDt8Lu
ez33pbaOjaL7Y7Vovd2lInKslEpPS+/ef5ZMZp2IXCpK/8/IunWDJZHwGtlrRGSRFAod5euv14ru
zZjovrxGlNZ2tH7eKSKVItJXPv30U4GMKK2tEJHdJBZLiu6/6D59W0RWCewnNTVfSTp9nmgd4ldE
6yKXi8jNIvInaW09RD766GObj2Z7v6OtfVo23E8gctFFZ4vyt/Ei0kMGD+4qQ4cOlWRypq2F8pZ1
61bIBx+8LzBCRF4UkfdkxYpRUlZWsj5eJrp/jxERkeXLW2XNmvH2rZisWTNOXn/9XclmK0Rkiihd
9RboKiNHjpe5cw+Se+65R44++kCZO7dapk9vlbq6BlvPpSIyTNat+0zS6bStX7koHe8vImukvLxc
lE99IVrDvbP06NFP4vEPJNQZfsbW8ALRmtd32f1yaWrqLJu6Fi1aJMp7Upv8/fvrP7++fdPfBtdX
X31Fv35DKRa3oFTalqqq9rz55pubfHbVqlU8/PDDBm3wip0OfkU+X83atWs3+U48XklbuIsTaAsP
cyWxWDVVVe0J2Ggvkc/XsPPOO9tJxIE2ayPvNqKWI88idqvBEDsZ+Slxub3XBz2dD6a5uSt6wn0t
0o+foNap0C91I5xGwJFygNwd0JP4MtTNpm6kVMohEbaM9DlPiIF7CXWzlaMn11Y0jqML6qI5Dz1h
e/LC3dbOCtSS0hM9pa9D3VKOHXY+werg1UqqCMCyF6Cn4Xo07m8dASpiEaGyxUS8pmax2EjbDNxb
CQkolajl0mPBBIX3OBVNWriWkHSwla3/zfb+oahFrIoQZ1ROWwBaCK7AcoIFS5Mxkkm3TP4WtXx0
t3lqa9EOmb1zCHWXz7R1rEdP8OvQk667MXL2275oVmYRtcjVo3Gm+9G21FkVasXxufghmkzSwdZ1
M0Ig94+sbx+iNFlj43PYmssIVsrZqAVmKQG0ehzBElKGnt6zqBX2K/QUrglB2azPm4cUOPB3A2o1
8jV3zMPONo56RDanqsqBoP+M0l9X1Cp5HWqBcrDqGxCpIpWqQi2YN6NWWk9EKUdjq54mlAGLrrND
JFUQ6pr6fzWEOEN3WbnbsEio8nG3WS8L1s48NH6wwp5r2OCbw0kkvETgp6jF3a3nnri2GqWNKjRD
GjxxQqSc+vrO9j2nvfaEGLRqgoXwEYI3oAMaS7y/jSmaWbrM1rKKAQOGsd9+h5DN1lIq9aeiooFS
qR611JejHoZPEGkmHo8DcMwxxxCP74JaR72fXawfD1sfryUkDbUnZApvb/2eiO5tr9DyS6OHVsKe
/h0a29kXpdc1xOMJ1q5dy7HHnkgut5PRy7XE4032PYf0uY94vGDJDeNR3tybthiVc9E9+ioiRcrL
3QPhv39ALFZGTU2j0cFRqIepDJHricdHEI+7e7lg67cPKjc0Sz4eb8fEiVvbuni8+GP2dxzl9V+i
PH4W3bsPBODtt9/mwgsv5P777wfg4YcfJp9vQi2qrcTjZ9O//zBqajxGWcMC4vE6ZsxwEPZRto5b
IZJm330PIJfbEfVorCCX24Fjjz2Riop2hHjRP9lYRyJSTjI5mGJxOsViHS+88AKJRBpNqnwUkddI
pw9h9OjRts4XEdAJCuyyy2zS6b1tvI+Syw1lwYJTLDGk0mjUcQdB44kPQeQh8vnuXHXV/2xSzqt7
vQNqJf3eHfxtXv+tjvcvXatWreL+++/n17/+NZ999tkmn3niiScoL28gn+9AKlVGPJ4lmaymVGrg
+eefX//c119/zV133cWtt97KZ599ZplSUVDPw1FB5X/fRlVVC88++yzV1R3IZLTIfTyeoqqqHhVM
HhtxJqpQDTIGNgKNY3gSFY5eTWPDgP0RaEyMw9BUo0LlZwTT/Ha0hT642DZeF+vvWFSYtaDKhWfp
NqLxPZdZuymUQXoSyAG0hSZpJSREuOArocrCPoSsVhfCLkx+TSiD5QHqnu1XtP9S9nvaxucZww7W
PIbg9nRAWXeHdkXd9JqpXV/fkQCGe7O14dmezjg/IMQlRStYvECIV/swcv8gFI5kZwKkz2CCi/gp
m5+f2u+7WxueXfhnQqWHc1Fl8laUWVbYOrkb52JCApLPjSvNHhvlcU15VMESQoycuzfjkXbSKC3t
a/ObIyQBvWfPvYsmHnRDFeOLUIGb3KAvDlS9XYQGPOO4L6qUeaJCngBPsZK2sWjHENz4FYi0kE47
7bxrzzxJgG1xN66PyZVwx/PTg00i4S7EIqoIeJWVClSA3YbGmO5lrqsKAsj2OgLkyU8i6/+Ufctj
jxbj2YvDhw+3dzwp4zpCtujD9pxnmr9COBzovJWXe+lCj0HdCz0UVNkY37B3vyBgglYRwjM8tORL
dH/fiioBPSw+y+nmYEQuoazM2y2iyv1xuDsxHvcqGR4GMZVwUDiBUNKwOTJn9yNSIJutYeDAkaTT
nQi4kp0IWIKfozxHYae23HJLAE4++WQymWHW5zPRA+Odkbm/npAw5IlYtxGwJgfYWu1CqOiTj/zb
41+9vQfQUJ1HqapqD8CKFSvYdtvpESXsYnSvO91Xk83W0aOHw864W7cK5T3zCFU0NNu5paWrfcdD
G24mHq+guroz6io9E3VBb00qVWuJD44y8VtbawfpfgyRNSQS27LjjjsR6sVX2vdqaWnphbqnfdwD
6Np1yDfKzrPOOpd0ukA2W0tzc1/GjNkOPSz9FVWktAjBXnvtRYhB9MpXGT7++GMmTtyRZDJHMpll
0qRprFq1iqeeesoUf08uu93WZzsCj7uOgQNHUV/fBU2muwWRO8nnN2PPPfe0MW+DypadEMmzZMkS
ttxyPJlMJalUgdmzD2TGDAdrX2J9H4HIvcTjZ1Ao1NK791D69BnO5ZdfQWtr6zfORceO3Y2evlcC
v83rP9Hp/u3r008/5dNPP/3G31euXEl5eQMaGwQiL5LL1fDMM8+wZs2a9c998cUXdOs2kGJxFMXi
9lRXd+D0088km21C5BpisdNIpUqEOJ3bEWnHaaedzurVq3n88cfJZitQ4b4MFVrRmpaO5eXZby9E
fjsXjfFahJ74zrM2LiaAUw9BGW8TATZmB0KSRNGY0Rm2eY9BY+dWoVYOVxg+RE/ci1Fryon2b497
i2Ib3mOMyOMal9sYfm998wL2v0MVi7NQZdATabqhJ/UaY1Z90VO0g+CKzacreN0MpqSEKh8jaAvm
nLcxDUCFUpMxma3RmJL7ECmjY8euqFVrgs3rYQaJUBYZG6hC4MkdP0SFdwtBebkfjScCtcY12v0H
bH1OIljKXCnuiwrK0da/6Pcc968jejLe3ubNA+yH2lo53E2BWOwglHbuR+RzEoksEybsYGv/BmpN
rEYVvjyqcH9FUIr9VD3c5qMRpZ26Dfq2Jao0X0Rbq/LbhGSUAYSM7eesrddRa8JlBJy6IqFKSZwg
BNeh8VVOT7uiCsLnqHXoEasPuvkGfeuMCvtdUaX5OFvrPPF4gbaJGifYNyehVp2P7PueyV9ABeUI
RApkMr6nvY+ttm4Z2mYv3kVImtjJ+vQDRGosyH6uzftH6D6JGy38FLXORMcz2NaiCZELqKzsbN8r
oQr9VjjU0ejRW9k6TkP3/9HEYg4jkrT3oglFx6JCsT+qTJWh+7QHSsNFAq7nrZH3TkKkjJNPPp1c
rj35/DQSiRpUcNei1n5/9mZEKsnlelMsTieTqSCTKRm6wjXo3r3a5jJOUBZBDyGNiHRmxIgR7LXX
fuRyTVZ+s4VksreNM5r9fp6t14bYeG6hjIJp/4mKCq9G4gfdCtSb4c/cgEMfnXbaaYAiTXz44Yck
EhlCXHMrqoQoLE0yWWLo0Im29luge6qSsrI6W4cP0CSLdxAZZwkVlbYO2yCSp6amA4WCgoR7fxKJ
Ixg/fjzF4swNxleG0nMP69NiRH7O5puPtTF9ifJzhXiaMGESsdiJqEL0D0RuY9CgMd8oG9euXctb
b73Fu+++y9q1a80qFy0luR8iO9Kxo5eQfAs9RL+JSJZ7772XuromCoWJFApj6Ny5F59++imXXHIp
8bhb8ecYfR5F8CaAyJvU1bVw5ZVXErwu/SgWG7n44otJJGah++gjRNYQiyVYtWoVra2t/OMf/2DJ
kiWsWLGCeDyNyqjr0UPSVBKJGnbccTfefffdf0uXeOutt4xuvr++revfWoB/91q5ciXbbbcz6XSJ
dLrE9tvPYOXKlRs9995771EotGUe5eVbcd9997V5bv78E83UrCeVePwnbLXVFG699TZ22ml39tpr
HjvsMB0vtO6WuVGjJlBe3mAlbfIEU/QclBFHLYFu/epBW+DjeQT3kWf5JQk4Vs6QdrffO9n/NSss
k2k0C4pntG2HKiojUEE4ElW+RkfaW4YqljegArwcZdh9IozgHJSJboUqfZ7B+RCqrEQzl3+Bnpwf
IFiFUqhAH4cqLX4K9O9lUYbvwdpe5N0zIutQQelZpD+NzMU0VNg4k2/Aa39OmLA1AXPOXUj+vagl
sJxg8cijQmWOzX915PexBCDrbSJjfosA+ZBBhdVqVEk4zL4XtQTmUCvIzMhcnEvAtbsYFcyfIDKZ
YrGceNznpha3sKVSJaqqmkgmPTHIkxaiFUNA6WcoIavV3UxeCzVqCfQDSgpN1vA2Ftu7D9h4s6iL
5yraVslYZ2NbhSqGRVSBbkcsdpaN9zXawvcch9LRGvt9P8OIK7CxJdDnIEWwzrgLNmoJ7IkqXxUE
S65np05AXfqs/355eXtrY2/0MHOwvesK41HoPnBaEFRxdevmrgTXutNsJ4J104WhJ4i8Qkg4uIR8
fgLz5s2z5w+J9E2x8Z599lkL7D8YVfg/Jx7PosrPB6gi4hUevkSV78PRvdnF5qMT4TDzHAHX8JHI
9y5BrXlVBAXlIwJA92WRZx9CpJJ4PE02W2HZxkdEfn/C+rEpS2A3lJbGEiC3BttaXW1KmO/XM9CD
qu/HqCXwbUJmcgZVwtciciKlkkP9+PheIhz0zrbxnIDITVRVtWfx4sVsttkY0ulKAg37WKZZ/xcS
i+X4wQ8OJx73fVQkFmth0iSHiDne+qpYoh07+mHvHtTadRkdO/Zml11mk81OQ0NefkcuV8sNN9xA
Pt+ejS2BfVE+p96bRKKFI4881sKatrS1H4lIGU8++STFYh2x2HxEfkwuV8dvf/vbTcrPl19+mbq6
JnK5ejKZItdccx1lZdWEMKNWlO93NqibQbTd60UmTJhMLBYgcGKxA9hnn3nWtxk2hoONBndG+dff
0P2+Jy0tA9l88/EEK20r2ew0fvCDHxCPu0egHpEOVFS022gMS5cuNR74LCprM8Ri9Zx//vn/sV4h
3yuB3+r1Hy/Ev3LNn3+yAXF6PMJk5s8/eaPnvvrqK4sxetUI7e/kcvW88cYbbZ6bMWMf2pZde4pu
3dqCS2Yy1agSsMK+O9mYzX32ztPGrBahWXTRmMA6HAA2ADTPJyD4D0GVA1BlxzMGn4r06SqCRSwa
t1NGKjUNVUCWo8Ku1phIvTGQP+CwEerecSWyqz3rmWgDCRhULahAPwC1Xl2GWgFKqFLp2X6ggrgP
qtQdFOmbK1jnR559leCm8fvv2xx5ZudCu++VNqpoC958IUHpfZ5grcnRv//maPzKV6gQcqXjGlQA
D7A2x6DM7jPru4Mad4yM7S2Ckpcg1FHG5tEVkIXWR3dhlwjQGT0IVUtKBFc+aAxepd2rRZXGKxDJ
Wc3OOjxuR4ViLSKryWZncuCBR5j76gb0kNGOIOw/tu97fN4XBDp0CJRqQmb35ihz9ioKP0et1RNt
zjxb2wGYu6KKiGee/56Av4d952NETieTqSFkiZ9uv3UhWFBr7e9eBFDjkvWtHKWhOCFupxUV6K5g
dSLEBOYItYZzKA3nUEV2a9pav35Lfb2vzWaE8mGeaek4bAejlsWizbfDKC1DwyXOs287+LZaYROJ
SpRHeEUCh4oqkE63I5drZLvtdmbNmjU2p7dH+nYPIlUWb+yHsb6IlFFd3Y5g2XrT1qSJEKbRj1C7
envUOuvtthLCMPqhiuV96+miVBoceRbKyvpRKDg+5f2oUt7L1mw4SpPzUaXK33sekfJNxARWEeqb
n0KILT4ej6tVfLdqVCk9HA09cBiYCtrS7DBC7OlAm6Nu1NV1MXqJKnM7kcuVSCQGEBRJjQmcNm1P
0ukDUOVmB9Ri+iLK7zwOFUTasc8+c4jHR6P7bBWx2GRmzZpNCMX4sz17k3mO2uIElpe3Y/ny5ey+
+35UVnagc+e+3HPPPQCcccY5ZDIVxGItRiNVdO7ch1hsOro3vyIeH8pxx/3Q6OgQlDcfikiWt99+
m3feeYfDDz+GefMO5Yknntik7GxtbaWhoQsBP/QNcrk6TjppAbFYrfV5W7wyzoknnmjWzrNRHjCX
lpb+1NZ2py1u3020a+fWZ+eRrYj0NIv9RALvGUV9fQvt2nVnw/j2CRO2tbX2eONLSSTKNzmW0aO3
JZPZG5EXicV+SmVlI5988sl/olIA3yuB3/b1Hy/Ev3KNGLEdIfgURO5k5MjtN/nsL395I7lcDeXl
25DLNXDKKWdt9Mzll19BPr8FavlYRSazK3PnHtLmGY3Z2JBR17RhmiIDSSan2WnodPTE+gKqTHVC
ladq9GS4ABUYp6HxLO42aiWcknc2ZrYYkSGk00VisW5tvqlYVNHNeCNVVc00NHS1NvYnWCHKUMb6
Lnoir0KtIG5tWYgK2EGowF1hDOG4SPsa86JtnW3jrCSZrLbNG0WnH2zP9kItXGsIZfE2ZNR72SaM
WqLW4NAdagldgwbE96K+vgMBPNv/q6GsrD2qrP7dxhf9fTvULdEYYTKgSlQXQmm16Bgmo8qB2BoO
RRWDqGsTFCOwhAp7B5vdFhXSW1v7SVSYf44ySk8g8jUvt/e2oFAoEBRqt/QkcWtM377DTClRAaPv
DkCFg4MORyFKLiJgShbQw8qzKN1FQcJPIFhW+9qzC+z7dahl5Bmbyxr00JEn4BFeiwr9TxDpR+/e
AyiVvFKDK0+drb9T0YPOy4icYRYAh9B41uapu831/EgfF6HC5ACjgUvRfVREsf6moGEbp9s659GD
1nj7/teITKSursloYVf0IDAVVf7ybJysU279qEWt7HX2/QtomyixApG4xQh7osKniBzK2LFbsWrV
Kl588UXefPPN9XFKAUNvGapwKyxLLueJIcsQeZ6ysrFMnDgRpacQX5XN1pDPd7J3n0dDCDZDwzuK
BOXkQtRKN9hoZaA914lUqoxi0ct6gch9lEr1DBs2npDM04OgtGeNJl42OrgGkfvJ5/tz9NHzef75
51m+fDnLli0j7N91qFLVTIAd+hClt59TX99MTU1n9MD8tY17uLlQC0Zbz6IWRU9CAz1ETSWV2pvp
0x2M/Qybo3cQqaG+vp583jFBW4nHf0SfPlvSoUNvwgFzGSJjLFGuRIBcugORPP37j0B5i3/3Afr1
8/rI0dq/kEiUyOU8+WIdqdThTJw49Z/KtY8++ognnniCRx99lLfffpvevYfRFsrnOoYMGUOo2OL/
9eSqq676l2Tn4sWLDZYovF8szuDGG280hX0eaol+CZEzOeKIY3j33XcZNmxr6uu7MXnyLnz++eem
wG1v9P4lIiPp0MEPVY4J2opId2bO3IVkch7KL5cj8lu6dh3MjBl7k07PtfufkM/3Y9SoUege9v6t
QyTOsmXLNhrL0qVLmTVrLp069WXEiEm8/vrr/9IcfNMl3yuB3+r1Xy3G/+2aPftAUqnD1hNaKnUY
s2f/4BufX7hwIffccw+vvfbaJn9ft24dBx54OIlEhmQyx8SJO/HVV1+1eUZdR/tFmO+hxmw8WPxv
pNNVHH/88UyYMAG1RrmScKX9/RGqBJ4XIfApqLKwvd17kng8z4gRE9HTusfQ9eLggw+3bELH8lcc
CuoAABYISURBVFpIPF5OIjF//Vyk0/txyCFH09raSj7viPdleBZwu3YtxGLurtWgf3UFOJbXWlRx
TNp/JYKb4iVjeLNQpn4IIoeQTM5kjz3mWD/fJAjqInpid/esVgKpqOhozCKKE9iVeDxuDM7d6A8i
kqd37yFt5iKR6MW++7rr1jHXXkckYwCpe6MKZjkhw3sxqmA9h1ox3A2xBmXgjvGXQS0krnhpTEwy
6UXir7H1qyUo38ttnk+1ualHheSGWF4ORO0ZryVUgXnc1ugsVBB1oF+/fqhi4gz1TlTJhmTyBKZN
24NcroJgCb2RkGBTYW27+3+d0Vg/gnXWkyS6E7IYW1HMsqy5Zv+MWpl6EqyZBaOfHKpY3ovGonns
YCWO/xWPd+Pww48km60mYLu9R3Dj1aDW9SmIVDF8+Hiz3Hv27Bek0x1IpdKosuIWhhttfFeglqIx
eNao4sw5TiC2/pkIzSURSROL9WSPPWZbX7xqxcfofihH96MrrucgUmGWuVvQg0wO3Yd3ou4oLzum
sVKbbTaW4KpdSzK5zTe6qkKJSN9z6lLMZksENIPPyOcbefrpp60KxwBEticeL+OOO+6weQt7LxYr
N3dZEseZi8WKFkeVRPdGav33hg0bw6OPPkpFRQPpdJHKynY8/vjjHHfciaRSE4x+JthazaRtAscj
xOONNDcP5IILLtkoCL+lpR+h5nPSaMp547WIlGjXroVXXnmFTz75hHTaaycnyeXq+Oijj0inC4TM
4ApCzPU6RHYkFsswcuQ2fPHFF7Y2jqtZQKSeXXbZhSuv/B/S6QKpVBlduw5g4cKFjBq1LbHYBevb
ymanst9++xPc9h5HmWbPPeeQTu+Py4Bkcj4zZuxNKuWVTDw56E9kMkVOOeVMksksyWSeIUNG/9tW
qsmTdyWRWIDvzUxmb2bP9r615S3PPvvsv9Tm2rVryecrCUr0FxQKzTz55JObxAn86U9/usl29thj
LrFY3/V7ORYbyD77HMDw4VsReMvedOjQnffff5+6us6kUnMROZlcro67776bJUuWMGLE1uuTS449
9kTOOuss9JDoYUl/IBbL/1vz9p9e8r0S+G9dk0QBmt4RBUTb8PpOF+uTTz6hqak3xeJwisXhNDX1
+a/MwH6tWLFikycO0JJzKqj7oyfoMo466lhyuVpKpe3J5Ro4/fQfA7Bs2TJKpfaoYjAckTy53ACK
xS3p3LknFRXtiMeHItKNeLyBTKaSbLY9ZWWTyOdr+O1vf8vChQupq2uirGwkhcIg+vbdkmXLlnH+
+ReTy9XbN+s47bQzad++G6XSKIrFLenWbeD6Wsp33303uVw1xeJEcrlOzJt3GOvWrWPJkiV8+eWX
vPzyy3zyySe0trZaqrwnEXgGb87GXIXGFGrWZ1nZeGKxEsnkEIrFobS09Ofzzz9n773n2PMavNyt
2wByuVr+T3v3Hh11eedx/B2TEJLMDBAIhnAPV5GLEmxIMyFB0IJ4gHO062VXaHUXD9it3bpSuz0W
eupRll223dZT2pXSQ9WiVEC2e7SU3UoaEFCUixLAhEtigiBIAmgkgeS7fzy/yQwQECq5DPN5nTNn
fvPMb37zzDwzv/nOc42LC63TGm+JiWm2bds2u/76UPNdvrlaJ7+dOnXK4uNDffzcpKhTpkyxvXv3
Wteuvc3vL7DU1JGWnT3OamtrrbBwsoWXh/LZN77x97Z//37vGKFO5qmWkFBgcXGhJeUKLDyCcKy5
JsNOlpAw0AKB7jZr1ixvxvmghabWSUhIs9raWps582GLj8+w+PgCry9Usve+ZHjv0RBzKyX0sUCg
u4WXW3LTGPToMcBbazQ0nUfAe52h/k2uhsnv72mnT5+2jIzQqjXjDJItKamvBQLjrGfPQVZVVWUr
V66ylJRuFgiEBv/4mz5vkGCdO2ea68Q+0Fxg4bOf/vRnNnjwjV7eQ4NdUi0QKDS/f4wNG3aLVVVV
2TPP/LulpGRYaqpbOi4pqcBSUgba9On32+HDh733+HoLr9AQmmbErXaSmNjbbropzz777DNbsGDR
OZ/Zn//8F1ZeXm4DB460xMR+lpg40NLT+9iHH35oq1e/2vSaUlJ627e+9c929OhRCzf95hkk24gR
Iyw5uau5WlrX3Ni5cx+rra214cNDa3sXGKTa44/PtaqqKsvIyDKfL9d8vmwbPPhmq66utvvvn+G9
b26Vhdtvn2p79uzx0gZbqIl44cKFtm7dOktN7WaBwCQLj34sMPBbYmIfCwQmmc+XbkVFRVZSUmJp
aT3N759gPt9Iy8m5tdl+y2Zmc+bM8T6bwyxU+3rPPffYiy8ut+TkbhYI3GEpKT1t7twnzcz1iV6x
YoX96le/svLycjMzW7LkN03nopSUHvajHz1jNTU1Vl9fb3V1dXbw4EFraGhomlHBfcZvMhhoSUnd
7KOPPjIz11x4/PjxpkDu5MmTduONXzG/f4ylpo6zuDif+XxBS04eaNdd57NAYJKlpg62adPus4aG
hmZf3/bt272VKPItOXmode7c23y+YRYIfM06dcqwoqKiCwLH8vLyc9anXbLkN9axYzcLBG63pKRu
lpqaboHAePP7R9uIEWOb8m9m9sgjj1h4ycwMS06+vmkqsDNnzlh1dXXT84XOLYHABPP5bmo6t0yY
MMUrYzeI6IEHvmnHjx/3BhDmWCCQb716DbZDhw7Z73//ircUYrpB0BISOtkrr6w0M7P6+vovXM70
YioqKiwjI8sCgQLz+8fYDTeMsRMnTtjdd98f8ZkN2JQpd13RcdesWeN9x+6wlJQ+NmfOd83M7L33
3rMuXTItELjNfL4Rlpd3u9XV1TV7jPBv8Fjz+3Osf/8b7ejRo3b69Gn7wQ/mWzA4xWbP/k7Tb9GR
I0fs6aefsSee+IFt3rz5nGOdPHmy6XkaGhosK2uUd24pMEixp5++sPWuJdAKQWDcF+8SFeJxM5tO
xM1I+zZuVtjdEft472nLqa2tpbi4GID8/HxSUlJa9PkAqqqqePLJJ2lsbGTevHn079+f0tJSSkpK
GDBgAMOHD2/at76+nsWLF1NdXc3UqVP5+OOPiY+PJz8/n88//5zi4mJKS0sZMmQIwWCQsrIyDh06
xM0330zv3m7S65MnT7Jx40Y6dOhAfn6+N5Em7N69mw8++IAhQ4YwdOhQPv30UzZs2NB0/I4dOzbl
o6Kigu3bt5OZmcmYMWO4lJdffpkf//jHdOjQgYkTJzJo0CAGDRrEokWLOHz4MDNmzODuu+9m69at
pKSkcObMGa677jry8/NJTk4GYN26dbzxxhtkZ2dz1113sXfvXnbt2kVNTQ3du3cnLy+PLl26ADBn
zhxeeOEFunXrRklJCR07duTs2bM8+OCD7Nu3j4cffpgZM2YAUF1dzaZNm0hOTiYYDJKY6Cb3XLVq
FVu3buXWW29l4kQ3kXVNTQ0LFy6koqKC8ePH07VrV/r27cuGDRtYvnw52dnZzJ8/nzVr1nDo0CG6
d+9OZmYmOTk5pKenU1FRwfPPP09RURHDhw9nwYIFTe/9O++8Q1VVFaNGjeLo0aOsXr2a1NRUdu/e
TWNjI5MnTyYrK4vc3FyWLFnCa6+9Rs+ePbnzzjvJz8/HzFi8eDG1tbUkJCSwc+dOxo0bR48ePVi+
fDnDhg3jhz/8IfHx8TQ2NvLcc89RWVnJ1KlTqampoaGhgWAwiM/nA+DgwYPs3LmTXr16MXfuXLZt
20YwGGTVqlWcOnWKP//5z2zYsIHU1FS+/vWvM3LkSAAWLVrEypUryc3NZd68eU2fs2AwSFJSEgC7
du2irKyMtLQ0ampq6Nq1K7m5ucTFxXH27FlmzZrFnj17KCgoIC8vj/T0dPbt20dNTQ1Dhw4lPz+/
qZxCxxo6dChDhriJg+vq6iguLubs2bPk5eXh9/sBKC8vZ8eOHfTq1YvRo92Ex7W1tRQUFHDkyBEe
ffRRHnvsMY4dO8aKFSvYsmUL2dnZzJkzh4SEBABefPFFSkpKmDx5MsFgEOCi35O1a9dSVFRETk4O
06ZNA+DYsWM89NBDnDhxgqeeeqrpGJWVlbz77rt069aN0tJSSktLueOOO4iLi+PYsWNkZ2eTmZkJ
wPHjx9m0aROpqakEg8GmvDXnpZdeYubMmZgZzz77LLNmzQJg//79vP/++/Tt25dRo0Zd8vt7sXNR
cyorK1m6dCnJycnMnj276fPUnLq6OjZs2EB9fT3Dhg1j165dpKSkMGDAALZv337O5+Jijh07xpYt
W/D7/eTm5rJ582ZOnDjR9J27HKHXl5WVRZ8+fXjzzTdJSkoiGAw2fT9D1q5dy9KlS8nKyuKpp54i
Pj7+ose92Lll9erVvP3224wfP57bbrsNgNOnT1NcXHzB9/DAgQO8+uqrAEyfPp3+/fs3/2RX6NSp
U2zcuJGEhATy8/Obvpuvv/46xcXFjB07lqlTp17xcUPfsZ49e5Kdnd2U/sknn7B582Z8Ph/BYPCS
71voNzguLo5gMHjVfoMbGxtZtmwZZWVlTJ8+nVtuueWqHPeLeJ/fFo3TrpUgMBe3jMQk7/YT3vWC
iH1aPAgUERERuRpaIwi8VpaN64lbKyyk0ksTERERkWZcK0GgqvhERERErsDFO4RElyrcqtUhvXG1
geeYP39+03ZhYSGFhYUtnS8RERGRL7R+/XrWr1/fqs95rfQJTMANDJkAHALeog0GhoiIiIhcDa3R
J/BaqQk8C3wLWIsbKfxrzg0ARURERCTCtVITeDlUEygiIiJRQaODRURERKRFKAgUERERiUEKAkVE
RERikIJAERERkRikIFBEREQkBikIFBEREYlBCgJFREREYpCCQBEREZEYpCBQREREJAYpCBQRERGJ
QQoCRURERGKQgkARERGRGKQgUERERCQGKQgUERERiUEKAkVERERikIJAERERkRikIFBEREQkBikI
FBEREYlBCgJFREREYpCCQBEREZEYpCBQREREJAYpCBQRERGJQW0VBM4HKoFt3mVyxH3fB0qBPcDt
EenZwHveff8ZkZ4EvOylbwb6tlSmRURERK4VbRUEGvAfwM3e5XUvfRhwj3c9CfgFEOfdtxh4CBjk
XSZ56Q8Bn3hpPwH+teWzL61t/fr1bZ0F+Sup7KKbyi+6qfzkUtqyOTiumbRpwHLgDHAQKANygB6A
H3jL2++3wHRveyqwzNteCUxomexKW9KJLHqp7KKbyi+6qfzkUtoyCPxHYAfwa6Czl5aJayYOqQR6
NpNe5aXjXX/obZ8FTgBpLZNlERERkWtDSwaB63B9+M6/TMU17fYHbgI+Aha1YD5ERERE5DzNNcm2
tn7AH4ARwBNe2gLv+o/APKAceAO4wUu/DxgHzPb2mY8bFJKACyrTm3meMmDA1c68iIiISAvYBwxs
60y0hB4R2/8E/M7bHgZsBzrgagr3EQ5Ut+D6B8YBrxEeGDIHV7MIcC/wUovlWkRERES+lN8CO3F9
Al8Fro+4719wtXZ7gK9FpIemiCkDfhaRngSsIDxFTL+WyrSIiIiIiIiIiIi0c5NwNYulwPfaOC+x
rDeub+cu4H3g2156Gm4g0QfAnwiPFgdNHt7exOMmeP+Dd1tlFz06A68Au4ESXPcalV90+D7uvPke
rvtUEiq79mwpcAT3Xoe0VnnN9J7jA2DGl38p0S8e14TcD0jE9Tm84VIPkBaTgRsRDuAD9uLKYiEw
10v/HuGBQaE+oom48isj3Ef0LeAr3vb5fUR/4W3fg/qIXm3fBV4E/tu7rbKLHsuAB73tBKATKr9o
0A/Yj/vhB/fjPxOVXXuWj1sIIzIIbI3ySsONpejsXULbMS0XN4I45AnCo5Clbb0KTMT9+wn1C83w
boP7dxRZc/tHYCxuYNHuiPR7gV9G7JPjbScAR696rmNXL+B/gfGEawJVdtGhEy6QOJ/Kr/1Lw/1h
7oJ7X/8A3IbKrr3rx7lBYGuU132EB8ri7X/vpTLZlpNFt5bIyaQhPAG1tK1+uH9KW3BfjCNe+hHC
XxRNHt6+/AR4HGiMSFPZRYf+uB+K3wDvAs8Bqaj8osFx3Fy6FcAhoAbXrKiyiy4tXV5dL3Gsi4qF
INDaOgNyAR9uib9HgVPn3WeozNqjO4GPcf0BLza/qMqu/UoARuOakEYDn3Fhi4jKr30aAHwH98c5
E3f+/Lvz9lHZRZd2U16xEARW4QYkhPTm3EhZWlciLgB8HtccDO5fUYa33QMXbMCFZdcLV3ZV3vb5
6aHH9PG2Q/2ejl+97Mesr+JW+zmAW9/7VlwZquyiQ6V3edu7/QouGDyMyq+9GwO8CXyCq/VZhevm
pLKLLi19rvykmWMp3sG9Qftw/6I6oIEhbSkON0fkT85LX0i4T8QTXNhhVpOHty8FhPsEquyix1+A
wd72fFzZqfzav1G42RSSce/5MuARVHbtXT8uHBjS0uWVhuv72xnXhzS0HfMm4zrWluE6YUrbCOL6
k23HNStuw32o03ADDpobOq/Jw9ufAsKjg1V20WMUriZwB642qRMqv2gxl/AUMctwLSoqu/ZrOa7/
Zj2u7943ab3y+qaXXoobRS4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLSWqbj
5pwc0gbPfZDm11W9WLqISLsUC8vGici15z7gf7zr1naxNT/bxVqgIiIiItcqH67WrQ+wOyK9EFgP
/N5LfyHivoO4pdLeAXYSrkGcDzwWsd/7hNfkXA1s9dL+IWKfAzRf4xdK7+c9/395j10LdPT2GYhb
NWC7l5f+Xvq/4VYG2An8TcTrKcKtsb0Pt8zUA8Bb3n5Z3n7puLWA3/IuX20mbyIiIiJR72+BX3rb
fwFGe9uFQA2QiVtr803CAdEB3HqrALOB57zteZwbBL5HOAjs4l0ne+mh25cTBJ4BRnrpL3t5BrcW
6DRvu4N37Ltwy0jFAd2BctxC84VANXC9t28VLmgF+DbhNbh/B+R5232AkmbyJiJyATUHi0i0uQ9X
24d3Hdkk/BZuzU7D1bb1i7hvlXf9Lpe3Nuqj3jE2Ab2BQVeQxwO42jpwNX79cDWYmcAaL70e+BwX
wP3Oy/PHuNq/W7zbbwNHvH3LcLWK4GoYQ69hIvAsbi3uNYAfSLmCvIpIjEpo6wyIiFyBNGA8MBwX
JMV7149799dF7NvAuee4umbSz3Lun+FQs20hMAEYC5wG3oi473Kcn48vemzcebdD/Qsjj9MYcbuR
8GuIA3JwgaKIyGVTTaCIRJO7gd/iasH645o/DwD5f+XxDhJuTh5NuI9eANcUexoYigsGv4w44FOg
knBzcBKuObgYuAd3Pk4HxuFqNM8PDC/mT7jm4ZCbvmReRSRGKAgUkWhyL27ARqSVuCZh4/JG6Ebu
txJXu/g+rs/gXi/9j7iathLgGVyT8OUct7ntyNsP4AK2HcBGXH+/1bim4x3A/+FqNT/+gtcTed+3
gTHe43cBsy4jryIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLS
lv4f4kc8K/p/GJEAAAAASUVORK5CYII=
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Cool. According to our scatter plot, if we set our limit on income to 100,000 we notice that at about 70,000 the funded amount stabilizes. There's a positive linear correlation between annual income and the amount funded.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[422]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span><span class="mi">5</span><span class="p">),</span> <span class="n">dpi</span><span class="o">=</span><span class="mi">1600</span><span class="p">)</span>
<span class="n">a</span> <span class="o">=</span> <span class="o">.</span><span class="mi">65</span>
<span class="n">loan_2</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s">&#39;addr_state&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">loan_status_clean</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">kind</span><span class="o">=</span><span class="s">&#39;bar&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">
Out[422]:</div>
<div class="output_text output_subarea output_pyout">
<pre>
&lt;matplotlib.axes.AxesSubplot at 0x127662390&gt;
</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJztnXm8JFV5978XhlVnvIzLDCB4EUGWoIMYcKcRmIBR4E0i
DEbDFZJX3gkCrsy4vAwxUVQImwG3jxmIMoJxCQYYQZjxDQGZiIwMDMiiF51RxgURMGqAue8fz2m7
bt3qper26X5O9+/7+fSnu6p/depXy6l66pynqkAIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE
EEIIIYQQQgghhBBC9JmlwF3AOuByYBtgLnA9cC9wHTCa098H3AMszIw/IJRxH3BBdNdCCCGEEM4Z
A36ABVcAVwAnAB8D3hvGnQGcHX7vA6wFtgrT3g+MhP/WAAeG39cAR8SzLYQQQgjhn7nA94EdgFnA
14HDsdaqeUEzPwyDtWadkZl+JfAyYEfg7sz4RcAno7kWQgghhHDAFm3+fxg4F/gR8BPgEazLcB6w
KWg20Qi6dgI2ZKbfAOxcMH5jGC+EEEIIMbC0C7R2B07HugF3Ap4OvDmnmQwfIYQQQgiRYVab/18K
3Az8Mgx/BXg58BDWZfgQ1i34s/D/RmCXzPTPxVqyNobf2fEbi2a4++67Tz7wwAOdL4EQQgghRP/4
HrCg2Z/tWrTuwXKstsOS2g8D1mO5WicEzQnA18Lvq7D8q62B3YA9sCT4h4BHgYNCOW/JTDOFBx54
gMnJyY4+Z555Zsfa1PWevGhZtaxaN1pWLWtaXrzpPXmZqR54catAql2L1veAy4DvAJuB7wKfBmYD
VwInARPAsUG/PoxfDzwJLKbRrbgYWI4FbddgifIzYmJiYmj0nrzE1nvyElvvyYs3vScvsfWevMTW
e/ISW+/Jize9Jy+x9e0CLbBHOXwsN+5hrHWriA+HT57bgP06diaEEEIIkThb9ttAAcuWLVvWkXB0
dJSxsbGOC05Z78lLbL0nL7H1nrx403vyElvvyUtsvScvsfWevHjTe/IyU/1ZZ50FcFYz7UizP/rI
ZOjzFEIIIYRwzcjICLSIp9olw7tm9erVQ6P35CW23pOX2HpPXrzpPXmJrffkJbbek5fYek9evOk9
eYmtTzrQEkIIIYTwjLoOhRBCCCEqMtBdh0IIIYQQnkk60PLUBxtb78lLbL0nL7H1nrx403vyElvv
yUtsvScvsfWevHjTe/ISW9/Jc7REF5kzZy6PPfaraeNnz96BRx99uA+OhBBCCBEL5Wj1GOvLLVq+
EQZ5uYUQQohBRDlaQgghhBB9IulAy1MfbBU9dK735l19993Re/LiTe/JS2y9Jy+x9Z68xNZ78uJN
78lLbH3SgZYQQgghhGeUo9VjlKMlhBBCDA7K0RJCCCGE6BNJB1qe+mCr6JWj5d9LbL0nL970nrzE
1nvyElvvyUtsvScv3vSevMTWJx1oCSGEEEJ4RjlaPUY5WkIIIcTgoBwtIYQQQog+kXSg5akPtope
OVr+vcTWe/LiTe/JS2y9Jy+x9Z68xNZ78uJN78lLbH3SgZYQQgghhGeUo9VjlKMlhBBCDA7K0RJC
CCGE6BNJB1qe+mCr6JWj5d9LbL0nL970nrzE1nvyElvvyUtsvScv3vSevMTWJx1oCSGEEEJ4Rjla
PUY5WkIIIcTgoBwtIYQQQog+0Umg9ULg9szn18CpwFzgeuBe4DpgNDPNUuA+4B5gYWb8AcC68N8F
M/Tuqg+2il45Wv69xNZ78uJN78lLbL0nL7H1nrzE1nvy4k3vyUtsfSeB1veB/cPnAOC/ga8CS7BA
a0/ghjAMsA9wXPg+AriYRpPaJcBJwB7hc0THToUQQgghEqNsjtZC4IPAq7HWqoOBTcB8rHlmL6w1
azPw0TDNSmAZ8CBwI7B3GL8IqAEn5+ahHC0hhBBCJEG3c7QWASvC73lYkEX4nhd+7wRsyEyzAdi5
YPzGMF4IIYQQYiCZVUK7NfAG4IyC/yYpbqapxPj4OGNjYwCMjo6yYMECarUa0OgXrdVqU/pIi/73
qDdWY415q8nTrPz8PNr5SVm/du1aTj/99JblDYr+/PPPb7p/D7veQ33tlT4/zSDrPdU/1e/+6T3V
vyr1dfny5cTgaKwbsM49WJchwI5hGCxXa0lGtxI4KGjvzow/HvhkwXwmO2XVqlUda73ogUmYDJ9V
md+tl9uD917pPXmJrffkxZvek5fYek9eYus9eYmt9+TFm96Tl5nqadPQVCZH64vAtcClYfhjwC+x
XKwl2F2HS7Ak+MuBA7GuwW8CLwhGbsXuWFwDXA1cyNTgrR5olbCVFsrREkIIIQaHdjlanQZaT8OS
2XcDHgvj5gJXArsCE8CxwCPhv/cBJwJPAqcB3wjjDwCWA9sB12BBVx4FWkIIIYRIgm4lw/8GeBaN
IAvgYeAw7PEOC2kEWQAfxlqx9qIRZAHcBuwX/isKskqR7S9NUV+Uo9WtslPWe/ISW+/Jize9Jy+x
9Z68xNZ78hJb78mLN70nL7H1nQZaQgghhBCiJHrXYY9R16EQQggxOOhdh0IIIYQQfSLpQMtTH2wV
vXK0/HuJrffkxZvek5fYek9eYus9eYmt9+TFm96Tl9j6pAMtIYQQQgjPKEerxyhHSwghhBgclKMl
hBBCCNEnkg60PPXBVtErR8u/l9h6T1686T15ia335CW23pOX2HpPXrzpPXmJrU860BJCCCGE8Ixy
tHqMcrSEEEKIwUE5WkIIIYQQfSLpQMtTH2wVvXK0/HuJrffkxZvek5fYek9eYus9eYmt9+TFm96T
l9j6pAMtIYQQQgjPKEerxyhHSwghhBgclKMlhBBCCNEnkg60PPXBVtErR8u/l9h6T1686T15ia33
5CW23pOX2HpPXrzpPXmJrU860BJCCCGE8IxytHqMcrSEEEKIwUE5WkIIIYQQfSLpQMtTH2wVvXK0
/HuJrffkxZvek5fYek9eYus9eYmt9+TFm96Tl9j6pAMtIYQQQgjPKEerxyhHSwghhBgclKMlhBBC
CNEnkg60PPXBVtErR8u/l9h6T1686T15ia335CW23pOX2HpPXrzpPXmJrU860BJCCCGE8IxytHqM
crSEEEKIwaFbOVqjwL8CdwPrgYOAucD1wL3AdUFTZylwH3APsDAz/gBgXfjvgg7nLYQQQgiRJJ0G
WhcA1wB7Ay/CAqglWKC1J3BDGAbYBzgufB8BXEwj0rsEOAnYI3yOmIl5T32wVfTK0fLvJbbekxdv
ek9eYus9eYmt9+Qltt6TF296T15i6zsJtJ4BvBr4XBh+Evg1cBRwaRh3KXBM+H00sAJ4ApgA7sda
wHYEZgNrgu6yzDRCCCGEEANHJzlaC4BPYV2GLwZuA04HNgA7ZMp5OAxfBHwb+EL477PAtVjQdTZw
eBj/auC9wBty81OOlhBCCCGSoF2O1qwOypgFvAQ4Bfgv4Hwa3YR1JimOHioxPj7O2NgYAKOjoyxY
sIBarQY0mutSHTZWA7XM78w/zvxqWMMa1rCGNazhxnD998TEBN1iPvDDzPCrgKuxxPj5YdyOWN4W
WBCWDcRWYl2H88M0dY4HPlkwv8lOWbVqVcdaL3pgEibDZ1Xmd+vl9uC9V3pPXmLrPXnxpvfkJbbe
k5fYek9eYus9efGm9+RlpnraNDRt0UGg9RDwYyzpHeAw4C7g68AJYdwJwNfC76uARcDWwG5Y0vua
UM6jIegaAd6SmUYIIYQQYuDo9DlaL8ZyrbYGHgDeCmwJXAnsiuVfHQs8EvTvA07EEudPA74Rxh8A
LAe2w+5iPLVgXiFAHEyUoyWEEEIMDu1ytPTA0h6jQEsIIYQYHAb6pdLZxLQU9dC53pv3mHpPXmLr
PXnxpvfkJbbek5fYek9eYus9efGm9+Qltj7pQEsIIYQQwjPqOuwx6joUQgghBoeB7joUQgghhPBM
0oGWpz7YKnrlaPn3ElvvyYs3vScvsfWevMTWe/ISW+/Jize9Jy+x9UkHWkIIIYQQnlGOVo9RjpYQ
QggxOChHSwghhBCiTyQdaHnqg62iV46Wfy+x9Z68eNN78hJb78lLbL0nL7H1nrx403vyElufdKAl
hBBCCOEZ5Wj1GOVoCSGEEIODcrSEEEIIIfpE0oGWpz7YKnrlaPn3ElvvyYs3vScvsfWevMTWe/IS
W+/Jize9Jy+x9UkHWkIIIYQQnlGOVo9RjpYQQggxOChHSwghhBCiTyQdaHnqg62iV46Wfy+x9Z68
eNN78hJb78lLbL0nL7H1nrx403vyElufdKAlhBBCCOEZ5Wj1GOVoCSGEEIODcrSEEEIIIfpE0oGW
pz7YKnrlaPn3ElvvyYs3vScvsfWevMTWe/ISW+/Jize9Jy+x9UkHWkIIIYQQnlGOVo9RjpYQQggx
OChHSwghhBCiTyQdaHnqg62iV46Wfy+x9Z68eNN78hJb78lLbL0nL7H1nrx403vyElufdKAlhBBC
COGZTnO0JoBHgaeAJ4ADgbnAFcDzwv/HAo8E/VLgxKA/FbgujD8AWA5sC1wDnFYwL+VoCSGEECIJ
upWjNQnUgP2xIAtgCXA9sCdwQxgG2Ac4LnwfAVycMXAJcBKwR/gc0eH8hRBCCCGSo0zXYT5aOwq4
NPy+FDgm/D4aWIG1fE0A9wMHATsCs4E1QXdZZppKeOqDraJXjpZ/L7H1nrx403vyElvvyUtsvScv
sfWevHjTe/ISW1+mReubwHeAvwnj5gGbwu9NYRhgJ2BDZtoNwM4F4zeG8UIIIYQQA8msDnWvBH4K
PBvrLrwn9/8kxYlHlRgfH2dsbAyA0dFRFixYQK1WAxpRZK1Wo1arTRnO/+9Rb6zGemJr5Fu1ysxv
kIfrDLq+Pq7T9TNMeg/1tZf6YRquM+j6+jgP9cmb3lv9K6Ov/16+fDmdUOWBpWcCj2MtWzXgIaxb
cBWwF41crbPD98owzYNBs3cYfzxwMHByrnwlwwshhBAiCbqRDL89llsF8DRgIbAOuAo4IYw/Afha
+H0VsAjYGtgNS3pfgwVkj2L5WiPAWzLTVCJ/dZGaHjrXe/MeU+/JS2y9Jy/e9J68xNZ78hJb78lL
bL0nL970nrzE1nfSdTgP+GpG/wXscQ3fAa7E7iKcwB7vALA+jF8PPAksptGEsxh7vMN22OMdVnbs
VAghhBAiMfSuwx6jrkMhhBBicNC7DoUQQggh+kTSgZanPtgqeuVo+fcSW+/Jize9Jy+x9Z68xNZ7
8hJb78mLN70nL7H1SQdaQgghhBCeUY5Wj1GOlhBCCDE4KEdLCCGEEKJPJB1oeeqDraJXjpZ/L7H1
nrx403vyElvvyUtsvScvsfWevHjTe/ISW590oCWEEEII4RnlaPUY5WgJIYQQg4NytIQQQggh+kTS
gZanPtgqeuVo+fcSW+/Jize9Jy+x9Z68xNZ78hJb78mLN70nL7H1SQdaQgghhBCeUY5Wj1GOlhBC
CDE4KEdLCCGEEKJPJB1oeeqDraJXjpZ/L7H1nrx403vyElvvyUtsvScvsfWevHjTe/ISW590oCWE
EEII4RnlaPUY5WgJIYQQg4NytIQQQggh+kTSgZanPtgqeuVo+fcSW+/Jize9Jy+x9Z68xNZ78hJb
78mLN70nL7H1SQdaQgghhBCeUY5Wj1GOlhBCCDE4KEdLCCGEEKJPJB1oeeqDraJXjpZ/L7H1nrx4
03vyElvvyUtsvScvsfWevHjTe/ISW590oCWEEEII4RnlaPUY5WgJIYQQg4NytIQQQggh+kTSgZan
PtgqeuVo+fcSW+/Jize9Jy+x9Z68xNZ78hJb78mLN70nL7H1nQZaWwK3A18Pw3OB64F7geuA0Yx2
KXAfcA+wMDP+AGBd+O+Cjh0KIYQQQiRKpzla78QCpdnAUcDHgF+E7zOAHYAlwD7A5cAfAzsD3wT2
wJKS1gCnhO9rgAuBlQXzUo6WEEIIIZKgGzlazwVeB3w2U9BRwKXh96XAMeH30cAK4AlgArgfOAjY
EQvS1gTdZZlphBBCCCEGkk4CrfOA9wCbM+PmAZvC701hGGAnYENGtwFr2cqP3xjGzwhPfbBV9MrR
8u8ltt6TF296T15i6z15ia335CW23pMXb3pPXmLrZ7X5//XAz7D8rFoTzSTFfWGVGR8fZ2xsDIDR
0VEWLFhArWazry9cqsPGahqrczVZmk3f7v9B0q9du7bU+k1Zv3bt2rblDbN+WIbrDIPeU/1T/e6v
PtVhgOXLl7N8+XI6oV2O1oeBtwBPAtsCc4CvYDlYNeAhrFtwFbAXlqcFcHb4XgmcCTwYNHuH8ccD
BwMnF8xTOVpCCCGESIKZ5mi9D9gF2A1YBNyIBV5XAScEzQnA18Lvq4Ju6zDNHlhe1kPAo1i+1kgo
oz6NEEIIIcRA0i7QylNvcjkbOBx7vMNrabRgrQeuDN/XAosz0yzGEurvw5Lki+44LEW+2To1fb7b
sJtlp6z35CW23pMXb3pPXmLrPXmJrffkJbbekxdvek9eYuvb5Whl+Vb4ADwMHNZE9+HwyXMbsF+J
+QkhhBBCJI3eddhjlKMlhBBCDA5616EQQgghRJ9IOtDy1AdbRa8cLf9eYus9efGm9+Qltt6Tl9h6
T15i6z158ab35CW2PulASwghhBDCM8rR6jHK0RJCCCEGB+VoCSGEEEL0iaQDLU99sFX0ytHy7yW2
3pMXb3pPXmLrPXnpVD9nzlxGRkamfebMmdtzL171nrx403vyElufdKAlhBCiPzz22K9ovOp21R9+
23ghRB3laPUY5WgJIQYBHcuEMJSjJYQQQgjRJ5IOtDz1wVbRK0fLv5fYek9evOk9eYmt9+Slil7H
Mv9evOk9eYmtTzrQEkIIIYTwjHK0eozyGoQQg4COZUIYytESQgghhOgTSQdanvpgq+iV1+DfS2y9
Jy/e9J68xNZ78lJFr2OZfy/e9J68xNYnHWgJIYQQQnhGOVo9RnkNQohBQMcyIQzlaAkhhBBC9Imk
Ay1PfbBV9Mpr8O8ltt6TF296T15i6z15qaLXscy/F296T15i65MOtIQQQgghPKMcrR6jvAYhxCCg
Y1kazJkzt/BF37Nn78Cjjz7cB0eDR7scLQVaPUYHJyHEIKBjWRpoO8VnoJPhPfXBVtErr8G/l9h6
T1686T15ia335KWKXscy/17CFFHLT3ndKEdLCCGEECJB1HXYY9SMK4QYBHQsSwNtp/gMdNehEEII
IYRn2gVa2wK3AmuB9cBHwvi5wPXAvcB1wGhmmqXAfcA9wMLM+AOAdeG/C2ZqHHz1wVbRK6/Bv5fY
ek9evOk9eYmt9+Slil7HMv9ewhRRy0953fQzR+t3wCHAAuBF4fergCVYoLUncEMYBtgHOC58HwFc
TKM57RLgJGCP8DmiY5dCCCGEEAlSJkdre+BbwDjwZeBgYBMwHwuT98JaszYDHw3TrASWAQ8CNwJ7
h/GLgBpwcsF8lKMlhBDO0bEsDbSd4tONHK0tsK7DTcAq4C5gXhgmfM8Lv3cCNmSm3QDsXDB+Yxgv
hBBCCDGwzOpAsxnrOnwG8A2s+zDLJMXhcmXGx8cZGxsDYHR0lAULFlCr1YBGv2itVpvSR1r0v0e9
sRpr0FtNnmbl5+fRzk/K+rVr13L66ae3LG9Q9Oeff37T/XvY9R7qa6/0+WlS0U89htVyw/7r37DU
7wbnY6fz/vrxVv+q1Nfly5cTiw8C78YS3eeHcTuGYbBcrSUZ/UrgoKC9OzP+eOCTTeYx2SmrVq3q
WOtFD0zCZPisyvxuvdwevPdK78lLbL0nL970nrzE1nvy0qlex7I0vFTdTrH89KLsXutp09jULkfr
WcCTwCPAdliL1lnAnwC/xHKxlmB3HS7BkuAvBw7Euga/CbwgmLgVOBVYA1wNXBgCsaJAq42tdFF/
uRBiENCxLA20neLTLkerXdfhjsClWJ7WFsC/YHcZ3g5cid1FOAEcG/Trw/j1WIC2mMYWXgwsxwK2
aygOssQAoZeZCiGEGHbaJcOvA15C4/EOHw/jHwYOwx7vsBBr8arzYawVay+sBazObcB+4b9TZ2oc
4j73ohf6ohytbpXtQW9BVr1VddUffhcFX7G9eNV78uJN78lLbL0nL1X0g34sq6r35CVMEbX8lNdN
TH27QEsIIYQQQlRE7zrsMcPUXz5MyyrEsKH6nQbaTvHRuw6FEEIIIfpE0oGWpz7YKvphymsYpmVV
nkJ39J68xNZ78lJFr/rt30uYImr5Ka8b5WgJIYQQQiSIcrR6zDD1lw/TsgoxbKh+p4G2U3yUoyWE
EEII0SeSDrQ89cFW0Q9TXsMwLavyFLqj9+Qltt6Tlyp61W//XsIUUctPed0oR0sIIYQQIkGUo9Vj
hqm/fJiWVYhhQ/U7DbSd4qMcLSGEEEKIPpF0oOWpD7aKfpjyGoZpWZWn0B29Jy+x9Z68VNGrfvv3
EqaIWn7K60Y5WkIIIYQQCaIcrR4zTP3lw7SsQgwbqt9poO0UH+VoCSGEEEL0iaQDLU99sFX0w5TX
MEzLqjyF7ug9eYmt9+Slil7127+XMEXU8lNeN8rREkIIIYRIEOVo9Zhh6i8fpmUVYthQ/U4Dbaf4
KEdLCCGEEKJPJB1oeeqDraIfpryGYVpW5Sl0R+/JS2y9Jy9V9Krf/r2EKaKWn/K6UY6WEEIIIUSC
KEerxwxTf/kwLasQw4bqdxpoO8VHOVpCCCGEEH0i6UDLUx9sFf0w5TUM07IqT6E7ek9eYus9eami
V/327yVMEbX8lNeNcrSEEEIIIRKkkxytXYDLgOdgHb2fBi4E5gJXAM8DJoBjgUfCNEuBE4GngFOB
68L4A4DlwLbANcBpBfNTjtaAMEzLKsSwofqdBtpO8elGjtYTwDuAfYGXAX8L7A0sAa4H9gRuCMMA
+wDHhe8jgIszBi4BTgL2CJ8jyiyMEEIIIURKdBJoPQSsDb8fB+4GdgaOAi4N4y8Fjgm/jwZWYAHa
BHA/cBCwIzAbWBN0l2WmqYSnPtgq+mHKaximZVWeQnf0nrzE1nvyUkWv+u3fS5giavkprxtPOVpj
wP7ArcA8YFMYvykMA+wEbMhMswELzPLjN4bxQgghhBADSZnnaD0d+BbwIeBrwK+AHTL/P4zlbV0E
fBv4Qhj/WeBarHXrbODwMP7VwHuBN+TmoxytAWGYllWIYUP1Ow20neLTLkdrVoflbAV8GfgXLMgC
a8Waj3Ut7gj8LIzfiCXQ13ku1pK1MfzOjt9YNLPx8XHGxsYAGB0dZcGCBdRqNaDRXJfqsLEaqGV+
Z/5x5nfmy1tfvvwwLvxpWMMaVv0e9OEG9WFf/lIbrv+emJigW4xg+VTn5cZ/DDgj/F6CtVaBJcGv
BbYGdgMeoBHp3Yrla41gdx0WJcNPdsqqVas61nrRA5MwGT6rMr9bL7cH72X1w7SsVfWevHjTe/IS
W+/JS6d61e80vFTdTrH89KLsXuspbjL8A520aL0SeDNwB3B7GLc0BFZXYncRTmCPdwBYH8avB54E
FmdMLMYe77BdCLRWdjB/IYQQQogk0bsOe8ww9ZcP07IKMWyofqeBtlN89K5DIYQQQog+kXSgNT3R
Ly19PnG0m2V70w/TspbRe/LiTe/JS2y9Jy9V9Krf/r2EKaKWn/K6ialPOtASQgghhPCMcrR6zDD1
lw/TsgoxbKh+p4G2U3yUoyWEEEII0SeSDrQ89cFW0Q9TXsMwLavyFLqj9+Qltt6Tlyp61W//XsIU
UctPed0oR0sIIYQQIkGUo9Vjhqm/fJiWVYhhQ/U7DbSd4qMcLSGEEEKIPpF0oOWpD7aKfpjyGoZp
WZWn0B29Jy+x9Z68VNGrfvv3EqaIWn7K60Y5WkIIIYQQCaIcrR4zTP3lw7SsQgwbqt9poO0UH+Vo
CSHEADBnzlxGRkamfebMmdtva0KIFiQdaHnqg62iH6a8hn4v60xOUspT6I/ek5fY+k60jz32K6xl
YhJY9YffNr57Xqro+12/veo9eQlTRC0/5XWjHC0hZshMTlJCCCFEVZSj1WOGqb/c07J68iJEFbzt
w978iGK0neKjHC0hhBBCiD6RdKDlqQ+2in6Y8ho8LavyFNLQe/ISW5/yPhymiFZ2ynpPXsIUUctP
ed3E1M8qVbIQQgghRGDOnLnTcl1nz96BRx99uE+O/KEcrR4zTP3lnpbVkxchquBtH/bmRxQTezsV
lz9c+4BytIQQQogMeiaZ6CVJB1qe+mCr6Icpr6HdsvbyOVfKU0hD78FLr/bLlPfhMEW0smPoe/VM
Mg/LmpvCTfne1k1MfdKBlhgc9Jwr4RHtl0KImaIcrR4zTHkNZZa1P3kE3StfDCae9htPXqCcn6KE
aehf0rS3dRkT5WjFp12Olu46FEIIEZVGy2B+vMdrfSG6S9Jdh576YKvoh6k/u1xuQLmyveUppJzD
4UnvyUuYIlr5nrxU0Xuq357W5TDtw2XL97Zu+p2j9TlgE7AuM24ucD1wL3AdMJr5bylwH3APsDAz
/oBQxn3ABR07FEIIIYRIlE7abV8NPA5cBuwXxn0M+EX4PgPYAVgC7ANcDvwxsDPwTWAPrM14DXBK
+L4GuBBYWTA/5WgNCMrREqnjab/x5AV81e+yePMTE+Voxacbz9H6DyCfxXgUcGn4fSlwTPh9NLAC
eAKYAO4HDgJ2BGZjQRZY0FafJmn0PBYhhBBCNKNqjtY8rDuR8D0v/N4J2JDRbcBatvLjN4bxM8JD
H+zMbv/u3I+HZZ2J3lMOh6ccEW/byZPek5cwRbTyPXmpovdUvz2ty2Hah8uW723dxNR3467DepQh
hBBCCNEVvD0WpCpVA61NwHzgIaxb8Gdh/EZgl4zuuVhL1sbwOzt+Y7PCx8fHGRsbA2B0dJQFCxZQ
q9WARhRZq9Wo1WpThvP/90JvrAZq4bN6yrLMVJ/6cGP58sNM0WfGkGf16tVt55cvr9n/scqvqu90
/mX0r3vdG/jtbx+ftpyzZ+/AVVd9Zcb62P7rwynW75n46WS40/o0bPXb6/Gg0/Ji63NLSH17xSuf
Kf9XrR9MbRKBAAAbiElEQVQWZK0iv3899tghXSm/qr7+e/ny5QXLP51OH2IyBnydqcnwvwQ+iiXB
jzI1Gf5AGsnwL8BavG4FTsXytK5mQJLhyyYaKgkTlAwfF+2T3cPTuvHkBXzV77J48xOTlJPhU9lO
3UiGXwHcDLwQ+DHwVuBs4HDs8Q6vDcMA64Erw/e1wGIaa2kx8Fns8Q73UxxklaI4mu6fvujqqFt6
b8sad92UKzv2doq5bnyt9870Xt//521dxlxWT/twmCKS1pt37cPdKt+b95j6TroOj28y/rAm4z8c
Pnluo9EiJoRIlKlP+V5NvVlfT/kWQojpeDwyquswkHoioKeuhVSaoLtB7K5DrUtQ16Gv+l0Wb35i
oq7D+Ohdhwmj94MJIYQQaVP1OVou8NQHG6aIqC9XdtrrplzZKff1+1rv8fWe1o2n/caTlyp6T/Xb
07ocpn24bPnevMfUJx1oCSGEEEJ4xmMflHK0KpbtDU/Lmvq6LINytLqHp2X15AV81e+yePMTE+Vo
xacbj3cQQgghhBAVSDrQ8tQHG6aIqC9XdtrrplzZKff1+1rvcfRFz93q9jO3eqH3lMvjaR8OU0TS
evPuq357Wtay5XvzrhwtIUSyFL14vbOXrgshRPooR2uGeMrR8vbcLU85HKn09XcDbzlaMXM4YuNp
v/HkBXzV77J48xMT5WjFRzlaQ8TUloPGR60HIhVm8nofMbxovxGeSTrQ8tQHG6aIqI9Ztrd1U67s
lPv6fa33/uuLuhk7vVjwti5Ty9GaWbBSxk8ZbWfeZ7LfeNquKe/DZcv35l05WkIIIaIys2BFCNEM
5WjNEE85Wt76sz3lcHhbNzFJOUfL23by5MdbHUm5fnvarrFRjlZ8lKMlROIo/0QIIdrj9ViZdKAV
O+/AVz5MzLK95QaUKzvlvn5v+Se+9OXK9rUPp5ejNZPyPW1XT8dKT3lCYQo35cco22uO56xSJSdI
Y8WDbahaGO+x11QIIUTqFD1qp1+P2RH9x2O00dUcrZRzA1LPO0g5h8MTaeRcldUP3j6cuhdPx7Ky
eDtWenp2XOznMXrK0epXfVWOlhAViN3XX/W1NEIIERM9j7H7JB1opdw/XV4fs2xvuQHlyvbQ1182
MGuUP0w5V2X15cr2tQ8rR2sm2t4906u8vty6jFm2t+1aTu/Nu56jJYRz9AwiIbqH6pMYJJSjlaM7
/dPNy1eOFnRjWT1tp+7pPXmJrR+8fTh1Lykfy7wdK2PmLaVx7PO/T3aTdjlaA3/XYVmm3qWYHe8x
Jh1etJ2EEMOIjn3pkXTXobc+3n7nNcxE7ys3IGbZ3vQxy05dX65sX/uwcrT6U3Z8vaccLW/rRjla
xahFSwgh+kDZLiAhRJp4bGvsa46WJ30q/dPN8LSsaeg9eYmtH7x9OHbZKecxprFPNteXJeW8pWHK
0erWxY6eoyWEEEOInofUPby+Q0/MjF7VkX4EWkcA9wD3AWeUndjz81VSy2vw+x7ImGV708csO3V9
ubJjv/vUUy5P2vqYZcfRV3/cRDkv3vKWhilHK+a26nWgtSXwCSzY2gc4Hti7TAFTd/jzKBeBri1l
1pe++2WXXZfZk9QhhxxS8iTV32X1q/fkxZu+XNlr13Z/n4/tp2rZaes9eYmtb6/t3XHVl75c/ShX
dix9s23Vjl4HWgcC9wMTwBPAF4Gjqxf3yBDp++9l6knqTMqdpNJa1t7pPXnxpi9X9iOPePJe1o8v
7562a9p6T8fV/uuzgco73vGOkkFl/5e12bZqR68DrZ2BH2eGN4RxQgghhBhgZhZUpkuvA60u3zY0
MUT6mGV708cs25s+Ztmp68uVPTFRTh97Wcv5KVd22vqYZXvTxyw7dX3Msn3pe/14h5cBy7AcLYCl
wGbgoxnNWuDFvbUlhBBCCFGJ7wEL+m2izizgAWAM2BoLqkolwwshhBBCiOYcCXwfS4pf2mcvQggh
hBBCCCGEECI1PL6CR8RlO2A28LPc+OcAjwG/jTjvg4BbI5bfb7YG9gU2Mn39bgk81XNH/WPXNv//
qCcuesMzgF83+W9Xpi5ru/vYZ/qSw5eE72bvIvlubng+8NAM5zkIbIU9ckiIrjOMgdafA1+eYRkv
xLo/i3gl8J8dlrMrcBzw8Sb/Pz18P965tbZ8BljJ9HXwZ8DhwP/JjX8tcGP4vRvww9w0Xykx7x8D
u3Sg2w54PfCl3Ph3tZhmEvjHEl6K9oMTWpQNcFlu/KeAi4A7sZPtt4EngWcC7wYuz2i/h63bm0t4
LKLZumnFHwP/VTB+L+B/h2+A9dj+UbRvX9Si/Eng1Ny4Oyk+0T87fLbMjd8PeA8WqNanPxe4o8V8
6zwLeA3wIHBbwf8fBt7XQTl13oUFTp/NjT8Ju0g5Pzf+dmD/8PsG4NAm/4HdqlRfLzsBP8n8Nwk8
v8BLM36PpWBch91URPi+E/hlk2kOyQ1vAtYBK7D60O5hQi/D9vNO+HNsmUYy33UmmX7s2Br4nyZl
5Y897Xgu9vigVoxg2+p4rE7Ny/2/rsW0k8CLMsNHYPtGvl7+BbYvXd+knBdh9W8SuBvbdkWc2cIH
wN/lxucD/CyvBv4jN67ssbxfJBkQpxJotbpifCnwnRJldXqyr3MgsCY3bjPweWAx04Og/IE1z3OA
N2KVeyfgq0w/mC4GljA10Poo8E8F5V0HLGy5BFP5Lo2r3jzrsSf2Z8kuT37Z2i1rnlbrfkvsYHU8
FvDdhB2osyyj2RtDbfxZM/TyiYLyR4A3YAfufHCQXV+nAzXgGKyVYCVT70I5CAtWvge8Fyjz4JhO
1k2efYN+EVZ3Dsj9/3LswPppbJ/YAtuWf4MddG/J6ceZfrKsMwlc2sbPGLZPHwZcwNTA7WjgHOAj
NAKlA7AczvcAX8uVdTX2+q47gR2x/fC/gN2xQPG8nL7sfvpdLKDIn/S3Dv72a1F+mTrSia9lNH8s
zixsOz+FHVPA9sM3YgHTFdjx5bEW5c/CtskiLH/221jQ9W8Ut27fjh0Pz6B9ULY84/0o4Krc/2/N
DV+L1Z/f58a/OEz7vIJ5HIAFp+uBu7A6/UGsvjRrVX05VjeOwVoYTwnl51sTx5pMD7ZcD2aGbw7l
5Vuynw18HdufsjwDW8e7YseEEWy/+hFWHx7N6d/N9P3gaVjw/6zwO8sPsAvBc2i0pM8Pw3sz/XhQ
to4U8QIax5x9M+PLnqPydDMgBjv+rmDqMz1b8Ulsf28WgwwM36G4yX0h7a9a8hSt3C2wE9d7gdeF
cS/FdpCi5/Kvw66S78MqbZbbC/RzsBPVN7C7Ls/FupeK+ABwDVOvbJ8P/Dt2AMlTNL9W3FPyv9ub
/K4y7/y6H8GCk0+F//4Vu8LevmS5VWhXybYA3oxt6yuYXllh6vJfw9QTR9F+swUWRP8AC+ouCp8L
C7RV1s1uWHByB1ZnfkHzk8XKUH6eg7ETXrfYEzvh3oMFcVsVaO6g2OcYxS1ad2V+v49GS+Nsig+6
d2DHj2afIn0zilocqtaRsvWnGUV+d8fWzRqslaWTW8+3wYKFFVh34uUFmi2xYO4+4K9KeOxkWf8e
axHM7uM17Bh/eBP93Zjf+nH1h8HftgX6jwD3Yvv+idi2L9NKVmcE64nIUtSSWqdon7wIC3qyz7Lc
EvgYrVuPwc4nH8C8fxS7eM+zA3bsWIcFKadjgeEpFD8/s+q+uDPwTuxC53fYhUHRhUgVXo4dG3+E
NTaMU1xf34FdyO6BBePPw44d9U+e87Fj6k3Y8fjZbXy8B2s5/stS7jPMqjphj/kU9ibPw2lcMbwJ
C3Ze12yiEnwaO0mtwXbgk7Dm3Pcz/WoarHvofViF/Tx2oP8Qjeb7PJuwpuMzaTS7/1kT7V9hV3DZ
q8kfYFepd4T5ZHlGKKtZS0O+OfhnFOdKHcj0q7EqfL3Ff8/MDf8YuxL9HFZZf4MdPP67yfTZA1BR
V0S++6oKW2FdiO/G1tFf0Lyb+NdYa9dG4BXYflMvo+hAPxcL4H+GHZg30zyXpuy6uQVrcfkSdrL8
QdBPNNE/n+K3qH4Lqw95vk7rFq2jcuP2w+rPvtjJ4ySa56jNauJzguLALNt1cBjWigXWclNUB/ei
+YmwqLtuhOLcpXk07w59Z5gu+7v+30zopMuo6CLgAazFZHvsguGFtH+Z2++xfe5ubD8tevTOU9iJ
6nqsFefijJdJLAioygfC5xtY69rCMK9jKO61+DOsFeZ3WN36Mba/TTQp/6+x/eAS7GKiWTdlnacD
b8OC1juxlo2jgX/ATrxXZLSzKe7WanYsOAzbbtn99SmszjRroXkmFlT8JXbOeQnNW8Z/Fbyfjm2r
n2CBS7MLzBe2mG9Rq9DbsBam52AXgSdirYLLCqYve476CNbw8QPgylDmbdgFWxHPxVqx9w7LcBO2
b95Mcc7j6VgdfQ3W+vZB7Nx6efCSbwH+ePjvPGw5L2HqPt+2yzWVQOszWGW6EQu2jgNOxq52Jgr0
rZoS882OYM269Z1+W+wAuzvN8xzq/D+sCfaTWJ/3m5volmI75cXYjtMqv2YzxU32v6X4RPUM7GTf
jPxO8O7gYTm2845gy3ACttPleT5WgUawYDQbSO1WoD+3hZdzcsP/ip2g61eHrYI0gt/6yf4s4P/S
qLxFJ8Cy+8EpWLB2A3agb3e1+zbsims+Vnl/GsYfinVvZTkZuzI6Bws62r0loey62QT8EbZcz8EO
Uq1olfdXFMy9DGtZWEEjSG+17tcG/b9jQfyBmf/yQfET2FVotiuGMK4oH2MD8HYswN0fu+ABCyqK
jml3Ua5b5OPY9nsXjQDtpWF80f79WexEm/89QiMIrPMuGvtwPigryjP8Da27jPK5Obtj9fhorCXg
CiwwaHWTy65hmkVYcLECO6Y0a/0+CTumvR87pjW7wKzC32Ne60n7h2KtZ0X8HjsvgJ1Q76P147p3
xM4fx2MtyquxnMdmeT+XYV14t2BB33iY35uYHrTWu+HfTqNuzca6yYtOxP/TZJ5PML3rFOy48b/C
PF5E6+5gsBats7F6e2T4XAuchh3f8vwQ65brNJ3oE1i9Ow3r+mxF2XNU2YC4nnqzDVZPX44FRJ/B
ureLLhg2Y9t/NfC3WOB7dphnUa/BRuyY8A9hWbL7fNtAK5UcrTrHYq0aDwJ/Cvy8iW4sN1w/sO2K
5YnkW8HK5h4V/X8CthG2Y3rLTZ36QXAR1sx5JpZDcW9GcyPWUvfN3LSHYld7+WTWKn3r87Cdq96P
fhdWcYpatGotypnEWkCyFJ0wW7FFmMfx2MFgFDuQX03rYKCT5R5r8/9Ebngztg6K9quiq7pdaH6F
+AamBkc3Ytu9aB2/HgtI8pRdN6PYleMiLF9iLvAnFN/p+XPshFp0DDiO6d0Rs2icpPYLHlYwtRsv
y3j4rgcJ+dbHbE7XMVgQ8w9MDWyWYrkRX82VPQ8LMOZjeYvXhfGHYBcN+YC+Sh05Msw/W0c+wsy7
VZcxdZ3kf7fKM5yDBagnYRdL5zJ9f9qMXWB8jUaeTzYhPR/I3Yy1CFyJbc9WXWB1/YNYy0q7uxWz
+38+AbuoFTSrfxUWOG1qof81drFbNI8ifZZtsXp3fJjXDVgAleUOGnV+S+xC6nkUB62zsCDxr2kk
oe+CtUh/gOlB1T1hftkbBerfX6Bxg0qdzTQPzopaEn+ABQ3nYT0wYN3Hl2DHveNz+rJ15FlYL8si
Gq1ab8X2pTxly84eaw7BgqHDsfXZKhF+FAuyXhE+o9g2zOcCZnlRWIZjsVSLFVhwnOWPsAuKnzL1
grpjUgm0si0TY9jBpX7VXXQCzPISbIO9EdvBvsz0PvDfYk3BdXbHmt6blf+3FCemvwY7wZyYG78H
dnK4KTNuP6w15DVMTbLeF2vyv4mpLU6vwq5S8zkiv8GutvJ3Or4K2yEeoDn1k2mnXYb1bpBmAS5M
rVRfpn3SdpatsMDg+PD9rA7n0y3G2vw/kRv+PpZ0m2/5OhE7uD6/oraIrWmsm4W0Xjdg+9uxQb8L
0xP/x6me3L5NKPccLHD4RBsvnfBirLW1fnPB+lB+u6vlThinebdDNyh7R1hZ8l1G59O8y2hZbt51
mgVyr8GCk07fQ3sY0y8Cm1EL5W6PBf5gx9n6sTt/kRZbvx3WsvwC7AT8OezEPQcL9vN3FZe5AD8Q
u+j6dSj/YCzQuxvbJvkurNW0XuczvaC+n8Y6yTKC5Urm0wMeZ3oPwc+x81BRy/7FWHfaTdix5Tjs
mPA0rIUne5fveuzu5pvojHdg57PbsYvNN9A6IP4Mdtx4DEv/uQVL0WlWR/bEgqvjsAB2BfBFmvcC
/B7rXjyPinc8phJojeWG27VQvRDbMMdhO8uXsG6bZnehlC0/Sz2QOxbbIYsCuatpJClneRHWevX6
zLg9sCv1PZl60vk+xYHTjViUXVR2vZkzywh2YjiFRoD3VPD8dxQfoJvpi66+W92BlecY7AqofqJe
QyOYO5PpB75m82nG4zQ/mM00nwRsv7gAa12tt0ouxU6IRzD1Ro0y2nYsxVpXOqVsK2MztsX8L8Lq
zFXYyaroxo6yOV1lKFt2Wf2Zuf/zXaT5wKnMHWFlg7Jsl9HFtO8yKsuZFK+bZn7K6LfCjkEn0mjl
2RX4Z+xEXJTPFFN/JdYqdBPWYjmBdX014ymmdqNvR6M1K3/8uB3rdXgYC16vwI6Z+2OtU3+RK7se
mNVbR07ALkofxAKzfNpK2UCrrH4Z0/fhZ2IXd8uwYCTL6dj5dSdsWVeEedaDmOx+8EHs+JfXNuNc
rGVqb+y8Vs+3WosFoPnzwjeC1zuxIOsWrHGm2bH/KSzn+5109viYrJ91WBD4nzTPAZtGKoFWlk5a
qDZjXTGn0KiAP6Q4p6hK+WUDue9gXSFF3Ik1Tda5Ggvu8vlFzQKnMmWD7VxHYlcY9SuV52N5ZiuZ
3rVQVl8m0LoZq5T1bbQWO1g9DWuBeG1Onw2csgc96E7gVCUwOxQ7CR6NdRsciAUjRVdTZbStKHo0
Rezg41+w1tZrsINlq/w3sHrRKqcr29pQ1kuZsqvoy95Kn6Vd917Zsst2GZUN5Mr6KaM/H8v5egeN
AHEOtk7+m+lBTmz9Ohp3xM3C7pTrVqv497BWWbDejp/TaF3M/lenbGC2ATvWNqsj+eNwWX0z5mKt
SM3W0xiN1qHtsVauFUxNh6mihak5V68I381yrrbAjk917X5YsPptrKUuy7lBsxcWaNWDpnaBUxk/
SfJCbKe9G+uTfzutnyx9DLbjTmABwaG0TpIsW/5m7Go+G1i1Spy+v8R/rZ4JVnRreZmywYKZojuh
nk3xXUll9U9hB73HsNyAxzKf/LNh8sua7YJK6Qnyr8Eq9VUU32FUVduMorywn2MH7/di3RYHY10r
tfB7pvrNTN2WrbYr2InsSOzq83Ysf2XfAl0VL2XKrqLP0smt9GBX1H8fdGdhycjdKrsM78aSg7Of
/4u1lPymy37a6e+n+FECW1J8bIqtn+njaVpxJ407ZL/P1P22KI8x2yX+T0y9W6+ou/ynWBDd7DNT
fSs6XU/7Y+eETt6A0Yl2FKu3H8KCvduw1spW1LsxL8S6Als9+2ob7AHj78a6O3+KxQDd9JMUZQOb
Ok/Humb+HTvIXELxg9PKll82kPsi1iKU52+YeoswlA+cypQNzZ883Oy/svoytMofa3fXnAcepxFs
PIHtY82CjzLadhQFWr0MPsqyDZYn9Qvsqr2bXtqVXVVfJnA6B9uXz6Bxx2ErqgRlVYgVJHaqb9ZS
0ey/2PrsRWD+QrBsHczzfqxF5CoauUVgqSBFbwopG5iVDQq7FUQeQuPNIEXMwlqcL8duXPgi1mI/
E+1nsHW2EmuBPZLW++Rp2LnuR9h54/PYWzhezPSHTGfpNHAq6ydZygY2RczFApKinaZq+Z0GcvOx
fuNvYU22/xh+fxu75ThL2cCpTNlQ/gGKMR+4eDnFy3oy03MCho1sYJb/tLtijBV8lGVbLO/kS1g3
zQexBxx2w0vZssvoywZOm7Hb/jtp7StbdhViBoll9P9G8Wut3sL0p8T3Qh+bl2P5dNnu0z0pfhNH
2cAsdqC1ruCzAasrRV1jC7H8zE1Y1/+baLzJZCZasJyr72DpI2/D0mZapTmdh9XtnVpospQNnMr6
mUZqOVpPxyLg+m2fl2G3fl/XaqIelT8X61dfxPTcIrB1fQiWMzWJXbUUBX3zwzz/h6mvI9kGq8RF
t5Z2WjZMT/DMsh3Tn0NUVl+Gedht6L+n8dycl2AnxWPQy27LUiZZvYq+DGVzusp4KVt2WX3ZvKgy
xCwbyifPl/VTRv9crEvmt0w9lm0fPOZvAImt98bLseP9dTS6dffEzkP5l38/k/bPdZyJfiw3PBmm
b/aInRtpvB+zXUJ4GW2dMjlXZSmbPD9jP6kFWlnaBTbey29FmcApdUaw9bsvg7+sMYkdfJRlM81z
gvIn5CqBUKdlV9GnTOxAriz5+r2e4gdm9kov0mIXLLB5JXZ3/jOxB6DOlKqBUyU/KQdaQogGKQcf
nrwIIfrLaTTu6nsS62Kt3xl4J50l23dKJ4FTL/0IIYQQQkSlbM5VWcomz8f2I4QQQggxMChwEkII
IYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEECJ1xoGLmvzX7MnVZTgde8tBt3RCCPEHit58LoQQ
qVD02oyyr4U6DXttS7d0QgjxBxRoCSH6zVexl7beib08HeCtwPeBW7GnMtfZDXs32R3Yi5Pr1ID/
wF40fFeT+TwNuBpYi73m51jg7djzdFbReHXLJdjLdO8EloVxpxboFmJPh74NuJKpLxMWQgghhHDB
DuF7OywA2gl4EHsdxlbATcCFQXMV8ObwezGNlybXsG7E57WYz59jL1uuMzt8/xB7t2nez5ZYYPVH
BbpnAd+i0ZV4BvDBFvMWQgwpatESQvSb07BWpluwd4+9BQtwfom9HPmKjPYVwIrw+/O5ctZgAVoz
7gAOB84GXkUjSMtzHNZK9V3sxbP7FGheFsbfDNwO/BWwa4t5CyGGlLK5DEII0U1qwKFY4PI7LMC6
h6nBzUiHZTV7MXWd+4D9gT/Fuh1vAD6U0+wGvAt4KfBr4J+BbZuUdz3wpg69CSGGFLVoCSH6yRzg
V1iQtRcWcG0HHIx1020FvDGj/09gUfj9lyXntWOYzxeAc7CgC6xla07Gz2+AR4F5wJGZ6bO6W4FX
AruH4acBe5T0I4QYAtSiJYToJyuBk4H1WPL7LcBPsCT0W4BHsK65OqcBl2M5Uf/G1LsOi+5AzLIf
8HFgM9YleXIY/+ngYyPWunY71qr2Yyw/jCa6cawbc5vw//uxVjMhhBBCCCGEEEIIIYQQIlE6TTIV
QohUeCbwzYLxhwIP99iLEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEGnx/wE7qbXExSYT
UwAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>I was also curious to find out which State had more loans outstanging. Turns out it's California. We have to be careful to assume that's a bad thing, because CA is a large state and probably gives out more loans then other states.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In&nbsp;[424]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">loan_2</span><span class="o">.</span><span class="n">annual_inc</span><span class="p">,</span> <span class="n">loan_2</span><span class="o">.</span><span class="n">emp_length_clean</span><span class="p">,</span> <span class="n">s</span><span class="o">=</span><span class="n">loan_2</span><span class="o">.</span><span class="n">funded_amnt</span><span class="o">/</span><span class="mi">500</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.005</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">&#39;Annual Income&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">&#39;Years Employed&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span><span class="mi">100000</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzsvWeUZWd5JvrsEyuHrqrOLbW6FUAoNUmIYBoNQcYeGFjG
NjBO44h9ub7XvvYwi2tbvrN814zt6xnW9XUY2wyMDcbGDMvGBIMBCSuAQAlJLSGppM7VXblO1clh
3x9PP/W+Z/epUpXUVV2Svmets07Ye3/7i2/6zn5eICAgICAgICAgICAgICAgICAgICAgICAgICAg
ICAgICAgICAgICAgICAgIOB5io8COAvgIffb7wF4FMCDAP4ngMGLUK+AgICAgC2MNwA4hHbl8RYA
qXOf/9O5V0BAQEDA8wSpZz7lOeNfAMwlfvsKgNa5z98CsHcT6hEQEBAQcIGwGcrjmfDvAHzhYlci
ICAgIGDtuNjK48MAagA+eZHrERAQEBCwDmQu4r1/EsDbAfyrlU44ePBgPD4+vmkVCggICHiBYBzA
5Rt5g4vledwC4NcAvBNAZaWTxsfHEcdxeMUxfuu3fuui12GrvEJfhL4IfbH6C8DBjRbim6E8/hrA
XQCuAnAC3OP4fwH0gRvn9wP4o02oR0BAQEDABcJmhK3e2+G3j27CfQMCAgICNggXe8M8YI04fPjw
xa7ClkHoC0PoC0Poi81FdLEr8AyIz8XvAgICAgLWiCiKgA2W78HzCAgICAhYN4LyCAgICAhYN4Ly
CAgICAhYN4LyCAgICAhYN4LyCAgICAhYN4LyCAgICAhYN4LyCAgICAhYN4LyCAgICAhYN4LyCAgI
CAhYN4LyCAgICAhYN4LyCAgICAhYN4LyCAgICAhYN4LyCAgICAhYN4LyCAgICAhYN4LyCAgICAhY
N4LyCAgICAhYN4LyCAgICAhYN4LyCAgICAhYN4LyCAgICAhYN4LyCAgICAhYN4LyCAgICAhYNzZD
eXwUwFkAD7nftgH4CoDHAXwZwNAm1CMgICBgRTQajYty3ziOL1g5em0Gok24xxsALAH4HwCuPffb
7wKYPvf+7wEMA/hQh2vjzeqIgOcP4jhGFJ0/dRuNBjKZzDOeu7CwgMHBQbRaLaRSqRXPr9fryGaz
HY83m0A6DcQxUKs1kc+noakaRUCrFcPfNooi1GoN5HIZxDHQaLCcdJrHKxWgu5vlLS0BfX38vdXi
eyrFY9VqjGw2QqsFfO1rwOHDQC4H1Go8L5PhuU88UcLBgz2IY6BUAqIoRnd3hHqdx9Np4MkngW9/
u4jXvrYXl1/O+0YRkM/HWFyM0GgAQ0O8fnGxgqGhLuTzrGscA9lsjAcfjHDsGPD61wMDA0CjAeTz
QLkcY2EhQjYL7NzJejebEfr6eH2lEiOTiVAuA8eOAfU6cOmlvB/AMlotoFJporeXfbuwwPt2dQHN
JuuaywGPPw7cdx+wfz9w8CDLUN83GmxXfz+QzQLFIt/TaR5LpYByGZiYAB55ZAmHDvXh4EH2ZxRx
vLu7I8Qx79lq2XXZLLC4yLKWloCzZ9mO/fuB7duBOOb8qtV433Ta5kyjwfGu14Fqle1tNoH5eX5W
O+OYbcxmgWq1jlwui3KZv0cRkErF6O/nfIgi9sX4eIx3vzsFbLB83wzlAQD7AXwOpjweA/BG0CPZ
CeA2AC/pcF1QHpsMTco4ts9RZAsnkwGSclsCzl8vYZcsA+ACmp8H5uaA3bt5zpkzXEyDg1zIjQaP
zc7y2t5eYHoa+PKXgX37gJtvpjCp14Ft23jNiRPAnj28T7FIgbFzZ/t5n/sc8K1vATfeCLztbbyu
q4uL/cwZ1qW/H3jiCeDUKf5+ww2sRxwDMzPAH/4h8MADwM/8DPCe91CAZLPA5CRw9938fMMN7Ktq
lcKsUmF5Y2PA0aPAl75EIXHLLcAll7BtO3eyf8plYMcOliuBOTTE+s/Ps87/9t+ybID1eP/7ed+Z
Gd5neprn79/P33t6THjV68Df/z3w0Y/y/NFR4IMfBN76Vpa3uMjr5+ZsvKtV9sXBgyyvUgH+7M+A
P/9zXnPjjcAHPgBcfTWVzRNPAI8+SsF3zTUcs1TK5kC5DBw/Dvzd3wFf+Qp/+5Vf4bj29ZkSaTR4
r7k54PRpzrWhIfZPXx/H8ld/1ZTnz/888EM/xHlULrMtxSLnVjbL90zGFMncHHDXXazD8ePAK17B
eXHjjWx3d7fN/WyWv9XrfJXL7M+ZGeDOOzm3KhXg+7+fdXjZy9hvhQJftRr7I5Xie71uyqFQAI4c
4Tyr14Err2Rfp9M8DvC9VOJLRsDAANuazwN33MExPXIEmJ6OgBeo8pgDvQ3VYdZ993heKw8JTv8d
OF/4Nhqc0P6cZpOTI5XiBMxmTSDrmK7NZs2ayWTsnGaTk6rRoGDdvp1CuFTitbkcF0CzSYG5sMDF
NDDAhTkzw7IHBri4nniCQiqToZXV00MB9eCDrM9VV/E+xSIFUr0OTE0Bw8Ms4w//kNe+970UgNPT
FALDw7yXlM3Jk6zX0BCwdy8Xbi4H/MmfAJ/5DO/7i78IHDrEvmk0WIdvfzvGoUMRLr+cQmNoiO2Q
sPjGN4C/+AtTdu97H/C61/FYoWAW3/Q0hdLkJOt96BAFYKsF/NzPtY/dz/4scO217MNPfAJ46CH2
8c6dFEC1Gus7McE+On6cisfjbW+jAosiKr/+frZpZoZ9mc+z/VdcAYyM8J5JvO99FDj33UfllE6z
vpdcQiHUbLKvMxng6aeBP/3T5VkJiYGPfMSUT63Ga556iv2zfTsF6d69wIEDwBe/CHz2s+112L4d
+P3fp9L4whc4JgCF6Pd9H68rlzn/xsY4FkeOnN8XP/ETFKJ9fWz300/TS2o0eH1vL8us14EPf/j8
vvjQh6i8x8fZf80mx3dkhH2xuMh5k04D997LcfMYGGAZGoeREY5dsWhrznsSX/4y2+vxkz8JvPOd
7Lv5eZ5fLHJ+jY3xHNWtq4t9dtttLBvgunrDG4DLL+c1rRbnUbnM8qS4eno4Z1ot4Dd+w/fnxiuP
zDOfsuGIz7064tZbb13+fPjwYRw+fHjja7QOdFIIEk5RxMkQReauektcQl7WjCz2VssmTKvFY7Ua
F02l0kI6nUIqxd+9Nd9sWjhAkzCdpsVWKNAF37s3OicYWmg2UygUYqRSPH9ujouqWuXkLBQsJPLg
g5y0n/88QxSLi/z9+HEKnFaLyieTiVEqRajVmqhUUqhWIxSLMe6+O8Kdd3KhLCwA11/PvpmaijE0
xPBGJgM89hiFS6USY3AwAsD23HUXFQfA43/3d8Cll8aoViPcdx/wzW/GKJcjnDzZwvXXp7BnTwtT
UylkMsDu3TGmpwv4h38YdF5SjE99KsK+fWxLpcIFm8/TEr3/fvb3o4+y3OFh4J57JgDsahv/P/sz
4Ld/m/f/znc4CapVCr+ZGQq5Bx/kIu/vr+DIkRxsq7EMoAv/9E8NvPKVWUxPt3D0aAqHDgGPPRZj
cpJhrYEBjm2jQcu+Ez796Rbe/OYWHnggg0IB6OuLMTkJPPRQhJtvBrq7YywtRcjlgE9+sgYg565u
AUjhq1+lIh8fZ5irUqngwQe70dPD8apUaBx0dTVx990pJGXT5GSMO+6g8nnwQTv2yCNUXPk85+Lw
MBXzkSN+2XOsb789wg/8AMNAhQINgPFx4OGHY/T1xSiVYsRxGuXyNFKp0Y59cfvtdezZk8GZMxHm
52O0WsDMDOd4b2+MSoXfBweBRx5pnRsPvfO+DzzANs/OUgHkcjSYuH5jTE9HywL97rtNAQvf+Abw
mtdwPU9N8X1hQUo5Rj7PdZFOA5VKhCeeYPgunbZrtm3jespmI/T2UtkUCma4ZTLsp0wGuPPOr+PI
kdvdeG48LpbyULjqDLgaJ1c60SuPrYgOofdlryCOzaPQ794bkbKQ96BrpAjkeWjy0o1OLQtAudHy
PDIZIJ9n4Y0Gy8hkGDIAgD17ouWygdQ5d5jx+4EB3ndujhZXX5+51/39tOSOHQPe9S5Tev39tCYf
eYTnHjwInDoVoVQCtm1Lo1ajAB0cjPDTP23W3vveRyEyNQXs2hVhaMg8j5tuokJqtbhgLrmEyu5H
foTK69Of5sL50R8FxsZ4r8OHgeHhCPfeCxw6lMKBA0CplMLAABVALhdh375BFArAxz4G1Otc7O99
Ly1zxa4VY37jG/l5ehq48soIN9xA6+6d79yFz3++faw/+EF6WbfcEmFujkqnrw/YtYvlLC7SeqTn
0YWhISonohsAcMstWeTzwKWXprBzJ8diZCTCzAwVZVcXheju3bSCO+GHfziF665LLYeuyuUIO3d6
z4PfMxng/e/P4U/+RFe2AHDj5S1voYDLZoFGI0K93r0cNhkdZV/u2QPs3p3GTTed73ncdFOEN7yB
VvSpU+ZhXXstvdK9eykQy2V6KddfHy17J+dWBA4f5rF83kJMV1zBY61WhGKR9bj66lE0GsCnPnV+
X7zxjVls345z84/ze2iI5e7ezTL6+jgXr7suda6etvc1NMT53t/PuTYwwPm9Y4cMvQjd3Sbo3/72
6Dzv5fu+D8v93dPDcZRnu317dG5PI1qWAS95CftMxuC2bTQ8Dh6MlqMIPT2stzyQTIZ9tGMH8K53
vQn33/8mPPywavAfO0+UC4iLFbb6XQAzAP4zuFE+hLBhviXglZs24bRfkVSGQquDofNMex6lEpWH
4vwTE7ZQz5zhubt3W8xfYbXPfY4K6/Wvp6JrNLjQzpyhVbx7N+uztMSyduygxVapUCh84Qvcl7jp
Jsb4T59m2du2sT61GmPI4+MW6rvhBiqSOKYl+kd/RIX5C7/A+LYW8tmzwD33sK2vehXbVaux/Hqd
5e3axfcvfYlC+Yd+iMJwZoZ9oTDlyAgVT6HAvti2jRa79op+9EfZRoBx/ve+l0rm7FkLPW3fTmGf
zZqwlLHyD//A+PjkJO/7y78MvOlNPL60xPucOcPrGg2Ol9/zaLXYD5/5DO93001UpFdcwf5+4glu
3mYyFIL797fvnZXLLP9v/oZ9AQC/9ms0BLTnoVCs9jympvh9xw72R1cX+/tXfsX2f37pl2jgDA3x
HgsL9meEVMr2PjIZHp+dpTK/5x6O6ateBbzjHQxTRpFtzvf02B6FPP5KhfdcWGCY8/bb2e/f//3A
j/842ywPnp6/KZBMxjblMxmO9SOPsJ21GpXtgQOcI9pMz+XYzsVFi1QMDXF+5fPcd/nYxxi6Onv2
hbHn8dfg5vgo6HH8JoC/B/C3AC4BcBTADwOY73BtUB4BWx7+n1edPFGh1TKlqtCk3+tSKLNcppBL
7pdJcOma736XYSx6Cu2bulNT9BZUHmD/7tG/rcbHGSbUnoti+l1dFFDNJhVpscjrurpsz0z3evhh
CrsDB3hMQq5et5DPjh08J45Zh2qVgjebZVnHjrH++/bZP6VyOQvZyiOUIdHdbX2iPyocOcJr9+yx
MrRBv7BgAnZpiW3PZGwMymUq3WPHqBwPHrR+8gKfIabz/22VybCPzpxhO/fvp0KOY57Hf5exzvp3
XavFcmu19n9bFQq2v5nLtf/bStGIRoPXKBze12eG3hNPcJ/q3/ybF4byeC4IyiMgICBgnTj3d/MN
le/hCfOAgICAgHUjKI+AgICAgHUjKI+AgICAgHUjKI+AgICAgHUjKI+AgICAgHUjKI+AgICAgHUj
KI+AgICAgHUjKI+AgICAgHVjKxAjBgRsKlbKB7K+Ms5/mnwl1mSdqyfRAaNqEQ+aP6Ynk4H2fB7J
exQKpGDxz9Hq3p55WU+u+88i7RQTs1h4gXYST/9EfJJyBmh/sj2Vst91Taf7+xQqemoeOJ/uX0+A
6zrVwROLilRU7dVT2ckyxBOnY56UVE9n12p8mt1z0Only1IZvr21Go+LT0406sl50indgR9XPwar
TdHkeOqzCDQ3A0F5BKwZz0S/sdp1gC1WCclGwxaJjgHG2yMSRy0y0VpkMqTN8MzBpRLPFW9Rvc7f
s1mjxhBDcLkcLdOci7PL53wS/bbuLdoNgNefOEFKi507jQJE7alWjULDk156OhJxbTUaxl3kaSgk
zHzfiVJETMtnzhg1xugoea8AE2CeWFPlidYklWI7JieNamP7dlManeAFt8qsVEhBAlguFpF0KsmR
aMtFByLFob6pVKgE02nLSyHep0ajXdCKm8sL9WrV8rek06yHVyBSTFIsmYwpPB2vVEwB9fayHFHk
e4Uuri0JbPVvvU7aE+XZ6O3leEiBiBNLdUrkF1umUSmVrK1dXeyLTmvJKwyvOMplWyObgaA8nueQ
kPATCjAh4wUOYIs7SQuvJEE6T7k+AE5kcfDkcrY4lS+kWOR1vb3tJIleKdRq5A9qtYydVPXx57Za
JhC6utrLOn6cizSXI4eRBFKrZcpDFOa+L8T3pOQ/hQKJ7kZH7f5K1BPHvEezyd/SaeMeiiIyxk5M
cIHOz5PATsSHi4vW/lLJypOQkVBfWKDQbbXYxoEBlp9KGZuxxtZb6lKMp0+TdHBxkX1eqxnhX71u
3FOZjFnCUpDijJqYIP9VtWp8Uzt3to+Zsu2pX6WERNA3Pc22SDA3m+zTRoN10xzJZk0Yq15SHGfP
Ws6Sep0KRMpDfeA9HyVT0piWSiRmBIx7anDQDAopHK0J1VPfleVvft5ybyjvidrvjR2fZkF10vVq
swyXgYF2QlDvucjL8mkXZHjI8/G8Xn5OiGdL97csk5zfUpgbjaA8NhjJUMZK1rtnsH2m8jSZfN4P
TXDBu686L6lgdJ7K9K9y2erkJ7a3wABLxhTHXIg+JCFlEEVcXEpfurBgLK9KdKV2S3HIspX1Vixa
DpFWi4JvZMSEvAR9pcI6yJq3sEUTpVIa8/PmIWSzJNHzfenzpHhlms0CCwtVFIv55YRGUoRSHrq3
FKCsaECLPEaxGGF2VsSDzBWiZFUi4+vpaRdCfvyiyPJC6NXfD8zNxefyflguF/WVPAopL1nalYo8
MVMI3hDROKs8KRUJd3kdyXKVf0YKU96X2qIxq1Q4rpo/c3Nsu7wS9aXO7+42r0HHdL28KUD1jRHH
UZtHqzkig0tzTHNd9RANvs5Jzmm/Xn0ZPktiqWTj6MN9fk6qjDg2T9R7VFrvybXvQ4I6rnH0XtVG
IyiPDUZSGaykHBKptJ+hvBhA1ObCJ8tXOEghg3r9/HiwzvNCQYLbex5yn2UJ+Riw2EB1jS/fW6uj
o6aotm8/P7WnhFtPDxeS2FnVxoEBljEzw3O2b7cQj7wfgNcMDtoCUr2ANHp7LZ9EPm9Wrurq0336
UIkE38hIfjnHhnJcbNtm13R3m2DwYTFZv81mhP5+3pO08xEGBiyxT1eXsel6i1IhK71v29bunQ0M
MLeJj//LwvdKR9Z0d7e1f3HRqPB7ekxY616aUz5kJA9g2zZ6aQrTbdtmYyZjQ30jj1dhLPXxwADH
LpejItfeSVeXzR2/lyFFm0rxc3+/Ke1cjtexndFyH6r9Gke/5qSQajWbC0rZ6/eMfD/4/al0Wkna
rO+6u1mGvFq/t+LXppSTwmSAKRCFM5Nr288JH97M5WztbBYCq27AmvFs9zx0reA3W/2ehxaGFpDf
4NRnZU7TPoQEUrXartxUts+bkE6bxZvPWzhOgkVWnUIesvyVx1rC5fRpWv87dpii0j0lNBU7996D
FJksbglAKe18vn3fwQstoN1qnphgHZTwanCQ50iAyWJWiEjKwO8rzcywvl1djNH7sfV18P3pPRPt
eUh5DAxYP8r7kgBPKjKVqb7I5SztbFIJShF62nu95OmUSuwHhbS8Z6C653I2FvKm5GXL05TQl1Hj
76n6JPehajXOS3nh2v+RMSKPRmPiFZgPH5fLdp72PJLRAh9B8O+AeR8MQUbABsv3oDwCAi4C1qqI
k4rEw+es73Q8+Xun714pJvdY/Hk+7u7/AabNYB969PX27yuV7VM1J+H/MOGFtoeUgRSH7zMZGF4R
6Li/r5SuPKOk8vT1Efwxhe6k6DQuOi9pBK00Zj5h2mrzo1PZXomcyygalEdAQEBAwNoR8nkEBAQE
BGxJBOUREBAQELBuBOUREBAQELBuBOUREBAQELBuBOUREBAQELBuBOUREBAQELBuBOUREBAQELBu
XGzl8R8APALgIQCfBNCBRzIgIOBiIzxvFZDExXxIcD+ArwF4KYAqgL8B8AUAH3fnhIcEA7Yckk9c
J48BnZ/89dAT0Xri2LPf+rJXItYUnYVoN5JPdyefCO/0ZLcoRETp4qk/kuR7/jxBT3CLN82X4bnF
/JPlnoRSFCWqn+c58+1M5v9InlOvt/dnMi+InsT3feGffFdbPddapz7z4+qpdEQbo7aIBsXX2fOF
+Tb4PhIRp+hy/NPyybHr9AS8SB2bTWBoaOMfEryYxIgFAHUAPQCa595PXcT6vKDxXHipVioPeGYh
2ekawGgttNCTxwBy+2hRp1JcGLOzFGJjY+38RLpGZHQ6ls8b31Q2Sw6iyUlePzBgTKvioWo0jOhO
ZHldXSYkGg1yWy0ukpxxdNSEY6VifE5i9RXlhTit9C767ny+nYupt7eddsST6YlOvdEgHfrZs+SD
2rnT8oeI3jtJyaHP6utajWUUi+yHwUGj/waMkVeU7ACVlfojijgeJHgkN9bwsAlS0Z2Lkl2CU/UR
HcjcnBEbjoxYzg2vgIB2ga+5lkqxTrOz5Pnq7jbCzCSdvOc3EwOvZ/0Vr5SUmHipxKkFtBOAintL
/bK0ZHNQBJf5fDvLrXjBfB4ZtaVatfwnaldX1/kK1RNe+r6IY86pcvnFQck+C+D/AXAcQBnAPwH4
54tYn2eFCymUPVun4LOTrcZvpM+yvrRwxI4rHh8JJ7Gs+uRFAL97riNN+NlZE6xJ1tlSiZ/7+kxw
qW9UfqvFPBpxzPM8VbmYTX0+D8AYZqUITp60fB7lMllcdb9ikfUYGLCy45hU8GJ6PX2aiZyWloBT
p4DLL2d7vKWtshoNIzUUU6vyYExMsC2FAs/x9VRfiN8IsHHLZFifqSlTHpkMc5NIqCpHh8ZegkeC
PZ2m0H/0UZYVRWzPpZdS0EgoSbh5Ye9JKGdmjOBxcBDYvZuCN4qMmVW5RyTAxGWVyfCckyepwHRe
tQrs2sV+UMIrCctkAqRsludMT3NupdP8vnNnu4cj61909RLwGo/5eY6pyBUbDbZF80gWvfpac8dz
Ui0usv4S0IODZOtVX/ncHlFkSlHrtVSyfB6NBq8dGTHPRGOovhBRovpBhJpSZFpzi4tcK4KUnZSD
+sLPvZmZC2skroaLqTwOAvjfwPDVAoBPA3g/gE/4k2699dblz4cPH8bhw4c3q34AViedS37uFFrw
v69WridcS57nFYgv0+da8BadJpksX01gfffka/pdIRBZrl4hibW21eJ5PgShOsjy1gLMZIytVJZu
qWT37enhffJ5EzLKz+CVjyjf5+ZMqEdRe+4CCatWy4Sv6uT7rVymsEqned78PI+pHT4Lnqxh9VVP
j+WwmJzkeQsLrJfaIIZXKW0JQR+yKJexnFNEAlFWpsait9dYgtVfnh23UOC9pXALhXbPSEpHGRTV
Rnlf9TqvX1iwMervpzKW5wDYmMugkALSNYWC5aGQ5+av8UmTpPgk8DRWhYLNkaUlYzyWZ+BDN8m8
NMogWCyap1QsWvgnGZqSMSChrnWnOS8PRcohSb/u162u02/z81bnxUXSy+sentVY4+PDaFIIyXCU
PGGtNbVb/e09mq9//TZ8/eu3Lc/bzcDF3PP4EQBvAfAz577/GIDXAPgld86Lfs/DK4ROSsjHZn1C
KZ8vQxatrBgfh5aAUT4BZdRLLtRymQt7aKidCl3CD6DQk8Dz18nyn57mb2NjluVNsV1dJwUFmDck
ITs1ZRnfhoctr4WUU6Vimfi8spTwnJ9nmKVQoLDcu9f6xDOrqn1KGKUMfgAVx+QklciePbT4JRiq
VWuXT/Akq1v9Xa3SewF4/6Gh9ti1QlCqP2AU8urH48dp+efzwBVX0OL3wkWKJZMxqnfAlND8PL2v
+Xn2xb59tJaB9sRfi4vn57bo72cZJ07Q0pW1vmcPPT9RpCs5k8/prX5Ip6ksZmfZHuXzGBtrz2Oh
fvCJk/xe0dKSZUXs7qbnsmOHeUk+yZena/fKRRkmFWIbGLC+jiLz+jQWWl/qX4XO5Fn399OLE+W/
359RCE9rW96gsldqLuo+So4lJeb3WNQ/gClzUcPfcMMLm1X3etDLeBWACoCPAbgHwP/nznnRK48X
EpL7JNpoBdotPO+6e+sR4CLt7bUsbd6bUmIdZcVT+EhCpKvLwin5vCU/AsxyBizvuRZoMhXo1BQF
xtAQhX9SaOu+Sa9DIUblXVCdvNBQQqlkbpPkpvjUFD2Hnh7br1D/yQpP7nlkXJxBaXMXFyks+/vt
nt74UKY8wEKMKqdc5vXKmrdtW7vXK6sZsP0rH2aR4aEc5hLa3mjRmHovUP0g61ztyOUsqZWOAe15
NLxS9vs7PsyrfgPM8OhEpe5zp8jj0r16etr3RnyZCvt6pajrfThYoU8ZFuozD78fon2XWg245JIX
tvIAgF8H8BMAWgDuA70Qv90TlEfABUer1UJqs3z7DYT3NJNYy16cj8Unw6zJDdnkP5YA8/Ak4BWi
8sLOh6skPP1GuN/T8gm5/HHfjmS42P9jS2X463wbO20y67M3Pvz9vHBe7d913ohRPnpvENXrphS8
5+8VjpSRFH2nf5nps1ewvr4Kdw4MvPCVxzMhKI+AgICAdSLk8wgICAgI2JIIyiMgICAgYN0IyiMg
ICAgYN0IyiMgICAgYN0IyiMgICAgYN0IyiMgICAgYN1YjZ7koVWOxQCuu8B1CQgICAh4nmA15fGv
z73/4rn3vwT/N/z+Da1RQEBAQMCWx1oeInkAwA2J3+4HcOjCV+c8hIcEAy44KpUqurqYd0zz69xD
VQn6ifOfRI/jGFEUJc6LkUpF5z7r9/PPazZZnugoAD6NzGPtT2DriWzPD+WfthaxoDivPPikM9uV
zdoSj+P8PObAAAAgAElEQVQYrVa0/HRzowEsLNQwMJBFJhN1fPLZyPxiZDLRMpst+9GeaO7rEwVJ
C1GUWqb70NPSeno8+WR3rWY0Ip3yYPinqj08z1WpZISYYkDWk+d611PuIslU3UQRAgDVahP5fLqN
wdrXN0lR4ulcGg32h54w93QsnkfLl+mfaNfT8P4J/VYrBhAt06q0WpxTenJfdVTfaixqNWB0dOMf
ElwLq24E4PUA7jj3/XXY+k+mv6jRiZpiNbqKTov6mcoXPGuqJ2nzuSM8/bUWh9hLu7spNMRImskY
s664p8QPVSyS2LCvj0R+SUbXZtOYbCsVE1oi+stkgKeeAubm8hgaIqFguRwtczaJFTaXI09QsZhC
Tw9zdojgrlSKcOoUuaVe+lIeazQi5HKs39IS69rXFy1TTEgJ1OupZa6o06d5bP/+dqLJ/v725ECl
khFcSklUqyRFnJzk+VddRU4nwBiBKxXWSQy1JHiMlgXq0hJw9ChQr+eQywEHDhi1vASrz5cSRVFb
Xo5ymfefn2cdd+wQlXlqWYCJJLKrywSqZ39uNMhVNjXFcwYHjd/KM9YmIYqPVKqdWr63l+OxaxfP
80SXAOvkecrEWluvsx5xnF7m6BI5Y5IORTlJPNdUtUpiRVGyqx7d3e1zT+32xoHvY+UVkbLI5aI2
SpNUyhS8V+5ab8Ui+6FYXH39XiisRXn8OwD/HcDgue/zAH5qw2r0AsFaBHFSoHuCvKTQFaFckhfI
Wze+TAlqWYqaYMr5oOvFWCtrWMJYOTaiiAvp2DFOyh07KLB8GfPzvMfISDvltCyzTIbCambG8l94
1teREWur6MKbTSoJESdGEXDkCPNH9PayvJERS6AzM8OF191tAkJsrlqsyj9x9ixZT2dnyYobRVz8
utfMDAVjq2X07iKzO3IEuOMOCsannwbe/GYy/C4tsd5LS1aemFmV/EfC4dQp3iObZV0uv9yEQKlk
yadENa5xHh7msRMngHvvNSbZWg245hosK7CFBWPzlWIELMlRvU4lOj5uyjKdZl+IsFLzTrT5XsHn
82zf5CT7oNFgew4cYP0kwAoFo6YfGLByJAwXF9mWiQm2cdculiFBm6R0V71Ezlir0Zg4ftwYkGWQ
9Paagmo0rB+lOJQGoF5nO2ZmjNCw1aICEQOxzw+juniWXCUpq1SMSDKVMqJIXaN3KXPvkUjhyrBq
NKhMvQJLpklQ+2QgFQqcE4XCyjLnQmItyuNecHN8EPQ45je0Ri8AeGslSbPc6VxPIidCNZ85TW52
JjFaSevMf9fCk9DyizCZX8HnNPBMo6pPtcqFrgx4fX1WhjKgtVomLLz1qvZXKmYRafHUahQohQIX
bSbDhajySiWzdKenTUG0Wlysg4Osw8ICy5A11mqZ0iiVjHZ9fp5WarNJAR7HpPBOktUtLJjVLLrt
kRH+JsEPUBkpd0OpxDaKTl792tNjrLFxzM+zs+wLhY7KZctbIqZhUeArz4QSBimh1OSksagWCqZE
lcdDZXlLWQq1VLJkVlLac3OkVAeMxE/CSQyvoizXnFICKFG812qWV0UhHLEb+2RNAN8LBTMoWi3r
dyk771V6i13ZH0WBX61amxcXLWGY5rUMGp/QSfNc1ypr5NISXxLcyXCi1rIUiA8VqW1aS54dWXXX
OlfdZLjJc/Zll0qmbJOeoO6jOoqpWfNvM7AW5bETwO8A2APgFgBXA7gJwF9sYL2e1/Bx2pWUhj8P
OF8xePgyksyePh7rLSstdoVutBBlLek6H3NVUiPlr9DkzGRoFS4tAZdc0q4cJfRbLXokUkCyesVy
un27CbYdOyj8ZCH29trCGR62+nZ1GWX57t1cqKdOURlccolluFOYQdkFdR/l4tBCPXCA509OtrBj
Rwq7dvHeik/L0hwdVaiphb6+FEZGzIu58koKqLk54IYbmH9C+UV83umeHvu8cycFQbHI8+PYkkj1
9Bh9dypl3srQkNoUI44Z91YWx717gauvptU/Nsa+VU4QjYPaL89H457J8PjOnZbMafdufk9S1GtM
xBLry1MZDJGxzwYGLDOjPA0pnt5ey2qo8oeH6e0cP25zbHDQvDwJXt1f3oK+i45etPDptHnGSkWr
cdUek09q1WqxjOFhC28NDbHuaqvO9czCfq1lMpyPvb1mDORy/N7dbSHJZAI1jYfkgHK9qM/VZ1J4
WlNSRDKq1B8KeUqpbwbWsnfxJTBs9WHQA8mCG+bXbGC9hLBhvkWx3n0VD03+atU2jP2+i6w0v7mp
xT47y0WplLeACQctdMWztSjl/WSzFNoTEyao5CHJE5LClEfQ3W1CQPWenua5Q0MmcBXWUe4LCUnV
yVuS/ryBAbuXNp1Vd58V0KdxVZju5Ekqyz172vcJqlUzAuTRKEyi9tbrlo53504KUAlG9b8EX9LQ
0LjMzFgSo95eE9qAtVH5VZTUyHvXcWyenYSwNrw1J4DzE0L53xQOXVzkPbZv57hqnqkPk8mTZPDI
e1Dyqu5utkMKV+3XHPRJsfSu8VtcZJnd3ayL+j75Rwe/Ke7LkQehuZo0Pr0npHKlyJQbRZ7XVVdt
/Ib5Wgr/DoBXov0fVp3+gbURCMoj4EWPlZTyaspaiq7T+UlFLQHl9+mSf4rwsX9/rlLSyvL2glGC
UHtJPgzrvXOFY3xiMAlFL3x9uNXXTeHJfN4Um65R2d7bSB6TdS9PPVl+p39Kdep3vzme/NeY7uv/
MCD4zIL+N7+34u/nk2wlIxYKF/b1bbzyWEvYagnAiPv+GjDneEBAwCZgJQWxmpfXKXGRt3L1nhSU
K5WdFFI63tOz8n196tlO99fn5Hm+Tit9Tt5T+1rJ8pP19vXzxxRy7IRkX6zU7/KiO13v75vs99Xu
0+leq4W4k3/b3kisRXn8KoDPATgA4C4AYwB+aCMrFRAQEBCwtbFWtyYD4CXnzv8egNqG1agdIWwV
EBAQsE5slUyC9wL4eQCnQL6rzVIcAQEBAQFbFGtRHj8K/k332wA+BeBt2GCNFhAQEBCwtbEeJZAC
8IMA/hhAC8BHAXwEwOwG1EsIYauAgICAdWKrhK0A4HoAfwDg9wB8BsB7ACwC+NoG1SsgICAgYAtj
rfQkCwD+HMCHAJx7vAnfBEkSAwICAgJeZFiLW3MQwPgG3X8IVEovAxCDJIzfdMdD2CogICBgndiM
sNVaPI8ZAP8FwPed+34bgP8LF+ZBwY8A+AL43EgGQO8FKDPgBYzVqeVjLZpV4fNvrAY96ewhao9K
hQ+m+SeQk/QZ+k2fxTcVRXwiGuBDdp6SXU9M6wExf8zXQYSQ4kDSeZ7LC2h/qtpfK6bZYpF0Hv7h
smSbPFOyP6fZNEJKcTmpriIH1JPiapeeAFcZIlWMItKCePoPP5SegVYUKfpdVCjKbeLbquuSDyiK
ckR9JHp2cUZ5ahRPVqinw0Xl4ufK4qLxmomaRHX07VAfeLoTjYl4r3TMP5Wv+mue+LHQOeWy8Xht
NNaimf4n+Bfdj587/8dAjqt3P8d7D4KUJwdWOSd4HhcIq1FcAO08PkJS4EgIaeGJwM4LO0/cJgGj
hc6cCWSoLZcpePr7baF5/iqRA4pvKo4pZJTP47LL2qmqp6YoQLq7ydMk3quuLgpqCdbxcXJT7d5N
gsFq1Ygkfe6QSoU8WOI50oItFklnPj3NOuzf3359ocB7icpdwkcUGNmsUYCL1HH7dta3t9eIJUX1
4bmyPO3HY48Bjz/Otl52GduisSoWjZ1XRIWCeL/EjSUyyf37TXiLJFD9LoGUzbLvJfzOnjVyxeFh
cmSJB0wsr5mMkUp6QkFxSk1NkV8LMIJGz+Hk55vgSQsXFpguYGmJ9b/kEmPETfKD+TnqhXKlYuy8
uRyvF9mgZ1sWqaHGR/Oi0WA75udNeYyNGeGmCA/FgaZ6eAXRaFD5eI42jYdn51UdPMGjFNnCAudW
rQZcd93W8DwOol1R3ArgwQtw78sATIGki9eDeyu/DKB0Acq+qFgL55AmcJLXxlt9Oi4qbs9BJKvK
0ziLpyiKLLeA2GarVSNsq1TM8vEMn6LxFmXE/LwR1p04wcm5ezfLEIW1CP8ACpBaze4lgZrJ8Nqj
R3n+4qJZ38UirxNpYKVi+Tymp6lAVN877ySTbH8/8LrXGcPvwgIF/dwc2V1nZ41BVou8VuMC/+Y3
qUCuuAJ41auMRE+ssRLYyk4n6nfxJt1/P/Dtb7NPn3wSuPlm3hOw66SAxKwrpSGv5cQJvppNS2ol
JSeKDFHde9I7kQY+/jj74rHHODYvfzmPqf+KRSPP6+9vF+BiwR0fp/IoFJTQinlFJLilOIpF3lus
zCIPLBQ4PidPmuCKY7aHibQs/0dPD+vp6dyzWSqwJ56wfB7FIo8PDprQ1Hz2xJQ+H8bEBJWPlH2l
ArzkJZbnRPPb5yJRHUTrvrBAo0RZAPfsoYGjdeo9QnFXyTCIIqPZL5WMJBGgAvH07LqvDAqtj1SK
faZkUnFsikmpBbzi9UaOX/tKrCWDY6OxFuVRBvAGAP9y7vvrcWEEfAbAywH8L+AzJP8V3JD/TX/S
rbfeuvz58OHDOHz48AW49YWHJ5vziiB5TvJzkiTOf9a7LBPvTvt3n8dDE00TTO64Fo8Wnc5TuSKG
U6jBT9BymYpE4Zp8nvcS8Z2sfGW98wtG/VAosJwoonU0NGRW2cKCCQUJEFmm5bJlejt+3DL1LS2Z
YCiVLAGShFhvry189dXcHAVWpUJhMTtLoab+zeXYP+Uyz202jZ02m2UbJiYsPHHqFM+Tp1Mum/Lw
1rHCET09rJ/yeahOfX0UNBL2yu2gfBzqR31fWGBeEuXSmJ3lMSVIqtUs6ZPyr0QR+0zKUZ6flM3S
khkE5bKxDFer7cqoUjFlLCXfbPIaZQ9MstkqX4nmlY6rP0UoODPDfujubueZ0vj4UJrmbqFguWd8
O0Tl79eDT6IkwkV5SKJ717yT5+bDSFoPeleZyruirISAGW8+D4nWjNaP1prGW8mgAJv7ybBpsg7y
yr7+9dvwpS/dtjzGm4G1uDU3APgfsEyCcwB+As/d+9gJ4G7QAwGolD4EPksivGDDVispmGdTjlda
3pNRqEHCVkJEisRbMvIiJEAA80LyeUvEtHMnj/kMdHNz5mbX67bwVL4sqPFxfj9wgMJbFrcSLWWz
FEg+VJPLGXX7+Dhwzz0M0Vx/PS1UWY+Tk6xff7/l9JCylMVXKADf+x7DTldeyfStst4UUvAWd7HI
vpB3ksnQY/jGNyiUb7iBVr/SvS4ttTOr6v7y7CRgpqepCOOY3tPoqO1dSDCIOVVJnvJ5E6gnTzKT
4JEjFLbXXst6tFo8Xx6jD32oThJSx4+zHKWQ3bkTOHiQ5UuISRgqq6EyAipz3YkT7PdGg2OyYwf7
Xkpnaclo4Xt6zp+n09NUguPjrNfBg/RcBgZMGQIm7P0+gebXxAQ92sVFKp09e1iGQqo+GZruKw9Q
fS3PVSG8gQEaBP4aeRt+D0ttq1RYBykdzenRUVsPPiGVxlEejVLISpmr7JERW8tanz7CoFCawmNT
UzQkZmaAm2/e+LDVego/lyUZFzLJ4TcA/AyAx8FwWDeAf++Ov2CVxwsJyTDdamE7D7+BnFSCUkAS
ABIk8lqUKU5hHW3eDgzYd13jBU+lwkW2fbuF9HI5s7jjmEJI+dEVwvOhkqkpCqvduy0lrw8XSmnI
m5MFq0Ufx7b/o6RPar+PaavtPimXFN3UFAXW4CAFv7fsfZgLaDcovBdz4gTbpb0CH4PXXpDOVfY+
3SeK2AZ5HFLaap+u8YLev3yoRV5Yb6/tVwDtCbp8+Aiwz0ojOz/PvhwbM5Ze7x3ISJDS8Pso8szl
VXV1mYCX4tA8knHh29VqWQriOOb1Q0PtuVFkDEjg+5CYxlxeUBRZNkWfxVDzw8N7uEpBXKkABw9e
XOXxq+6zl+DRue9/cAHufz34V90c+Hfgn0L7v7iC8ggIWAFr2Vtb7Tp5mhKCK8GHOf0/gPy+WzKP
hk9pLI+u0z3k4ci69iEXKUqvxID2TJiqnxRukuo8GR5O/oMLaFcmCk95ha12qpxO/8ADOiu5TtfJ
QEr+a0pGDmD96ZWV7uX3RTuFxhmCvbjK41a0Kw1/TQzgtzeiQgkE5REQ8DyDT1YErJ5/ImBjsBnP
eWxo4RcAQXkEBDwPsVq2u4CNx1bhtjoIJoOaBv9a+/dY/dmMgICAFzmkMILieOFiLcrjkwD+FsAu
ALsBfBrAX29kpQICAp7/CIrjhY21uDXfBZ8o93gQ3OzeaISwVUBAQMA6sVX2PP4zgHmYt/EjAIYB
/O657yGfR0BAQMAWwlZRHkfR+V9XOPf7Ru5/BOUREBAQsE5sFeVxMRGUR0BAQMA6sVUo2TMAfgDA
pec+X8iHBAMCAjYAa6WnDwh4tliL8vgcSI74EJi7PCBgS2K1p6rXc55nLQbss55eFtmfSBX9E8Oi
TBETrJ6cTlKw6DkIn39DVBW+DJ+Xw/NCVavkY+rqaqf0UNn1erRMXeGpLXx9PQNyV9fKpJ4iP9QT
5oKIEEUn7/mrPKdUPm91S46BWJTTaV6vMpJj4YkRxRWm32o19kUUkU9K/ehpUHSdZ+j1T5E3GuyL
ri5rp39K3FODJOdPHBtDdKvFeTEw0M4A4HN7+Bwj/uXJRPW0vK737/7Jc58TpFxmX4ruZaOxFuWx
B+f/2ypgiyNJlOjhk+B4AedZeb3g8rkllFdCfEGAMc/6nBia+KK/AEhiBwC7dpEbSmSNui6b5XWi
eFd+Cy3eI0fI59TfD9x0Uzv9hWjAu7tZpjimRM2tdj35JEkB9+4Frr7a6ur7IpUyhtauLpYhevvp
adKyT0yQnPHlL7f+LpVINhjH5HmSchHDq/pZrLgAyQR7eox6Q5xG+Tx/87xP4gFbWGAdTp/mfa64
gq9Wy2jBRSxYr7fzUYkcsVwGHniA49DfD7ziFXz3jLieZVZCr6/PyCqPHeOrXien1P795HQS+/Lc
HOve328syj4ZVLlMUsTjx3mvSy9lGSLSVL+qbzwvlEgrz5wh0eXkJMkMd+1iGaJckaJVWRLUok4X
zfzUFH/r7mYZ3d3n06N4A0JIp9mHU1N8RRGV+a5dbDNg1PCei01rTdxnonPRvM1kjBhU95Tiq9Xa
UyfoL9Gi+t9KlOxfBvA2AP+0wXV5XiPJ95O0TJJU68nzNME16TXRxJQqa0uTXxOqXDaBowmVSlkC
pK4uCkElXhoY4GexcYoOWtaXci2IRDCToXB7/HF+37uXZYg9Vnk30mkKQll1PT3tSYQKBeChh1j+
/v2Wv0IkcrKiALNEJTBFG/7Vr1L4DwyQCO+mm0zQzc1RoA8PU5BJaXllNz4O3HUXhe6OHSxz714T
rum00ZEfO2aMtqOjllTpzjuBf/5nXnvyJNu5dy/v99RTlpNhZsbYXaUAJUSOHWMujkaDCmz3bpsf
3d28plQyq77Z5Bgqr8j4OJl9n36a57/1rWynMgpKkSo/RU+PeT8S3vfdRwW0tMQ+6+1lPo+uLvaB
5oToyqVMmk3ec3aWDMWPP279mErZuIoyPo7bsw2WSqbATp1iPSYmjFwwnabgFZOyEikpp43qr2PH
j3NOFIucE8Wi0dtLQKseEspKGSDj5qmnOH9kAEUR54cILgFTJMWicWuJnHN+nu2dneU5S0tG7y/v
SkpQfSRjTHUQfb6MLhks8kjkeUrxa77UauxX5Z5RXpLNwFqUx10APgs+UHjOBkAMY9kNWAXJ/X5P
EKfJ7YnOvHWj451cVMCEUb1ujK+e/E2TrlKxBehdfU8CpwUlYaxwiujclZxI1r0W59KSfZ6bs7CD
Fr2sxtlZE0Jnz3JxSjBKkfnEVXLbFTI5dcqypC0tccGq7ZUKBVSzyfopC5zYZUVZXSrx2krFFtvu
3dZ/aocEpn5XDoZqlUJCwnl6mm3es8cEgEJBygvioTE4e5bvzSY/Dw+zT33aVtXXW/8i/1taYt01
/nNzFnJR+EXXKFeLJzZUAiTNC/WF5oH6QWUpbwtgSbs0vkr6JHbcSoXXlErmsSrHicqU5b24aAoy
iqhwfT4QrQmNs/caPLGj6pjJcB7MzVEBqd3JMI/mpc9/onpJ+G/f3jnhkl+X8hQk0OU9qE7y/rUu
ff/68J73etVmKVmfdErywUcI9Fn5VTwh5UZjLcrjDwC8BsDDCHseK8LHab2AT+5ZerfXfxbzqH7z
70kaZ5WZy5l7D1hsGTC3W2GX2VnLD6CJK4WjhdTby0XQ08Pz5EJ3dVkIZd8+E4zK+qaUqsPDtkDy
efNicjlagwDLecUraG2Wy7xemQlTKXoVokZXqKNUYta/xUV6L6Oj/D4wYItvcJDKZWCA7VxYYLsl
lFst5u9oNmn1X3MNrX4fqwdMMEURhdDAgOXZGBwEbryR5Z06BRw+zHKUz0NJiKKI18mjUhxdVuLV
V1vIYd8+85QGB9vDLb29FrbSOGazDFHddBPDTv39wHXXUYFFkSmuxUUbb8C8Vnlj150LRJ84QU/w
iissTi+rV2E/JY/K5Sw/yLZtVLzas7j8cuCyy3g8m2W7pqd57vAwf5c3KetfaYAfe4zHlE43mzVa
dHlAvk7KSwOwjWNjVBrZLMvYs8e8BgnTnh4Tql1dfClt8b59NvcHB2nY+HHwwtuHMEXL3miQFl/K
Z9s2trmnx4S9FIbWreaFPCKfM0RjIC/Up+MVrbw8IeUHkcddr1P5bQbW8neMbwB4E4BNcobaEP6q
+zyEBDrQruyS8Hsqsqp1DdBunenY0aNcqNpH0PXyUPzmNGCLTApybo7CbniYgkLZ5XyyHy3QZK5o
tWNigsr4ssssV7nuo/0BXz+FW7RJHsesQxRREMrSlsfk+89vrPv+nJpiiKK7m3sF/ri8AsC8BJ/2
VH2vPBgSngrHyADwfasMkj7+Pj9PBVEu01IfHTUBp1Cj8qjrngr1qH7z8/S+UikKv+HhdkvfW9e6
r6clr9VYh8lJln3ggIVx/eayrH/VX56B9/KUklf19cZa8k8Hnl5dIafFRZ6nPZ58vj0KIM9C5Wmc
1U6fSVBhMSUVS7ZHykjzM5XinJydZZ/eeGMEbIHnPD4O4DIAXwQgB3az/qoblEdAwApYTTGv9fpG
I0YmE3Usx5fv9+eSxoFCZhJsSeGf/PeUIGGofSYpQH8vXwefz8Mfk7XuQ0zJ0LD/pxnQ/s85r6D8
fYH2f21ZX8RIpaxROlehxb6+zn0pSPBbWDZGOh0tGy1SCsl8I53K82Fq1aFcBoaHt4byuPXce1KK
//aFrUpHBOUREBAQsE5s5SfMs7DN841EUB4BAQEB68TFzudxh/v8l4lj39qAugQEBAQEPE+wmvLo
dZ+vSRzbUI0WEBAQELC1sZZkUAEBAQEBAW1Y7TmPQQDvBr0MfYb7HhAQEBDwIsVq4aePwf5hFeH8
f1v91EZUKIGwYR4QEBCwTmzlf1ttFoLyCAgICFgnLva/rTYLaQD3g9TvAQEBAauikz2pJ/HXen4n
6KG8Z1sHwB5kTJbXieOuE5LtEOfVeuqznnY8F6yF22qj8csAjgDov9gVCdiaeDaJjVZ7+lrU8p3O
98SVnhYlSZVRrRoHmPik9LQzYLQR/qllcRKJaRU4P9eFnoLWNSrP59IQJcbZs6TSEIeVnvxOUrr4
nCC+fnNzpBAZGGBbxOulc4H2PhSVhv9dFPCiD1f9PMWJL8PT9ntSvyhiX/inzJNM1OKJ8hQ0YhEW
BUtXl42L+kRjIDZf1ckLauUmGRgwNtwkPMmhpzoBjCBUT9j39xsRpO6XnF/+CXLAyDg9BYv6XU/P
i8bEKwjNvVaLFCtJQs6NwsVWHnsBvB3A7wD4lYtcly0HCbSkIExSPHSCFloneoWkJePLSNJQAEaj
MDtL7p9kGZqsEsjiQZIgVF6JhQUjGGw0LJeEaLZFPy1iRGPoZWKjqSnSb4+OAi95iS0gETXOz5NT
SMyx6bTl82g2Wb/jx0mJftll5GNK8j6J2bZQ4GtwkMJZ/Tk3RyK/6WnW4bLL2us+O2sEguoDwKjZ
VfaxY7zm0kuNfNBTdIjvSwLdU/UvLACPPEJK9h07SEqo/hBdiO6lOuhalTMxwb44e5b9sG8f66z+
FP+U2ITFvSVBlU7z2okJCt19+zguIv2TMFVbxHklMk+RVU5Pk6MrnWYZw8NGEuqVb71uY5rLWZmz
s6TGn5+nIt25k4SNmhPiHavV2teAiDg9Y3GtRmWqpFS+L6SUBa+YxdYspmfNb+Vz0TiKSNHn9RCD
tSj0Z2dZrkgwRd/u66J15Vl7s1nOzcnJ1b2wC4m1KI8fBvAlAAUAvwHg5QD+I4D7LsD9/wuAX8Pz
iN59rXxCnnvG/+b5frw1K0jQy0qNIuP9p5CJEcfRsvWlBQ6Yy6yESrUaJ/DSEjAz08LISAqDgybE
+/v5GTAB1mxyIsoS1QQ/coTCvlqlwFIinULB8hCMjhrNuviKKhXLk/Hkk1x0+/dbboRajdaeciBU
q1QSYieVIohj4DvfIZttdzfPv/JKa+v0tFGtDw6acBDFdxxTYH/nOyz/5EkmcurraydGFHuwKM/n
5ljG4CDLuPdeMvvOz5NNGADGxmI0mxHOnrX+m5tjf4i5WAKjWmUejKkp/jYzw/7o6bHkU7JoZZF7
BZROsx/vvdfySKTTVADKpVGv21yQRyCGYyUleuIJKsFCwajur7qK54h+3ws19aWUYqlE5XP8uCl8
gG0WC68s8VKJYymCRTE1T0+zHoWCzfmXvtSMF42hPD1R5CvBlejtT5xgu0Qr39tricSkBEW7Lv4o
0exrDGTxi1pdZJZLS+axaO17L0LKZ3aW52qsPSmmp4ZXGwDzUqRcNO8rFaOFj2NbQ5o/+iwFq/sp
n4mSqW001qI8fgPA3wJ4PYB/BeD3AfwxgBuf471/EMAkuN9xeKWTbr311uXPhw8fxuHDK566ZZBk
z2mj6ywAACAASURBVATOVzjeavACwn8G2tk3eU20vJhVthaFhya7FnYUpZYFtK7xoQVZgt6iEaus
chwol8b27e33FjGdT5STXEQ+18DMjFFby9oXs6xnhFVCIJHnLS6aV+NjwbqPWFbLZesfWeBqo4SQ
rEV5N571VHXQ9RLEEqqFAs9R4qcoipYFlIfGxeem0HhIsM3N0VLu7m7Pu6HyFCrSfFIWvUrFlN3C
glGmK5QjZeWZWvWbrpXFrbHVvPS5KCSsBCXZ8uMlASeLV797+Hb5taD+9e3yxIJ+Tgr6rLmntql+
6m/PIKz5rLFU/dXnqpf/7r2NlQgWFUJSPfRZ80fvneqfJJH0uU40hp28iGQUodkEbr/9Nnz5y7ct
z+/NwFoCyQ8AuAHAfwLzmH8CFPiHnuO9/28APwagAaAL9D4+A+DH3TkvuH9bPRvPxcdZk3HXlcpS
wht5JUtLFodVgiRNVGUjjCIKRNGEC+k0Bf7CAsM0QHueAtGLy11XtjktYlmLp07xnnv2GGV3by/P
laXbbFrmuYEBi4nn87SyH3qI9zl0yLL7pdOsw+Iir8nlzFpTrhAJ8uPHgUcfpYW7YwfrJ6pxKZdM
hlag9gNGRixmfuYM8M1vsj+vuYbWuuLR2kPIZGwfwYfupAyOH2e4J51mXwwNsR3ZbHuYySdB8iGw
M2dosT/6KO/zqlcBL3uZjYeSI6le8lJ9rP70aWYknJ4mFfoll7A/xOgqpaCxq9c5Tj6HxZkz9ODK
ZSrAvXs5Jj63uYwPTx2uOlQqvP7UKfbVnj0M43klKEihi6Lch62OHmXf9/ezLXv3sjx50upL7z1o
vsUx547GRjlM5PUm15g+qx5xbHTsMpAGB/kaOBdP8eMor8HTu8vDEy18HFteFOWH0RyQMaD16cOB
J05wXpbLwE03bY2/6n4ewCkAbwEVRgXktrr+AtbjjQD+DwD/OvH7C055BBBJTysZ3vObxnL1tVD7
+9vP9Xs0+pzccNUClLIbHDx/A1WekLyWYtFyrHvq7rk5CiYJWykmWeqpVHsiIG9Nqm5+41p7Sgpx
ySJV2wFTXuq36WkqoFwOOHjQ+kdt9t6ot3wlEBXfl/Lo7ra6JqnN/Xj4MGu9TmFXqVDYemUZx5ZN
UF6mL0PtX1qyEK1Ppev3BDRugt/MrlZZhrJYDgzY/FBfauxUXtKbULhKOcyVvMvfy3u5vo90TBvV
cWztsGiBKQ61LZlfROEqKRl/jRI++dCV30/y6W6XlrhGLr98ayiPHgDfD+C7AJ4AsAvAtWBu8wuF
NwL4VQDvSPwelEdAwAZirZ7ws0Hy30SdjASPTvVIJoHy1yXDX/KaPFa7h6+fNyK8gkyGlJPlJusA
mBEg+BBz8nMS3qjwCmK1+yfrwv2ti688MmD62ZdsZCVWQVAeAQEBAevEVnhIsAHgewAu3chKBAQE
BAQ8v7CWf1ttA/AIgHsAFM/9FuP8EFNAQEBAwIsEa/2rbkBAQEBAwDI2NCZ2ARD2PAICAgLWia2w
5wEANwH4NoAlMG95C3zaPCAgICDgRYq1KI8/BPA+8G+6XQB+GsAfbWSlAgICAgK2NtZKyf4ESJ3e
BPDfAdyyYTUKCAgICNjyWMuGeRFAHsCDAH4XwBls/b2SgICANeDZ0N1faHgmZ6Dzw4TPVEXxsOl8
wK7x5a9UlnjgPK38SnUQ71Wn81aqR7KNK8FTDyW/r3TfZB2q1We+z4XAWmbNfgBnAeQA/O8gB9Uf
AXhy46q1jLBhHtAGvziTWE3IeKoNCYnkU7qehkNkiZ72Q+eLpHF01IgLdbxWa+c90oIXJYjqXizy
N0/brTpJ0OjJZ1GX+PrNz7MO+bxxb6keInkUVxNg/FL+SepCwZhyRUboaVoA46aq1YwyXvcRSWS5
bHTsKsOTM/r+8Iy0YlvW0+Fi2/VUKuKz8uSSonQRzUuxyP7o6+NrpRwpemk8BDEHl0pGLeLzp/g+
UZs8T5foTSS08/nzucQ0D0Rr4iloPAmipz/RXPG/aR55JaIxEV1MtQrs33/xnzAXegDsAx8Y3EwE
5ZHAahbRWoQncD7Roui6RZ+tXAZeoNXrzB9x+eXGTeS5nrq6jB9JQleLSuWdPMl77N3bTp8uISGO
HrHnijAwjlmPp58GHnyQPEqvfrWR5WWz7fk3+vst4ZMWrsqYnCQV+dVXG4lfOs3PYpoVqaPK6+oy
2ogTJ0hIeOIE8IpXANdea/xCi4skkMxmjdtIikoCIIpISnj0qNHTb99ufS3B5lmCMxnjNgJI2vi9
75EccWwMuP56EhMC1ielEoWYhLHI88TFNTdHgsajR0l2uX8/2+p5pHwejHrdSPqkUE6d4pguLPD6
Xbs4NrWaEVWm0xzHXM4UoM+jMT9Pjq7ubipBEVsmPZFSyRRJNms5QebnOS/m5vjblVcyp4fmnxSp
F9ZeeYlOfX7e5v7YGN9FRunpS/TZK8NazcoQC7Hyo0gpSKGJIFL10Pys1zlnq1X+Ln4tT7nilahI
J/3vCwucs0tLwGtfu/HKYy1hq3cA+D0wdLUfJEf8bbwIHxJczfVcibfHu6zecpRVKotCFNZJ6zOK
OClTKWO79VTOuofqB3DhlEqciMPDFGgShL29lsWut5e/ixCuXOZraYmL2Cd5uv12szSvucaESqFA
cj2AwkPt7elhHSTEi0WyuMYxPysfw/Q066hF1WhYfoVikdcqx8SddzKvSHc3F8r11xsF+/S0Ka1d
u4wAT/knlO/g3nspfE+fJhNtfz/7dnbWLMa5OVvMxSLPUX6I++8HvvhF/n72rDHjSoDI+sxkKDQl
HCSI5ueBBx7gtY2G5RXp6TESQSmdUgnLbLuZDMvI51n/22+nIszl2P7XvIZjJqUsD62nh2UqIZeE
3/g4FXGhwP6W1yAvQVTyyguj3Cyqw/w88NRTVGJi8u3tZV8tLrJ9onYvFCiQpUBkEMzMWCIneTfy
PrzHUqlYHhDNu74+mytHj7KeSqDU18e+8JT2arv3xACWOzVluVmKRR4bGWF7PBml5lQ22+5hFgps
b7FoxsL8vJEaJtmlpch9ygIRPErZVas8J583dmzRvydp3tW+xUXOCc+rtZFYy4b5rWDujrlz3+8H
cGCjKnQhsRFOS6cyV7tPkst/peNJFztZvv8t+dlPIl+uz6nhcxf4ewk+B4IUm76LUlrXeygvRatl
zKT6vVKxetRqRu1dKtk95Krr/qJP1311vaxlLSyff8IvqmrV7qt7+POUw0IMpv48/9lb3OpP5akQ
q6lCBMkFHccsX16A71efHySOLWyT7HNfnvrAfy+XrV81xv646qzx0ZjI0/Tj1WqxLck55V+d5q3v
W7UjmRdG9/V18vPQh8g0L3wbVlpvaldyjvi8IslrfJnJNaDfNIf8dz9+K9XJt9krBR1bCb5fBH+9
H3ffFv9ZY5q870ZjLZ5HHcB84rdN0m3PDRd6H3Alr6PTfbxr6n9Luqz67vM4JMsbHm4vw8f8vVej
sARA60tW7PbtLF/Z8JTjIZWidexzfRQKvDaKWJ48gje+kRnsbrjBYreyEpVXY3jYFnE+z7ILBZ6z
Y4eFLS69lMKmUGi3znM5CxO1WuYVtFqMqd98M/CtbzEkcN11PL+vj2Vs20Zrb3SU1ylniU9O1dPD
sh99lN7TwIDFovv7TXgND1uipm3brL/zed53aYkhnze/GbjiCvZzPs/ypqfZFwMDtsegOvhxPn6c
dTp4kCGfWo3lCMqGJy9ToZxUyvri/vuBAweY22TPHhuzfL49bKc9Anm1onFvtViPffsYuurtbZ9n
8m51nbyGXI51OHiQgrZYpBc3MmKhy9FRWsLa11G6YZXtKc/laezcaedpbchTB9o99f5+3ntkhGHQ
qSn2+RVX8F0U7xKmmsue4l3tGh01ha/9n/7+9jz3SQXg125/v3nPosIfGLDwp/aK/FhoHfuwrMJy
yofj6djV/woX+70/9cnAgK3hzcBq4vWLAH4RwP8J4GsAPgTg3QD+VwBZAL+w4bULex4vaKx1v8Zj
acmEXDIMWKnY/oqyEAJmPWphlkqm8Pw/WGS9S7EqMZTChxIg09Osx9697RvIgG2Ea6/BK3cteOXS
iCJL+qM9D6A9Vaksa592OJtleEJhPW3ceytUQiu5US0oLFgoUOhof0n9mqQoV4xd31MpS/9bq1Hp
eyPHezw+F4Veys2uUClgSthvSGt85PlGEc/RWCrWrz8PDA3ZHPCegPrBh3z1m9Ihl8uWv8XvFUlY
ywvQfABMsSlcGMfn7zXpXknDTyExeXHyoL1BqXnp+10hOP/HiiiyhFLVKnDgwMXdMH8PgN8B8Ffg
w4FvOXf+P4E5zCsbWbFzCMojIGADsValvdYykp+BzuX78yQMV9rH6+SNJ+HzefgyfO4Mb2x0ur7V
as/Y2Kkd3hBJHvO5OID2P0n4f2mt9qeWZH2TfQHYPs5K5/FPKhf/31Z9AH4TfCjwL2HhqhjAH2xg
vYSgPAICAgLWic3gtnqmPY86+JBgDlQkz4u9joCAgICAjcVqyuMW0Lv4HICXAyhtSo0CAgICArY8
VnNr/gXcFH9kk+rSCSFsFRAQELBObEbYarXCI3Bv42IiKI+AgICAdeJi5/MIUjsgICAgoCPWSske
EBAQEBCwjKA8AgICAgLWjYupPPYB+Dq4If8w+OR6QEDAiwyebv25lLESVuKFSn73ZaxWn5W45zxP
12pYiS8MaH/iPnkv/znJH+axWfxWa+G22ijUwfwgD4DPkNwL4CsAHr2IdQrY4ljtiehWK0YqFS0v
Ks8j5p9Unp1tYng43cZ4rLL9e6ViXE3+nKUlUlHs2GHUGTpeKrXTW4ivyFNyxDEpNUTdDhidiq8r
0P4EsW9/uUxK9F272uk4xJ5bLrdzaiWfvE6lyAQ7NxdjcDDCrl3nP31dqxn1ebPJpFGerkW8VrUa
aT16enheOh2h2YzRaLARokkR1QjbEAOIUKnEmJuL0N3NvmAZ1k9ql2hXxLnlc67Mz/MlVl9xhCUZ
dPXZc1zFsZFbLi3F6O+PkM+3c2sB7fQsyTmTTrMfFhd5TH0BGPWN6u771+dgEVFnuczfy2VSvvic
Mhp70bKoL0Rr02ySHXhh4fy1sRG4mMrjzLkXACyBSmM3gvIAsDrv03o4oWQRVavtAk3cScpHoAkq
Qj2AE1j5E2o1Cpvdu43yvbubZYtSu7/fmE1FeKj8BKkU82ikUsy5sLhIXqXRUWN4FSeUCPVEjCje
p4kJ4LbbSOL3ylcaSVxPDwXp5GSEPXtY50rF6MwluHM55sC47740rruOuTgktJV8x7Puzs+Tr0lc
SnHMPrj9duDYMeBNb2JOD1FjzM9TiKTTXPiiSFdeh2KR5UxMkFq+q4vEhjt2GDGiaLs9HXk6zWMi
zysWgbvvBr70JeYlee1rSTbpadTV7/m8CbueHhOcTz9NosvJyQiXXAJcdRUJEpVcCbD+BYBaLVpO
C9DdzXqcOgXcdx95tq69lrlestnonHKLMDfH+w8PGwmhBHO9HqFaBcbHI0xO8rcrryR1u+aVpzRX
rgvPHZVOsy+fegp4/HHOuauuYn8qn4pnrfUKQ1B7p6eBUinCtm0kw1R+Gl1frZ5PoSJ+rVrNxr5Q
4HiPjrIcz2gtAsTeXlOGmneFgnFTiTxxbs6ShYm41HNsiaRSn2dm2Bezs89K5KwbF1N5eOwH84R8
6yLX4zysxNWzGreMv8bz3WjQ9VnXe3fXZ27z+QKyWS5+CYVcjguqXObEkvUiq3d+nkKop4cLbHqa
DKTbt9NyjiIKuIUFTvChIaOzLpUsy5vKu/tuTsqXvYwssIuLlmdkYoJlbN/Oa0QSp5wgPT3MH/Hd
7/K8qSkuoGqV5/X2cuGIjFDW3MKCLbRWC/jMZyi4xYB73XX8/eRJCvOFBS6gsTFbUNWqJfY5dozK
Z3aWyZxqNZIbRhEFhcZ1cZH9VSzyXOVByWSAz3+e+TxKJQrgTIYKoFBgmeWyJUAaG7NcJqKan5uj
4pie5nmnT1MR9vQYWaLnQ9IcGRhguwEKyo9/nML70Ud5z3e/m2UsLJigK5V4z+Fhmx9dXTz/e99j
XpE4ZhszGWOjVX2ThIR+vlcqwD33AA89ZLkoslkqsWKRCgXg7z6fh+ZvFAFnzjAXx8KCJZ46dMjG
WzxTmpNaS8r7Ua9zLj38MMd9ctKUsPKc6F6iwffrMpNhuVNTvFYki40G14rmkE8RkE5bjo04tj6f
nqZh0WzyvrmceQSqh6fNl/fUbHK+6SXDQUnJvJckowgwb65SMaPizBm2Q23daGwF5dEH4O8A/DLo
gbTh1ltvXf58+PBhHD58eLPqdcHwTPHc9cZ7db5I2jwzrLe0ZPUIPp+BV3SrxWABLshKhef4/BbJ
BZHMweDL9LkeVG8JBn1XmzwRnC9L9/JtT0L5GJKpanWulJNX2MmQgI8Z+5wVut5bk8nyVU8fx18p
zq7+TIZnPAW5Z8vtVIa3alfqf7UteZ9OSIbIkiFA/Z4MBfk+89ckz+3UB6vtSaz0u89R4schOec7
lZOc+yvdt1Pd17JW/Tp5pr2TlY7X61QeUg7JevjQJgDcccdt+Md/vA3z85u357GhD5GsAVkA/wjS
v//XDsdftA8JrhSaSno5yfhrMoQlIancGbKgFM6RdS4rSdZpHJsLnctRgZw5YzTkxSKtrlaLVl8c
00JXsqTBQcsACLCODz/M95e9zGi0FbZSmCmXY11TKUtRq/pOTABf/SrDIy9/uQnanh56H5OTzGuh
+iXp1FMpWtuPP85cFIcOWcw4kzHLrl63zIDyOuQhTk8D//zPDA/ccguzGQpzc2xTNms058qw12pZ
OOjMGVr+mQzbsnOnZXNUTgjF133YShkRi0XgrruAf/xH5iW56SZ6P7o2GbaSElJYrNVi+G58nO25
9FILW4mqXYrbp4xNpy2eX6/Ta7r/frbnpS9lCE3hT+0LZbMcY/2uvla46NgxWuypFMORe/een9VQ
NPpK0NXVZWGr06cZfhsfZz9fc835YSsJ6SQ1u+bW0hLncLFIj2PbNguNeSUlb0HrTOUrbDUzw/Ea
GGA5IyOWYlYKvquL/efrk8nY/ZVTRrloenoshKvkXlIkWi+q1/Q0veGZGeBd77r4rLobfe+PA5gB
N8474UWrPC404jjWU6fPoYznTt/9bMpb6x5PtRojl+NBnyxHHoUUydRUjNHR6LyNdL+gAQu5aQpK
cBQKFIzaZJZyA6QguPHqw5TaW1J4RqHD4WGWUavZhrmvg+qlNksRFIu2Ya70xIDtT5VKZiAA5plK
IdTrtrk6NEQFpvvo3jIqlElSgk45JCoVU1RKXqUytM+mZEbnb5hbH8/N8fjIyMob5jJ64tgUvcJR
s7Mso7/fkjBpvNRnnYwt1VNZLotFGgs+CZr3eCWkfY4W1Wdpia9Gg21QKFkKxufk6PRHDmWeVLrd
bJZ10dzyCs97VzLu1E6N6VVXvbCVx+sBfAPAd4Hlp9n/A4AvuXOC8ggIeB5hrYrew+fieLbwOUGe
qU5Au3JK7oM8U907hfH8+0oZR5PndyrfJ8ZKnufv6z3DZDn8h98LW3msBUF5BAQEBKwTF5vbKiAg
ICAgoCOC8ggICAgIWDeC8ggICAgIWDeC8ggICAgIWDeC8ggICAgIWDeC8ggICAgIWDeC8ggICAgI
WDeC8ggIeBFjLXxXz6a8ZNmrQZQw67lHkndKT7p7eG60TvVLQterbM+3thJXmedIEyVLJ4jbLXlN
st8rFSM/7MRNl6xbJ+j6jcZWIEYM2ARsdXoSTxux2v2KRcuBkXwCV3TYnspBFBCiCYlj4OTJFnbv
Ti1TTeip5FrNaNzrdXJp7d59PqXG2bPkZHrlK40yXE8mz8/zfWDAqCR0H9F9xDG5sQByW4n+QzQe
ngpdjLaiy1B7p6ZYxq5d5PNSHXW9qFBUb09Nr3KnpsiHtGsX+afUp+ornSt+p2yW3EwSXpOTLGNp
iay5Bw8aBYkoUsRYrHrl88ZRFUWk0jhxgscvvZRUKc2mcTZ58s9ajfVQmoBWi/eYnOSY7NhBXqrB
QZsvovvP5Yz6JclRVa2yH2Zm2A+jo+3neyWlawWNyYkTpEkRbc327aSNESOv5oFIO5OEk6Kd94zX
nrrd87N54kPRxYji5vRpYHZ2cx6sDspjC2ElksMka26SGiGZ9MZPMAmuQiHC4KAJsXzeyigWOdFT
KS5mceqIlC+f5zlf+QrJALu7eZ7KePJJTuJLLrEFpxwZJ09akp6vfIXHbrmFQufppylwJIBFL3Hq
FMvdvt2EcDpNUsSPfAR44xuBd72Lgl2cQUeP8l5XXEGOpELBCPRE995oAF/4AvDVr6Zw883A617H
45kM29RocPHXanw/cYKC4JJLKFDSaeA73wH+6q9IsPjBDwJveUs7df6pU6zTvn0UhKIIV56QdBq4
4w7gc5/j2P3gDwKvfrXRa4hJVYJT1Py9vdank5PAX/wF8Ld/S1r6n/1Z4FWvaicCVLIp5cQQ2aUU
7hNPAN/+Ngkar72WeUn27WvnvtK78r9ksxSqPT0UlN/9Lgka5+ZYj8VFEjSKkn9qivdSjg7VT4JZ
lPKPPcbfrruOpJkjI0a7rvlbLlNRNJvsi64u1u3UKZIzfve7nC833sg5MDpqWflEk9/VZYpYa6pa
ZR889RTPGxhgX2zfbuvLrzvxe4kPDWBfPPQQ61CrAS95CQkzr7zSWI+rVTNOxJ3ledUKBY5rocDv
27axDuLxAtqVmXizALarUuH8f+opYGJic4hDgvJ4BsgiBM4X6HHczqXjrWhZCkkyN8+/X6/bhF46
R0YvIj7PnPn44xS+e/ZQKGgBiHhORHCFgjGfPvww733wID8/9RSF4NVXW7Kl4WHeV4umWmX9JidZ
j6Ulsxo/9CFa2xMTwDveQStN9T5xwpIn7dhhuQiUU2R2lgrmk59k244epWBdWGB5l19uRH5nzhhz
6MQE2VoBXvNzP8fjX/0q2/CBD/C+p09TCJ04weM7dlAB+jwdUcTERR/+MK+96y7g13+di1xjKGHy
9NMUSnNzFELNJscplQL+9E+ZVwQAfv7nKcRf8xq2ZXycdQaM4VfJj0QweOwY8NGPUnir71Ip1llK
UmR9EnC5HMd0aIhl33UX8N/+m5EjLiwAv//7RrJYKLDsVovj2NNjZcvyv+8+4LOftb4rlagIlTNG
c1y5XdQOkTAePcrcKPffz3OKRSoJjf/TT1sei9OnqVT6+41qXHlY7r6bczOTYTt27zZ2YSkt5Qup
1WxNKQw0Pk6jpFBg37ZaFLx9fazX0pLR3rda5lVq7U5OcixOnuRvSsDU1WVjJvi8Gp4gUsm9jh+3
HCh9feY9iKVZssATbsqomZmh97S0xHYvLfEeSkQmrisZB0nCy8VFzv3HH29PY7uRCHsez4BOLupa
4M9d7TofikjeT78rJaa+67Ms/yRTp782l7PjshyT9/Yso53unc22s4TqmCY3YHXUu2dnBdqtNdUn
ikx5qn46poXpz5USB6wdvg16JY/p+igyAZysp+9jWey6j2+zsiyq/z2Zn79PV5f1jR8zz4Kqevj6
+LHwFmeyfD9WGuMkkuOQnBsrHfPnrHTMj7f6y9dL5aZSxhbskWxbsh+T9fS/+9CRHwMd9+PfaU6v
tFYE35fJ9d/p+k7jJIOuE1bqV/9dc93Pt5X6ZaXyNxqbdJtnjRctMeJKYaskK+gzha0U/tDvgIUk
VIYsoU5hK4UrikXg618H3vpWLtiFBbOGjh5lWQpbKbYtq3NwkN+/9jXW5S1vYYz56FF6HfKiREUt
K/DSS83CS6eBb3wD+OM/ZrjpPe/BchgulaL1qtwUIyP0epQDQ/koUimGjD77WYa9Xv1qtl25G+p1
WnDNJq8/eZJt2rXLcjx8+9vAJz7BsNUHPgC8851Gmz0zQyu01WJeioEBHlNYQeG8++8HPv1pfn/7
2xkmUSpgWbvqR8XIFaqJIlrLf/mXwKc+xWt/4RcY7vHzRVkJ1X+6Vtbrk0/SSr33Xl576BD7zif5
0lyRoOrpsfDP/Dw92jvvpGd5ww2sy4EDFvY7e5btGRqy/Bs+bCWr/+GHeezQIeYV2bbNDAGfhla5
LhSOVE6RBx5gGWNj3Ie64gp+LpUss6UMHfWJzzT5ve+Zp9TfzzLGxix64PeupDD9ftLMDO//+ONc
F1dfTY/28sst7Kc86UqHnMwpr7CVcqD099OLS6dNOakeWuc+bFWt0guV1/yBD0TABsv3oDwCtiye
acM8eY72cnyqT53jN9DPnm1hbCy1LCQpTGLEcdQW2jhzJsauXVFb3mpez3DTy1+usEMsCmzMz7MO
sjyl+LV/IU/mySd53t69Fo6RRS3l4T/LsvfhlqefpsAfG7O9AYV5/KaqBKba68uYnm5h584Uhofb
/wHk780/HDBXivZOlDtCAm/vXobp1M/1evuema7J5y0sFkW2YT42RmU7OMhrO22Ye6PHb5hPT7Me
Y2M0HNQWXVettoeepZg0d2o12zAfG6Py0h8MZKBpb20lD4l9yXDTnj2sg8J0fsO81eLc8H8a8P2l
UPH/3965xlZ2nWX48cT21DOGTEyASZoG98IdkTJAUwqlhgSaShVFAkEiKKVIRQKkFIHaNOUH86/Q
CnERggpEUbikLTQppVWVtiBMEZQk0Fxpc5k0gSTNJLSTRJ4Ze4w95se3367vLO8z4z1jn2P7vI90
dPbZl7W/tc7e61uXvd9v794ytCU7dE4NpeXetibMjx4NR3TokJ2HnYcxW8hmP0F3LufIUfq6pJl7
3YqAWe8Dvec+ky1y7rD+4ZXc+KifEoTYpnnL6en2PEIJ7CTbaxv1mK3yUj8sIwd0pmGrpSWYmrLz
sPMwxpiOOJ6HMcaYbYmdhzHGmM7YeRhjjOmMnYcxxpjO2HkYY4zpjJ2HMcaYzth5GGOM6cywwQgK
RQAADgJJREFUncc1wAPAw8ANQ7bFmB78jtGZyW+kZzYrLshWF38+x7meLx+3utr7Zn8d26RfHI6N
2rFRGwd12Q7zJcELgAeBq4EngTuB64DPp338kuAupn7bt9btanuDNsfc0Bu3+eaVbpHkICRxkUXt
FhbiLeCxsaLd1CZ5r+NyGlLePXGiiCxKan3PniI1Iv0mpamPbJfkuN44VkWcdZdy5azzS6FZchYT
E0WqPctp6A3mugzztlOnyvLERDlHfrNaZMHDrFKreBVZhkR2SGZfkh61TdKWkk1Zx6nfm9z5utE6
BU2S5lQW16yvs7oCVj76iU7m/XMZ5zLRNZBt0vnbrmWdo7Yjk+3I/2m9rS1fIVOz9S8JDlOS/RXA
EeCx5vcHgDfQ6zx2Nf0qyPqmqaXfM3UQpXxjKfjQ6mqIvklePV9wqgyl5XPqVK80ApT0nnoqNIyg
VAxZtlvnksqqpMWlCfTcc7H94otjeWkp9H8kBij9plOn4lsCckrj+PEQwrvooqio9u8v2j4SA5ya
irxmRV5VyAqStLgY+j+SGYdSiRctp9hPgn7i+PHQY4oYKeFAVOlJVFFKs8qXKlI5qhyAanKyyMbv
2RNlKYcoTS05JIh1kr+XvP+FFxZnKEeTK+7asUARDFQgq717iy6YHIJk0XUNSBtL5bO8HGWwshK6
VMvLvUKU2ndqqjjTHBdjebloPK2tlf8gOxvZkh1BdlAnT8Y+ajhMTKwPopQlPWpnkaVHsu5V3qb8
q0zz/aMGiLS3dL5+Glg6DnobPrVzyHnODZpsf33fa99BMUzn8ULg8fT7CeDKYRhSt0zysio1KBWj
uqd1i1UXqWKA6MZfWytCeTnCm1rHOpfWSWNHYm7PPx+VWI5MNjYWFYDiI0xNlUp8fDwC8aysxDGL
i5HGzEzc5BKsm5qKm1+Cegpcc/JkHJdvhrvuKjEmLrmkVCAnTpQwovv2FZtVTlm99OjR2PbUU3Fu
OTVFflMEOv0Hqhylqvr44yXI0MGD5SZVRba4GPEYJFGuYyX1fuxY2LmyUoJFzcyUClly6SdPFhXc
kydLACRFF1xYCBunp+O8sv/EiXLzTk4WJVs5LV03UlaV487Ch9B7HUl9NceVkAPT/6OKVz2S3CKX
E8ot3VxeWs5BjnL0O12bEovU/aBIgVK6PXasBMw6fTrKT5WjrsvsFGWHziOBQuit8PVRpSnHq3Wy
Q5EPZavuv/reyk40V95qoNTy/HV9kLWmMrKnHoJSetnhKY9nG6qqeybZjryudhyDciDDdB4bGo86
fPjwV5bn5uaYm5vbdEPqLmVezi2NfNHU8QvyjZ/Xq3LTPrlbnittKBebWmn6ZNG43OJQBZ331z7a
b//+IkeudHJsjZy3rOCa8zQ+HhWlQqzmbUpDrT6llZ1i3QKWvdmeHOo0DyXpW1LgChpVx/oQypvO
r2Pr/zQfr/8tt+RU+eS8KAiQ/rN6CKZu5bb9J/VvOZG2oSLZVaP/Uiqz9f+R85orwrZ02oZg2tLZ
yHJ2EEq/Vvftd76zkcs2298vv23pn+mc/crvXEfN+4k8dkmzzYG1bQeYn59nfn7+K/sPgo5/4aby
SuAwMWkOcCNwGvjttM/Iz3nkVlK/7W0XVt29z2PCdbq5NbW0VIIYaShALbYvfSlal7kLv7rae4xa
hWptaRhsbS1a+6urMdSzsBDHTU+vVxrVuTWUBpHmwkK0cPfti+OkgKo5CfUepGCq/E5MlF7MwkKJ
dDg93etYJyfLsUpPQ31yCAsLJRLj1FT0XJTfpaXSis+hRtXjUGWv/yVHipO9uWeapbZ1jGx59tky
LHngQBn6gtICh1KGbT0PCGecox3m6yYPM2k4ScdpGG5lpcjkT06WmBmKnre21h4YS5Lvigi4tlbK
IveUcu+prWW/uFiGrZQHDVvl4Z162KptGEz21cNWuRJvixwq+/P8T85HJqdVNxhyIzMfV/dA8rVQ
76c0BjHnMUznMU5MmF8FfBG4A0+Ym7NQz/FshOxENRxWz+vkoQUdo/kAnVf7yRGooszzNRo2Uk8r
261zySHLaeWncHLsEB0nu1SR6ng5jzxJLNuhveLK27KtSj9XjnW5Qan0VbHLPs1z1eP2uRcosgNV
xa+8t51fttXp6lxyzvkBhHzetmHpuozP1PPIeerXe1KvPaeXG2p1urUNebm2JTvN/D9kaqfaxJfZ
tc4D4HXA7xFPXv0Z8K5qu52HMVvI2toaY13HkAbAuQ5vnc85+vXiz5ZGPqaO+nk2h962Xz8butg3
CEn27XfV9GLnYYwxHXE8D2OMMdsSOw9jjDGdsfMwxhjTGTsPY4wxnbHzMMYY0xk7D2OMMZ2x8zDG
GNMZOw9jjDGdsfMwxhjTGTsPY4wxnbHzMMYY0xk7D2OMMZ2x8zDGGNMZOw9jjDGdsfMwxhjTGTsP
Y4wxnbHzMMYY0xk7D2OMMZ2x8zDGGNMZOw9jjDGdsfMwxhjTGTsPY4wxnRmW83gP8HngHuBW4MIh
2WGMMeYcGJbz+CTw7cAVwEPAjUOyY8cwPz8/bBO2DS6Lgsui4LIYLMNyHp8CTjfLtwOXDcmOHYNv
jILLouCyKLgsBst2mPP4BeDjwzbCGGPMxhnfwrQ/BRxsWf9O4KPN8m8Ay8DNW2iHMcaYTWZsiOf+
eeAtwFXAUp99jgAvHZRBxhizS3gEeNmwjdgKrgH+C7h42IYYY4zpzrB6Hg8Dk8Cx5vdngF8eki3G
GGOMMcaYUeUa4AGih3LDkG3ZTF4E/BMxZHc/cH2zfoZ4wOAh4h2YA+mYG4lyeAD40bT+u4H7mm2/
n9bvBT7YrP934Bs2OxObyAXAXZQHKEa1HCDy+iHi5dnPAVcymuVxI3F/3Ec8SLOX0SmH9wFPE3aL
QeX9Tc05HgJ+7vyzMhwuICbKZ4EJ4G7gW4dp0CZyEHh5szwNPEjk7d3A25v1NwC/1Sx/G5H/CaI8
jlCGGu8AXtEsf5xwuBDDf3/ULP808IFNzsNm8mvAXwN/3/we1XIAuIl4bB3iKcgLGb3ymAW+QFRy
EBXdmxidcng18F30Oo9B5H2GmGA/0Hy0vOP4PuC29PsdzWc38nfA1UTL4eubdQeb3xAti9zzug14
JXAJ0UIV1wLvTftc2SyPA/+76VZvDpcB/wD8EKXnMYrlAOEovtCyftTKY4ZoUF1E2PhR4EcYrXKY
pdd5DCLv1wF/nI55b3PcGdkOLwnWvBB4PP1+olm325glWhm3ExfH0836pykXy6VE/oXKol7/JKWM
cvmtAM8TN+V243eBt1GUBmA0ywHgxcSN/OfAZ4E/BfYzeuVxDPgd4H+ALwLPEUM2o1YOma3O+9ec
Ia0zsh2dx9qwDRgA08AtwFuBhWrbGru/DF4PPEPMd/R74m8UykGMA4eIIYVDwAnW97ZHoTxeCvwq
0bC6lLhPfrbaZxTKoR/bKu/b0Xk8SUwsixfR6xV3OhOE4/hLYtgKokWht/EvISpWWF8WlxFl8SS9
emBar2Mub5Y1dn6M7cWrgB8DHgXeD/wwUR6jVg7iieZzZ/P7Q4QTOcpolcf3AP8GfJloGd9KDGOP
Wjlktvqe+HJLWju2zh0nJmxmiXdBdtOE+RjwF8SQTebdlPHLd7B+UmySGNp4hNJSv50Yvxxj/aSY
xi+vZXtNCLbxGsqcxyiXw6eBb2qWDxNlMWrlcQXxFOIUYf9NwK8wWuUwy/oJ863O+wwx53aAmG/S
8o7kdcTE2RF2l1z7DxBj/HcTQzZ3EX/sDDF53PY43juJcngAeG1ar8fxjgB/kNbvBf6G8jje7OZn
Y1N5DeVpq1EuhyuInkeOcTOK5fF2yqO6NxE99VEph/cTcz3LxNzEmxlc3t/crH+YeMLNGGOMMcYY
Y4wxxhhjjDHGGGOMMcYYY4wxxhhjjDkbP068J/PNQzj3Y7RrIPVbb8yuZjvKkxjTj+uAjzXfg6af
ptC20RoyxhiznmmilX85vZLTc8A88LfN+r9K2x4jpD7+E7iX0mM5DPx62u9+iubPh4H/aNa9Je3z
KO09DK2fbc7/J82xnwBe0OzzMuIt4bsbW17crH8P8SbwvcBPpfz8M6F79gghR/FGIkbDvcBLmv2+
ltDAuqP5vKrFNmOMGXl+hhKX4NOEcCBEZfscocI6RgjrqSJ9lNBGAvglQuoc4DfpdR73UZzHRc33
VLNevzfiPP4P+M5m/QcbmyG0ht7QLE82af8EITcxBnwd8N+EAN4c8CwhvT1JiNYdbo69nqKLdjPw
/c3y5UT0QWMGhoetzE7hOqJ3QfOdh67uIDSB1ojW/Wzadmvz/Vk2pmP01iaNzxDqot/YwcZHid4B
RA9jlugxXQp8pFm/DCwSFf/Njc3PEL2N721+30moqS4T+kSfaI69P+XhauAPCX20jwBfBezrYKsx
58X4sA0wZgPMEBEHv4OoXC9ovt/WbD+V9l2l97o+1bJ+hd6Gk4aX5oCriIhsS0S8+RewcWo7znZs
HctE8yc5ndPp92lKHsYI5dTlDvYZs2m452F2Aj9JSNnPEvMFlxOt/FefY3qPUYa9DlHmIL6aGDJa
Ar6FcCLnwxhwnIiNoGGrvcSw1b8QcaT3EPMXP0j0oPoFx6r5JDGMJV5+nrYa0wk7D7MTuJaYyM7c
QgxdbTS6Wt7vFqI3cz8xJ/Jgs/42omX/OeBdxNDVRtJtW86/30hU9PcA/0rMZ3yYGOK6B/hHohf1
zFnyk7ddTwRPuoeQMP/FDdhqjDHGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGNGnf8H
D6d5TyBKTlkAAAAASUVORK5CYII=
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The transparancy indicates the amount funded. Not the best visualization. However, we could see that there are more people receiving funding that have been employed for 10 or more years than the rest of the people that have been employed for less.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>In conclusion, I discovered that not knowing personal home ownership status serves well at predicting who will pay off their loan. There's a good chance that if someone doesn't know, you shouldn't be giving them a loan.</p>
<p>Income serves as a good predictor determing how much funding a person receives. Not suprising. However, still pretty cool to make obvious discoveries, especially when learning.</p>
<p>The larger the loan, the lower the chance of paying it back. Suprise! :)</p>
<p>On average if the person is making 20,000 or more, they're more likelier to pay off their loan.</p>
<p>Moving forward, I would like to dig deeper and do more analysis by state. |</p>
</div>
</div>
</div>
</div>
</div>
</body>
</html>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment