Skip to content

Instantly share code, notes, and snippets.

View odubno's full-sized avatar
🤘
do work.

Oleh Dubno odubno

🤘
do work.
View GitHub Profile
@odubno
odubno / Advertising Analysis Using Moat
Created January 28, 2015 21:13
Advertising with An Up and Coming Financial Publisher - Analysis Using Moat
{
"metadata": {
"name": "",
"signature": "sha256:fc11249717d34d787068990cce5fb9d5c45ebffa0c74ffcab0cf5d69a974c154"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
@odubno
odubno / Lending Club Loans _ Logistic Regression and Mapping with Folium
Last active August 29, 2015 14:10
Lending Club Loans _ Logistic Regression and Mapping with Folium
This file has been truncated, but you can view the full file.
{
"metadata": {
"name": "",
"signature": "sha256:f09f4e356722737af5f1dad0a678250f0165e27bd01acab85df30889c450abe7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
@odubno
odubno / Oleh Dubno_final2_loans
Created November 19, 2014 23:23
Oleh Dubno_final2_loans
{
"metadata": {
"name": "",
"signature": "sha256:472515b2d5b6201ae899ecc53367532717405764a2b30746e47586c245195845"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
@odubno
odubno / Oleh_Dubno_Final_Loans
Last active August 29, 2015 14:10
Oleh_Dubno_Final_Loans
{
"metadata": {
"name": "",
"signature": "sha256:36d208b7f88b9d0788a99e3facba837f717d8b54e80a10a86066657551b5ca06"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
@odubno
odubno / Oleh_Dubno Lending Club Loan Data
Created November 19, 2014 05:22
Oleh_Dubno Lending Club Loan Data_Draft
{
"metadata": {
"name": "",
"signature": "sha256:c8b47c1d474c58c90ff683c6b4e9f9348a7c6a9e4ad6d8da3ac5f11acc04a112"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
@odubno
odubno / Loan Data (2007-2011) from Lending Club
Created November 12, 2014 23:29
Loan Data (2007-2011) from Lending Club
{
"metadata": {
"name": "",
"signature": "sha256:80eea1f25dfe499f729f79fd21fd1cf6a68ecb92a99c5b6556f2b306adffd130"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
@odubno
odubno / Data Science Class Nov 5
Created November 10, 2014 23:02
Data Science Class Nov 5
{
"metadata": {
"name": "",
"signature": "sha256:25f20ca844a744ab43182ecdd4c764e04014850c441d10e665d2f1060769af46"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
@odubno
odubno / Loan Data from Lending Club (2007-2011)
Last active August 29, 2015 14:08
Loan Data from Lending Club (2007-2011)
{
"metadata": {
"name": "",
"signature": "sha256:f7554ad7c2b2bcf4011e5b7c992a1d8197698e7e306998457f73a80d838d3314"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
@odubno
odubno / Data Loans
Created October 26, 2014 21:31
Project 2 Data Problem and Hypothesis - Loans
I got a new data set from https://www.lendingclub.com/info/download-data.action
My new dataset deals with loans. There's lots of info and the column headings that I will focus on and work with are 'loan status', 'total current payment', 'annual income', 'employment length' and 'funded amount'.
Using logistic regression I want to see which factor is most responible for people paying back their loans. I'm also currious to see what causes people to get higher loans. High annual income might be the more obvious answer, maybe there are other factors.
I believe that 'employment length' and 'annual income' could predict the status of a loan.
@odubno
odubno / Twitter NLTK Classifier
Created October 26, 2014 21:17
Twitter NLTK Classifier
{
"metadata": {
"name": "",
"signature": "sha256:b4210771a299cbc88f34296aeff1f9b1c287ad94c1189166f814de05547a86ef"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [