Skip to content

Instantly share code, notes, and snippets.

@odubno
Created January 28, 2015 21:13
Show Gist options
  • Save odubno/2523c0fb8a993059694a to your computer and use it in GitHub Desktop.
Save odubno/2523c0fb8a993059694a to your computer and use it in GitHub Desktop.
Advertising with An Up and Coming Financial Publisher - Analysis Using Moat
{
"metadata": {
"name": "",
"signature": "sha256:fc11249717d34d787068990cce5fb9d5c45ebffa0c74ffcab0cf5d69a974c154"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Advertising with An Up and Coming Financial Publisher \n",
"##Analysis Using Moat \n",
"\n",
"###Background:\n",
"All the data has been collected from Moat. Make recommendations, based on data, to a budding new financial publisher (with a smaller-sized audience) interested in pursuing its first deals with premium ad networks and its first direct deals with advertisers. Which partners should this publisher go after? What sorts of KPI\u2019s might its prospective advertisers and networks have?\n",
"\n",
"\n",
"###Goal: \n",
"Determine which advertising companies are well suited for small sized financial publisher to work with. \n",
"\n",
"###The report consists of:\n",
"-\tPulling csv files for all financial publishers.\n",
"-\tPulling csv files for all advertisers. Determining which advertisers do business with financial publishers most frequently.\n",
"-\tRunning logistic regression to see if there are any features that are predictive of whether an advertiser\u2019s trend activity will increase or decrease. \n",
"-\tWorking with Na\u00efve Bayes to see how good the classifier is at correctly predicting the outcomes of trend activity for advertisers.\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import pandas as pd\n",
"import numpy as np\n",
"from matplotlib import pyplot as plt\n",
"\n",
"%matplotlib inline"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"barrons = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/Barron's.csv\")\n",
"bloomberg = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/Bloomberg.csv\")\n",
"business_review = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/Business Review.csv\")\n",
"cnbc = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/CNBC.csv\")\n",
"daily_finance = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/DailyFinance.csv\")\n",
"ft = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/Financial Times.csv\")\n",
"forbes = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/Forbes.csv\")\n",
"fortune = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/Fortune.csv\")\n",
"inc_com = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/Inc.com.csv\")\n",
"investors_com = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/Investors.com.csv\")\n",
"market_watch = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/MarketWatch.csv\")\n",
"mornings_star = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/Morningstar.csv\")\n",
"reuters = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/Reuters.csv\")\n",
"the_street = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/TheStreet.csv\")\n",
"yahoo_finance = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/Yahoo! Finance.csv\")\n",
"zero_hedge = pd.read_csv(\"/Users/olehdubno/Desktop/Moat/moat_financial_publishers/ZeroHedge.csv\")"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Combining all of the excel files into one dataframe."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_publisher = pd.concat([barrons,bloomberg,business_review,\n",
" cnbc,daily_finance,ft,forbes,fortune,inc_com,\n",
" investors_com,market_watch,mornings_star,\n",
" reuters,the_street,yahoo_finance,zero_hedge],ignore_index=True)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Creating an additional column of ones for counting"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_publisher['Count'] = 1"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_publisher.head()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Ad Type</th>\n",
" <th>Advertiser</th>\n",
" <th>Category</th>\n",
" <th>Date</th>\n",
" <th>Flag</th>\n",
" <th>Publisher</th>\n",
" <th>Count</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> Overlay</td>\n",
" <td> Barron's</td>\n",
" <td> Financial Publishing</td>\n",
" <td> 12/1/14</td>\n",
" <td> house ad</td>\n",
" <td> Barron's</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> Overlay</td>\n",
" <td> Barron's</td>\n",
" <td> Financial Publishing</td>\n",
" <td> 12/1/14</td>\n",
" <td> house ad</td>\n",
" <td> Barron's</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> Standard Ad</td>\n",
" <td> Allianz</td>\n",
" <td> Insurance Companies</td>\n",
" <td> 12/1/14</td>\n",
" <td> NaN</td>\n",
" <td> Barron's</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> Standard Ad</td>\n",
" <td> Northern Trust</td>\n",
" <td> Personal Investing</td>\n",
" <td> 12/2/14</td>\n",
" <td> NaN</td>\n",
" <td> Barron's</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> Overlay</td>\n",
" <td> Barron's</td>\n",
" <td> Financial Publishing</td>\n",
" <td> 12/3/14</td>\n",
" <td> house ad</td>\n",
" <td> Barron's</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 5,
"text": [
" Ad Type Advertiser Category Date Flag \\\n",
"0 Overlay Barron's Financial Publishing 12/1/14 house ad \n",
"1 Overlay Barron's Financial Publishing 12/1/14 house ad \n",
"2 Standard Ad Allianz Insurance Companies 12/1/14 NaN \n",
"3 Standard Ad Northern Trust Personal Investing 12/2/14 NaN \n",
"4 Overlay Barron's Financial Publishing 12/3/14 house ad \n",
"\n",
" Publisher Count \n",
"0 Barron's 1 \n",
"1 Barron's 1 \n",
"2 Barron's 1 \n",
"3 Barron's 1 \n",
"4 Barron's 1 "
]
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_publisher_groupby = df_publisher.groupby(['Publisher','Category','Advertiser']).sum()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_publisher_groupby"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th>Count</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Publisher</th>\n",
" <th>Category</th>\n",
" <th>Advertiser</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"10\" valign=\"top\">Barron's</th>\n",
" <th>Financial Publishing</th>\n",
" <th>Barron's</th>\n",
" <td> 12</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">Financial Services</th>\n",
" <th>Jp Morgan Asset Management</th>\n",
" <td> 5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>TIAA CREF Financial Services</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Information Management</th>\n",
" <th>Factiva</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Insurance Companies</th>\n",
" <th>Allianz</th>\n",
" <td> 9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Investment Firms</th>\n",
" <th>Barron's</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Newspapers</th>\n",
" <th>The Wall Street Journal</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Personal Investing</th>\n",
" <th>Northern Trust</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Security &amp; Commodity Exchange</th>\n",
" <th>Cboe</th>\n",
" <td> 2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Software</th>\n",
" <th>IBM</th>\n",
" <td> 2</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"12\" valign=\"top\">Bloomberg</th>\n",
" <th>Airlines</th>\n",
" <th>Delta Airlines</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Education</th>\n",
" <th>Ie Business School</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Financial Publishing</th>\n",
" <th>Bloomberg</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">Financial Services</th>\n",
" <th>Capital One 360</th>\n",
" <td> 4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jp Morgan Asset Management</th>\n",
" <td> 8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Merrill Lynch</th>\n",
" <td> 4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Fuel</th>\n",
" <th>Chevron</th>\n",
" <td> 6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jewelry/Accessories</th>\n",
" <th>Tiffany &amp; Co.</th>\n",
" <td> 2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Software</th>\n",
" <th>IBM</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">Wireless Providers</th>\n",
" <th>AT&amp;T</th>\n",
" <td> 2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jp Morgan Asset Management</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sprint</th>\n",
" <td> 2</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"8\" valign=\"top\">Business Review</th>\n",
" <th rowspan=\"3\" valign=\"top\">Business Services</th>\n",
" <th>Accenture</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>HourlyNerd</th>\n",
" <td> 11</td>\n",
" </tr>\n",
" <tr>\n",
" <th>SAS Analytics</th>\n",
" <td> 5</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">Information Technology Solutions</th>\n",
" <th>Cognizant</th>\n",
" <td> 3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Splunk</th>\n",
" <td> 2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Personal Investing</th>\n",
" <th>TD Ameritrade</th>\n",
" <td> 3</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">Software</th>\n",
" <th>Ca Technologies</th>\n",
" <td> 2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Cisco</th>\n",
" <td> 2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <th>...</th>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"8\" valign=\"top\">Yahoo! Finance</th>\n",
" <th>Lending Services</th>\n",
" <th>Lendingtree</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Online Legal Services</th>\n",
" <th>Instant Checkmate</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Online News</th>\n",
" <th>The Motley Fool</th>\n",
" <td> 2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Personal Investing</th>\n",
" <th>TD Ameritrade</th>\n",
" <td> 21</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Retail</th>\n",
" <th>Wallgreens</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Self Learning</th>\n",
" <th>The Pimsleur Approach</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Software</th>\n",
" <th>Teradata</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Wireless Providers</th>\n",
" <th>AT&amp;T</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"22\" valign=\"top\">ZeroHedge</th>\n",
" <th>Airlines</th>\n",
" <th>Jetblue</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">Banks/Credit Cards</th>\n",
" <th>Ally Bank</th>\n",
" <td> 2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Capital One</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">Car Manufacturers</th>\n",
" <th>Dodge Charger</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>chevrolet Malibu</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Clothing</th>\n",
" <th>Suitsupply</th>\n",
" <td> 8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Electricity</th>\n",
" <th>Transcanada</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"4\" valign=\"top\">Financial Services</th>\n",
" <th>Charles Schwab</th>\n",
" <td> 6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>DH Corporation</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>OptionsXpress</th>\n",
" <td> 5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ShareBuilder by Capital One</th>\n",
" <td> 7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Food</th>\n",
" <th>Hormel</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Fuel</th>\n",
" <th>Gilbarco Veeder-root</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Insurance Companies</th>\n",
" <th>Allstate</th>\n",
" <td> 5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Magazines</th>\n",
" <th>People Magazine</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Mutual Fund</th>\n",
" <th>Vanguard</th>\n",
" <td> 6</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"4\" valign=\"top\">Personal Investing</th>\n",
" <th>Aberdeen</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Prodigy Network</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Trade Monster</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Tradestation</th>\n",
" <td> 2</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">Software</th>\n",
" <th>Atlassian Hipchat</th>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Microsoft Office 365</th>\n",
" <td> 10</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>240 rows \u00d7 1 columns</p>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 7,
"text": [
" Count\n",
"Publisher Category Advertiser \n",
"Barron's Financial Publishing Barron's 12\n",
" Financial Services Jp Morgan Asset Management 5\n",
" TIAA CREF Financial Services 1\n",
" Information Management Factiva 1\n",
" Insurance Companies Allianz 9\n",
" Investment Firms Barron's 1\n",
" Newspapers The Wall Street Journal 1\n",
" Personal Investing Northern Trust 1\n",
" Security & Commodity Exchange Cboe 2\n",
" Software IBM 2\n",
"Bloomberg Airlines Delta Airlines 1\n",
" Education Ie Business School 1\n",
" Financial Publishing Bloomberg 1\n",
" Financial Services Capital One 360 4\n",
" Jp Morgan Asset Management 8\n",
" Merrill Lynch 4\n",
" Fuel Chevron 6\n",
" Jewelry/Accessories Tiffany & Co. 2\n",
" Software IBM 1\n",
" Wireless Providers AT&T 2\n",
" Jp Morgan Asset Management 1\n",
" Sprint 2\n",
"Business Review Business Services Accenture 1\n",
" HourlyNerd 11\n",
" SAS Analytics 5\n",
" Information Technology Solutions Cognizant 3\n",
" Splunk 2\n",
" Personal Investing TD Ameritrade 3\n",
" Software Ca Technologies 2\n",
" Cisco 2\n",
"... ...\n",
"Yahoo! Finance Lending Services Lendingtree 1\n",
" Online Legal Services Instant Checkmate 1\n",
" Online News The Motley Fool 2\n",
" Personal Investing TD Ameritrade 21\n",
" Retail Wallgreens 1\n",
" Self Learning The Pimsleur Approach 1\n",
" Software Teradata 1\n",
" Wireless Providers AT&T 1\n",
"ZeroHedge Airlines Jetblue 1\n",
" Banks/Credit Cards Ally Bank 2\n",
" Capital One 1\n",
" Car Manufacturers Dodge Charger 1\n",
" chevrolet Malibu 1\n",
" Clothing Suitsupply 8\n",
" Electricity Transcanada 1\n",
" Financial Services Charles Schwab 6\n",
" DH Corporation 1\n",
" OptionsXpress 5\n",
" ShareBuilder by Capital One 7\n",
" Food Hormel 1\n",
" Fuel Gilbarco Veeder-root 1\n",
" Insurance Companies Allstate 5\n",
" Magazines People Magazine 1\n",
" Mutual Fund Vanguard 6\n",
" Personal Investing Aberdeen 1\n",
" Prodigy Network 1\n",
" Trade Monster 1\n",
" Tradestation 2\n",
" Software Atlassian Hipchat 1\n",
" Microsoft Office 365 10\n",
"\n",
"[240 rows x 1 columns]"
]
}
],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_publisher.head()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Ad Type</th>\n",
" <th>Advertiser</th>\n",
" <th>Category</th>\n",
" <th>Date</th>\n",
" <th>Flag</th>\n",
" <th>Publisher</th>\n",
" <th>Count</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> Overlay</td>\n",
" <td> Barron's</td>\n",
" <td> Financial Publishing</td>\n",
" <td> 12/1/14</td>\n",
" <td> house ad</td>\n",
" <td> Barron's</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> Overlay</td>\n",
" <td> Barron's</td>\n",
" <td> Financial Publishing</td>\n",
" <td> 12/1/14</td>\n",
" <td> house ad</td>\n",
" <td> Barron's</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> Standard Ad</td>\n",
" <td> Allianz</td>\n",
" <td> Insurance Companies</td>\n",
" <td> 12/1/14</td>\n",
" <td> NaN</td>\n",
" <td> Barron's</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> Standard Ad</td>\n",
" <td> Northern Trust</td>\n",
" <td> Personal Investing</td>\n",
" <td> 12/2/14</td>\n",
" <td> NaN</td>\n",
" <td> Barron's</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> Overlay</td>\n",
" <td> Barron's</td>\n",
" <td> Financial Publishing</td>\n",
" <td> 12/3/14</td>\n",
" <td> house ad</td>\n",
" <td> Barron's</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 8,
"text": [
" Ad Type Advertiser Category Date Flag \\\n",
"0 Overlay Barron's Financial Publishing 12/1/14 house ad \n",
"1 Overlay Barron's Financial Publishing 12/1/14 house ad \n",
"2 Standard Ad Allianz Insurance Companies 12/1/14 NaN \n",
"3 Standard Ad Northern Trust Personal Investing 12/2/14 NaN \n",
"4 Overlay Barron's Financial Publishing 12/3/14 house ad \n",
"\n",
" Publisher Count \n",
"0 Barron's 1 \n",
"1 Barron's 1 \n",
"2 Barron's 1 \n",
"3 Barron's 1 \n",
"4 Barron's 1 "
]
}
],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_publisher.info()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 804 entries, 0 to 803\n",
"Data columns (total 7 columns):\n",
"Ad Type 804 non-null object\n",
"Advertiser 804 non-null object\n",
"Category 804 non-null object\n",
"Date 804 non-null object\n",
"Flag 30 non-null object\n",
"Publisher 804 non-null object\n",
"Count 804 non-null int64\n",
"dtypes: int64(1), object(6)\n",
"memory usage: 50.2+ KB\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_publisher[\"Category\"].value_counts()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 10,
"text": [
"Financial Services 209\n",
"Personal Investing 134\n",
"Software 67\n",
"Insurance Companies 51\n",
"Health Industry 35\n",
"Information Technology Solutions 34\n",
"Financial Publishing 28\n",
"Banks/Credit Cards 27\n",
"Airlines 25\n",
"Car Manufacturers 22\n",
"Fuel 20\n",
"Business Services 17\n",
"Investment Firms 16\n",
"Jewelry/Accessories 16\n",
"Watch Manufacturing 14\n",
"Mutual Fund 12\n",
"Lending Services 11\n",
"Wireless Providers 10\n",
"Clothing 9\n",
"Education 8\n",
"Newspapers 6\n",
"Entertainment 2\n",
"Security & Commodity Exchange 2\n",
"Beverage Industry 2\n",
"Electronics 2\n",
"Online News 2\n",
"Car Manufacturer 1\n",
"Electricity 1\n",
"Fast Food Industry 1\n",
"Special Interest Groups 1\n",
"Celebrity News 1\n",
"Pet Protection 1\n",
"Stock Exchange 1\n",
"Online Legal Services 1\n",
"Whiskey Industry 1\n",
"Self Learning 1\n",
"Workspace Products 1\n",
"Steel Manufacturing 1\n",
"Information Management 1\n",
"Chemicals 1\n",
"Aerospace 1\n",
"Sweetner 1\n",
"Superstore 1\n",
"Automotive Research 1\n",
"Options Exchange 1\n",
"Shipping 1\n",
"Retail 1\n",
"Magazines 1\n",
"Food 1\n",
"dtype: int64"
]
}
],
"prompt_number": 10
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_publisher.info()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 804 entries, 0 to 803\n",
"Data columns (total 7 columns):\n",
"Ad Type 804 non-null object\n",
"Advertiser 804 non-null object\n",
"Category 804 non-null object\n",
"Date 804 non-null object\n",
"Flag 30 non-null object\n",
"Publisher 804 non-null object\n",
"Count 804 non-null int64\n",
"dtypes: int64(1), object(6)\n",
"memory usage: 50.2+ KB\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Removing the Categories that occure the least \n",
"df_publisher = df_publisher[df_publisher.Category!='Newspapers']\n",
"df_publisher = df_publisher[df_publisher.Category!='Entertainment']\n",
"df_publisher = df_publisher[df_publisher.Category!='Security & Commodity Exchange']\n",
"df_publisher = df_publisher[df_publisher.Category!='Beverage Industry']\n",
"df_publisher = df_publisher[df_publisher.Category!='Electronics']\n",
"df_publisher = df_publisher[df_publisher.Category!='Online News']\n",
"df_publisher = df_publisher[df_publisher.Category!='Car Manufacturer']\n",
"df_publisher = df_publisher[df_publisher.Category!='Electricity']\n",
"df_publisher = df_publisher[df_publisher.Category!='Fast Food Industry']\n",
"df_publisher = df_publisher[df_publisher.Category!='Special Interest Groups']\n",
"df_publisher = df_publisher[df_publisher.Category!='Celebrity News']\n",
"df_publisher = df_publisher[df_publisher.Category!='Pet Protectio']\n",
"df_publisher = df_publisher[df_publisher.Category!='Stock Exchange']\n",
"df_publisher = df_publisher[df_publisher.Category!='Online Legal Services']\n",
"df_publisher = df_publisher[df_publisher.Category!='Whiskey Industry']\n",
"df_publisher = df_publisher[df_publisher.Category!='Self Learning']\n",
"df_publisher = df_publisher[df_publisher.Category!='Workspace Products']\n",
"df_publisher = df_publisher[df_publisher.Category!='Steel Manufacturing']\n",
"df_publisher = df_publisher[df_publisher.Category!='Information Management']\n",
"df_publisher = df_publisher[df_publisher.Category!='Chemicals']\n",
"df_publisher = df_publisher[df_publisher.Category!='Aerospace']\n",
"df_publisher = df_publisher[df_publisher.Category!='Sweetner']\n",
"df_publisher = df_publisher[df_publisher.Category!='Superstore']\n",
"df_publisher = df_publisher[df_publisher.Category!='Automotive Research']\n",
"df_publisher = df_publisher[df_publisher.Category!='Options Exchange']\n",
"df_publisher = df_publisher[df_publisher.Category!='Shipping']\n",
"df_publisher = df_publisher[df_publisher.Category!='Retail']\n",
"df_publisher = df_publisher[df_publisher.Category!='Magazines']\n",
"df_publisher = df_publisher[df_publisher.Category!='Food']"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 12
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_publisher.info()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 767 entries, 0 to 803\n",
"Data columns (total 7 columns):\n",
"Ad Type 767 non-null object\n",
"Advertiser 767 non-null object\n",
"Category 767 non-null object\n",
"Date 767 non-null object\n",
"Flag 29 non-null object\n",
"Publisher 767 non-null object\n",
"Count 767 non-null int64\n",
"dtypes: int64(1), object(6)\n",
"memory usage: 47.9+ KB\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_publisher.Publisher.value_counts().plot(kind='bar',alpha=.30)\n",
"plt.xlabel('Financial Publisher')\n",
"plt.ylabel('Number of Occurances')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 14,
"text": [
"<matplotlib.text.Text at 0x107d02dd0>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAFYCAYAAAC1aEDDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmYXFW1vt+PIKPBEFHQoATwBwgiERxxIDggyuQAOOAQ\n5SIKioh6DRe9xAEHHK8jAkJQI5OiEOQqyKURQUADwQaEqAgqyCQCAQEhfL8/9q50dae6u/qcU92n\nqtb7PPWkzqmq76yu1Dnr7LXWXlu2CYIgCPqT1abagCAIgmDqCCcQBEHQx4QTCIIg6GPCCQRBEPQx\n4QSCIAj6mHACQRAEfUzHnICkEyTdJmmwad/nJf1e0lWSzpD0uKbXDpf0B0nXSdqlU3YFQRAEQ3Ry\nJHAisOuIfecC29jeDlgGHA4gaWvgDcDW+TPflBSjlCAIgg7TsQut7YuAf47Yd57tR/PmZcDG+fle\nwMm2H7Z9I/BH4Lmdsi0IgiBITOXd9juBc/LzJwN/a3rtb8CsSbcoCIKgz5gSJyDpCODftn8wxtui\nn0UQBEGHWX2yDyhpHvBq4GVNu28GntK0vXHeN/Kz4RiCIAgKYFut9k/qSEDSrsCHgb1sP9j00lnA\nGyWtIWlT4P8Bl7fSsN3W48gjj2z7vaHZG5rdYGNohuZUaI5Fx0YCkk4GdgI2kPRX4EhSNdAawHmS\nAH5t+yDb10o6DbgWeAQ4yONZPg433nhjmY+HZhdqdoONoRmaddPsmBOw/aYWu08Y4/2fBj7dKXuC\nIAiCVZm2YMGCqbahbT7+8Y8vaNfeGTNmMHv27EqPH5r11uwGG0MzNKdC8+Mf/zgLFiz4eKvXVDLq\nMqlIKhslCoIg6Dsk4TokhieTgYGB0OwzzW6wMTRDs26aPesEgiAIgvGJcFAQBEGP05fhoCAIgmB8\netYJ1DX+Fpqd0+wGG0MzNOum2bNOIAiCIBifyAkEQRD0OJETCIIgCFrSs06grvG30OycZjfYGJqh\nWTfNnnUCQRAEwfhETiAIgqDHiZxAEARB0JKedQJ1jb+FZuc0u8HG0AzNumn2rBMIgiAIxqcncgKL\nFi1m+fLxPz99Ouy33x4dsCwIgqC+jJUTmPSF5jvB8uUwa9b4F/ebb148CdYEQRB0Dz0bDhocHKhc\ns64xvdDsjF5ohmY/aPasEwiCIAjGpydyAsccs7jtcNC73x05gSAI+ouYJxAEQRC0pGedQOQE+k+z\nG2wMzdCsm2bPOoEgCIJgfCInEARB0ONETiAIgiBoSc86gcgJ9J9mN9gYmqFZN82edQJBEATB+HQs\nJyDpBGA34Hbb2+Z9M4FTgU2AG4F9bd+dXzsceCewAjjE9rktNCMnEARBMEGmKidwIrDriH3zgfNs\nbwGcn7eRtDXwBmDr/JlvSopRShAEQYfp2IXW9kXAP0fs3hM4KT8/CXhNfr4XcLLth23fCPwReG6Z\n40dOoP80u8HG0AzNumlO9t32hrZvy89vAzbMz58M/K3pfX8DZk2mYUEQBP1IR+cJSJoNLG7KCfzT\n9vpNr99le6akrwGX2l6U9x8PnGP7jBF6kRMIgiCYIHVaT+A2SRvZvlXSk4Db8/6bgac0vW/jvG8V\n5s2bx+zZswGYMWMGc+bMWflaIwS07bZzW24vWzbIwMB05s5N242hVGzHdmzHdi9tDwwMsHDhQoCV\n18tRsd2xBzAbGGzaPhr4SH4+H/hsfr41sBRYA9gU+BN5lDJCz6341rfO8llnedjjqKMuWGXft751\nVsvPt8sFF1xQ6vOh2VnNbrAxNENzKjTztbPldbpjIwFJJwM7ARtI+ivw38BngdMk7U8uEc1X9msl\nnQZcCzwCHJQND4IgCDpI9A4KgiDocaJ3UBAEQdCSnnUCMU+g/zS7wcbQDM26afasEwiCIAjGJ3IC\nQRAEPU7kBIIgCIKW9KwTiJxA/2l2g42hGZp10+xZJxAEQRCMT+QEgiAIepzICQRBEAQt6VknEDmB\n/tPsBhtDMzTrptmzTiAIgiAYn8gJBEEQ9DiREwiCIAha0rNOoGxOYNGixRxzzPDHYYd9epV9ixYt\nLnWcusYJu1GzG2wMzdCsm+ZkryzWNSxfziohprvums6sWXOH7bv55nJOIAiCYCoZNycg6fPAJ4EH\ngJ8B2wEfsP29zpu3ii2TlhOIPEMQBL1C2ZzALrbvBXYnrQa2OfDh6swLgiAIpop2nEAjZLQ78EPb\n9wC1LynqxDyBmHtQb81usDE0Q7Numu3kBBZLug54EHiPpCfm50EQBEGX09Y8AUkzgXtsr5C0LjDd\n9q0dt25VOyInEARBMEFK5QTyRf9g4Ji868nAs6szLwiCIJgq2skJnAj8G9gxb98CHNUxiyoicgL9\np9kNNoZmaNZNsx0nsLntz5EcAbbvL33UIAiCoBa0M0/gEuBlwCW2nyVpc+Bk28+dDANH2BI5gSAI\nggkyVk6gneqgBaRJYhtL+gHwQmBeZdYFQRAEU8a44SDb5wKvB94B/ADYwfYFnTasLJET6D/NbrAx\nNEOzbprtVAe9DnjE9tm2zwYekfSa0kcOgiAIppx2cgJX2d5uxL6ltud01LLWtkROIAiCYIKU7R3U\n6oPTypkUBEEQ1IF2nMASSV+StLmkp0n6MrCkzEElHS7pGkmDkn4gaU1JMyWdJ2mZpHMlzShzjMgJ\n9J9mN9gYmqFZN812nMD7gIeBU4FTSH2DDi56QEmzgQOA7W1vSxpVvBGYD5xnewvg/LwdBEEQdJBJ\nX2M49yH6NfB8YDnwY+CrwNeAnWzfJmkjYMD2ViM+GzmBIAiCCVJqnoCkLYEPAbOb3m/bLy1ijO27\nJH0R+AtpoZqf2z5P0oa2b8tvuw3YsIh+EARB0D7tTBY7HfgWcDywIu8rPHzIM44PJTmVe4DTJb2l\n+T22LanlMebNm8fs2bMBmDFjBnPmDBUpNWL22247d1j8fttt5wKwbNkgAwPTmTs3bTfiaaNtN+sB\nnHnmV9hsszkrtwcHB7jzzkFgj7b0Wm0vXbqUQw89tPDnW2039lWl16xVlR7AV77yFebMmVNbvfj/\nie+zKj2Y3O9zYGCAhQsXAqy8Xo5GOyWiS2zvMOabJoCkNwCvsP0fefutpNDQS4Gdbd8q6UnABWXC\nQYODAysv1g3KhoPKarZiYGBg5X9qVfSrZjfYGJqhORWaY4WD2nECC4A7gDOAhxr7bd81AVub9bYD\nFgHPISWZFwKXA5sA/7D9OUnzgRm254/4bOQEgiAIJkjZ3kHzSOGfD43Yv2kRY2xfJem7wG+BR4Er\ngGOB6cBpkvYnrWW8bxH9IAiCoH3a6R002/amIx9lDmr7aNvb2N7W9tttP2z7Ltsvt72F7V1s313m\nGDFPoP80u8HG0AzNumm2MxJA0jOArYG1Gvtsf7f00YMgCIIppd2cwE7ANsBPgVcBv7K9d8etW9WW\nyAkEQRBMkLK9g/YGXg783fY7gO2AUi0dgiAIgnrQjhN4wPYKUgvpxwG3A0/prFnliZxA/2l2g42h\nGZp102wnJ/AbSesDx5Eqeu4HLil95CAIgmDKGTMnIEnAU2z/JW9vCqxn+6pJsm+kPZETCIIgmCBl\n5wmcAzwDwPafqzQsCIIgmFrGzAnk2+4lkp47SfZURuQE+k+zG2wMzdCsm2Y7I4HnA2+RdBMpHwDJ\nPzyz9NGDIAiCKaWdeQKzW+23fWP15oxN5ASCIAgmTtmcwKMV2xMEQRDUhHbmCZxDmin8U9KyjzcA\n/9tJo6ogcgL9p9kNNoZmaNZNc9yRgO1nNG9L2p4Sawz3M4sWLWb58uH7li0b5Lrrhu+cPh322y9C\nTEEQdJ5CawxLunqkc5gMuj0nEHmGIAimgrJrDH+waXM1YHvg5opsC4IgCKaQdnIC04HH5scawNnA\nXp00qgq6JScQeYb66oVmaPaDZjs5gQWljxIEQRDUknbmCZwH7NNY6UvSTOBk26+cBPtG2hI5gSAI\ngglSdj2BJzQv9ZgXmN+wKuOCIAiCqaMdJ7BC0iaNjTyDuPYTyLolfh85gfrqhWZo9oNmOzOGjwAu\nknQhIOAlwLtKHzkIgiCYctqaJyDpCaRGcgYutX1npw0bxY7ICQRBEEyQUjkBSa8DHra92PbZpGUm\nX1O1kUEQBMHk005O4MgRieG7gQUds6giuiV+HzmB+uqFZmj2g2Y7TqDVEGJa6SMHQRAEU0478wRO\nBP4JfIPkEA4G1rc9r+PWrWpL5ASCIAgmSNl5Au8DHgZOBU4BHiS6iAZBEPQE4zoB2/cBnwJ2tv1s\n24fbvn+8z0013RK/j5xAffVCMzT7QXNMJyDpIEl/AW4CbpJ0k6TSowBJMyT9UNLvJV0r6XmSZko6\nT9IySedKmlH2OEEQBMHYjJoTkPRRYEfgvbZvyPs2A74KXGb7k4UPKp0EXGj7BEmrA+uSJqXdafto\nSR8h5R3mj/hc5ASCIAgmSNGcwNuA1zccAEB+vk9+ragxjwNebPuErPmI7XuAPYGT8ttOAmIuQhAE\nQYcZywk8avuBkTvzvhUljrkpcIekEyVdIek4SesCG9q+Lb/nNko2qeuW+H0ZzUWLFnPMMas+Djvs\n06vsW7RocSk76xrP7KReaIZmP2iO1TvoFkkvt/2L5p2SXgb8veQxtyeFmX4j6SvAsLCPbUua+LqX\nfcby5bQML91113RmzZo7bN/NN5dzAkEQ9CZjOYH3AWdK+hWwhDRHYAfgRZRbWexvwN9s/yZv/xA4\nHLhV0ka2b5X0JOD2Vh+eN28es2fPBmDGjBnMmTNn5WuNu+ptt53LttvOHbYNaVH3gYHpzJ2bthte\ndLTtkZ9v7GtsDw4OcOedg8AebektWzbIXXdNH/b5ZhrbM2dSSm+07fH0xtqeO3duqc+32m7sq6ve\nyLusqv/+Kre74f8nvs/J+z4HBgZYuHAhwMrr5WiMOVlM0trAm4Gt865rgUW2HxxTdRwk/RL4D9vL\nJC0A1skv/cP25yTNB2ZEYrgavYloBkHQexSeLGb7Advfsf3B/PhOWQeQeR+wSNJVwDOBo4DPAq+Q\ntAx4ad4uTN3i992uOfKuo46a3WBjaIZm3TTbWU+gcmxfBTynxUsvn2xbgiAI+pl22kZ0Jc1x/NAs\nT3Ncs66a3WBjaIZm3TRHdQKSzs//Hl36KEEQBEEtGWsk8CRJOwJ7Stpe0g753+0lbT9ZBhalW2Lt\n3aJZ13hmJ/VCMzT7QXOsnMCRwH8Ds4Avtnh959JHD4IgCKaUUZ2A7dOB0yX9t+1PTKJNldAtsfZu\n0axrPLOTeqEZmv2gOW51kO1PSNoLeAlpofkLbcf00yAIgh6gnYXmPwscAlwD/B44RNJnOm1YWbol\n1t4tmnWNZ3ZSLzRDsx8025knsBswx/YKAEkLgaWkVg9BEARBF9POPAEDzQu8zMj7ak23xNq7RbOu\n8cxO6oVmaPaDZjsjgc8AV0i6gNREbidGdP0MgiAIupN21hg+GXgB8GPgR8ALbJ/SacPK0i2x9m7R\nrGs8s5N6oRma/aDZVu8g27cAZ5Y+WhAEQVArondQaLZFXeOZndQLzdDsB82edQJBEATB+IzpBCSt\nLun6yTKmSrol1t4tmnWNZ3ZSLzRDsx80x1tU5hHgOkmblD5SEARBUDvaSQzPBK6RdDlwf95n23t2\nzqzydEusvVs06xrP7KReaIZmP2i24wQ+1mJf7SeLBUEQBOPTzjyBAeBGYPX8/HLgyo5aVQHdEmvv\nFs26xjM7qReaodkPmu00kHsXcDrw7bxrY9LEsSAIgqDLaSccdDDwXOBSANvLJD2xo1ZVQLfE2uum\nuWjRYpYvb/3addcN7yA+fTrst98ehY8VOYHQDM2p12zHCTxk+yFJQCobJXICPcvy5TBrVnsX9ptv\njmUlgqDbaWey2IWSjgDWkfQKUmio9md/t8Ta+1kzcgKhGZpTr9mOE5gP3AEMAgcC5wAfLX3kIAiC\nYMppZ3nJFZJOAi4jhYGus137cFDdYu2huSqREwjN0Jx6zXGdgKTdgGOAG/KuzSQdaPuc0kcPgiAI\nppR2wkFfAna2vZPtnYC5wJc7alUFdEtcvJ81IycQmqE59ZrtVAfda/uPTds3APeWPnLQN4xWdrps\n2SDXXTf8hbJlp0EQTIxRnYCk1+env5V0DnBa3t4H+G3ZA0ualnX+ZnsPSTOBU4FNSDOU97V9d1H9\nbomL94PmaGWnrfaVKTuta8w1NEOzzppjjQT2YGg+wO2ktYUhVQqtVfrI8H7gWmB63p4PnGf7aEkf\nyduxlnHQkrEmtY0kRhdBMDqj5gRsz7P9jvxY5XmZg0raGHg1cDxp8XqAPYGT8vOTgNeUOUa3xMVD\nsxiN0UXz4667pq+yb9asPdp2Fq2oaxw3NEOzKs12qoM2A94HzG56f9lW0l8GPgys17RvQ9u35ee3\nARuW0A+CIAjaoJ3E8E9Id+yLgUfzvsLzBCTtDtxu+0pJc1u9x7YllZqLULe4eGh2XrMb5jKEZmjW\nTbMdJ/Cg7a+WPtIQOwJ7Sno1KbewnqTvAbdJ2sj2rZKeRMpDrMK8efOYPXs2ADNmzGDOnDkrX2uE\nFxoXg5Hby5YNMjAwfeUX1xhKjbY9nt7g4AB33jlISp+Mr7ds2SB33TV9TD2AmTOpVK+xPZ7ewMAA\ny5YNrkzYVvV9Nqj6+2xHD9r/Po844tM88ABsscW2K/8+aL09fTrMmjV9TL3Yju2p2h4YGGDhwoUA\nK6+Xo6HxJv9KeiuwOfBz4KHGfttXjPnBNpC0E/ChXB10NPAP25+TNB+YYXv+iPe3nKx8zDGLV6k0\nGRwcWOXO8OabF/Pud7eXIOwGzVZ6/azZSm+qNVsxMDBQ+V1haIbmWEjCtlq91s5IYBvgrcDODIWD\nyNtV0LiqfxY4TdL+5BLRivSDYMpoVcXUan4ERBVTMDW04wT2ATa1/e+qD277QuDC/Pwu4OVVaXdD\nDDs0q9Wso42t5kiM1qo75kiE5lRottM2YhBYv/SRgiAIgtrRjhNYH7hO0rmSFufHWZ02rCx1q2sP\nzc5rdoONndIcmYQPzdBsl3bCQUeWPkoQBEFQS9pZT2BgEuyonDrGh0Ozs5rdYGMVmqO1zKj7GtCh\nWU/NdmYM38dQBc8awGOA+2yvN/qngiDoFO2uAx1rQAftMG5OwPZjbU+3PR1YG3gd8M2OW1aSbonl\nhmZ99fpJc9GixRxzzPDHYYd9epV9ixaVcyx1jYv3s2Y7OYGV2H4U+ImkBUSHzyDoGVqNLlJDvrnD\n9sXoovdoJxz0+qbN1YAdgAc6ZlFF1DGWG5qd1ewGG/tds65x8X7WbGck0LyuwCOk2bx7lT5yEARB\nMOW0Ux00bxLsqJzRer6EZu9qdoON/aQ5WsuMRkO+BmWrmHqtz89ka461vORo8wMMYPsTpY4cBEFP\nE3mG7mCskcD9rLpuwLrA/sAGQK2dQLfESEOzvnqhWT/NmCNRveaoTsD2FxrPJa0HHAK8AzgF+GLp\nIwdBEEyQTsyRaHe96ok4lk5odoox5wlIerykTwFXkSaJbW/7I7ZbLvhSJ+pYix2andXsBhtDs36a\n7a5XPZG1qjuh2YqOzhOQ9AXgtcCxwDNtlzQ3CIIgqBtjjQQOA2YBHwVukbS86XHv5JhXnDrGM0Oz\ns5rdYGNohmaVdDon0E6b6SAIgqCL6dkLfR1jj6HZWc1usDE0Q7NKqsgJ9KwTCIIgCManZ51At8T0\nQrO+eqEZmnXXnKw1hoMgCIIepWedQLfE9EKzvnqhGZp115z09QSCIAiCqWG0hnzXXTd850RnIfes\nE+iWmF5o1lcvNEOzTpqtWma0aqEx0YZ8PRsOCoIgCManZ51At8T0QrO+eqEZmv2g2bNOIAiCIBif\nnnUCdYzphWZnNbvBxtAMzbppTroTkPQUSRdIukbS1ZIOyftnSjpP0jJJ50qaMdm2BUEQ9BtTMRJ4\nGPiA7W2A5wMHS3o6MB84z/YWwPl5uzB1jb+FZuc0u8HG0AzNumlOuhOwfavtpfn5fcDvSS2r9wRO\nym87CXjNZNsWBEHQb0xpTkDSbOBZwGXAhrZvyy/dBmxYRruu8bfQ7JxmN9gYmqFZN80pcwKSHgv8\nCHj/yFXLbJtVF7kPgiAIKmZKZgxLegzJAXzP9k/y7tskbWT7VklPAlquYzxv3jxmz54NwIwZM5gz\nZ87K1xrxsW23nTssVtbwlsuWDTIwMH1l571G343Rtpv1AM488ytsttmclduDgwPceecgsEdbesuW\nDXLXXdOHff6GG5ay116HDjvezJkU1mv+m0faP57ewMAAy5YNrpyFWNX32aDq77MdPSj3fbb6/yn7\nfTY0RuqV+T774fc+0e+zHb1meun7HBgYYOHChQArr5ejoXTTPXlIEinm/w/bH2jaf3Te9zlJ84EZ\ntueP+Kxb2XvMMYtXmT49ODiwylDp5psX8+53t9dToxs0W+n1s2YrvX7W7LXfe2gW15SEbbXSnYqR\nwAuBtwC/k3Rl3nc48FngNEn7AzcC+5Y5SF3jb6HZOc1usDE0Q7NumpPuBGz/itFzES+fTFuCIAj6\nnZ6dMVzXmtzQ7JxmN9gYmqFZN82edQJBEATB+PSsE6hr/C00O6fZDTaGZmjWTbNnnUAQBEEwPj3r\nBOoafwvNzml2g42hGZp10+xZJxAEQRCMT886gbrG30Kzc5rdYGNohmbdNHvWCQRBEATj07NOoK7x\nt9DsnGY32BiaoVk3zZ51AkEQBMH49KwTqGv8LTQ7p9kNNoZmaNZNs2edQBAEQTA+PesE6hp/C83O\naXaDjaEZmnXT7FknEARBEIxPzzqBusbfQrNzmt1gY2iGZt00e9YJBEEQBOPTs06grvG30OycZjfY\nGJqhWTfNnnUCQRAEwfj0rBOoa/wtNDun2Q02hmZo1k2zZ51AEARBMD496wTqGn8Lzc5pdoONoRma\nddPsWScQBEEQjE/POoG6xt9Cs3Oa3WBjaIZm3TR71gkEQRAE49OzTqCu8bfQ7JxmN9gYmqFZN82e\ndQJBEATB+PSsE6hr/C00O6fZDTaGZmjWTbNnnUAQBEEwPrVyApJ2lXSdpD9I+kgZrbrG30Kzc5rd\nYGNohmbdNGvjBCRNA74O7ApsDbxJ0tOL6t1ww9KqTAvNLtHsBhtDMzTrplkbJwA8F/ij7RttPwyc\nAuxVVOz++++uzLDQ7A7NbrAxNEOzbpp1cgKzgL82bf8t7wuCIAg6RJ2cgKsUu/32G6uUC80u0OwG\nG0MzNOumKbvSa29hJD0fWGB717x9OPCo7c81vacexgZBEHQZttVqf52cwOrA9cDLgFuAy4E32f79\nlBoWBEHQw6w+1QY0sP2IpPcCPwemAd8JBxAEQdBZajMSCIIgCCafOiWGgyAIgkmmNuGgskjaF/iZ\n7XslfQzYHvik7Ssq0F7H9r9KG5m09rF9+nj76oCk7YDZDP1ObPuMumhKehGw1PZ9kt4KPAv4H9s3\nFdB6LrCB7XNG7H81cJvtJUVszBprAa9n1b/7EwX1Vgeusb1lUZtG6H3a9n9VodVCewdWrfy7B7jJ\n9iMFNT8FXAhcYvv+kiY2NA8FTgTuBY4nXT/m2/55Cc31gbex6v/7ISU01wUOA55q+wBJ/w/Y0vbZ\nRTV7aSTwsewAXkRKLn8H+FYZQUk7SrqWlLBG0hxJ3yxpZ6uTrdQJKGkjSd+R9LO8vbWk/Utqnkj6\nDl8H7J4fe9RM81vA/dmxHAb8CfhuQa3PAde22H8t8IWCmg3OBPYEHgbuy4/CF6988bxO0iYl7Wrw\nqop0WvEN4DLguPy4FPghsEzSKwtq3gC8GfitpN9I+qKk15S085227wF2AWYCbwU+W1LzHGAT4HfA\nb4El+VGGE4F/Azvm7VuAo8oI9sxIAFiR/90dOM722ZI+WVLzK6Q2FmcC2F4qaaciQpJeBbwamCXp\nq0CjXGs66eJQhoWkH8cRefsPwGmkC25Rngds42qTRlVrPmLb+QLwDdvHl3B+023fOHKn7RslbVDK\nSphlu+gFbzRmAtdIupwhh2LbexbQmiZp5mgv2r6riIGZW4D9bV8D6QYF+CTwn8AZpEKQCWH7BOAE\nSRsBbwA+BBwIPLaEnY3zcTfge7avllpWVE6ENW0fVlZkBJvb3lfSGwFs31/Wzl5yAjdLOhZ4BfDZ\nPAQvPdKx/ZcRX3KhISzpZFhCaoWxhPSjM7Ac+EAZG0lhjFMlzQew/bCkonY2+A2ph9M1JXU6qblc\n0n8BbwFenPtPPaag1owxXlu7oGaDSyQ90/bvSuo087EKtbZi9DtUA5uV0N6y4QAAbF8raSvbfyo6\n70fSd4CnA7cBvyKF2q4sYSPAEknnkv7W+ZLWAx4tqfkDSe8CFgMPNXaWdKoPSVr5e5S0ebN2EXrJ\nCexDGtZ+3vbdkp4EfLik5l8kvRBA0hrAIUChslXbVwFXSVpEulA91fZ1Je1rcJ+kxzc28sS7e0pq\nngj8WtKtDP3IbPuZNdJ8A/Am0lD+VklPBT5fUOt8SUcBH22MVCStBnwc+L8igpIG89NpwDsk/ZmK\nvkvbA0U/24JrbD+rQr1h2pK+ReoFJmBf4FpJa1J8BDyTdO26G7gLuDP3GyvD/sAc4E+2/5XPp3eU\n1HyQ9Hs8giGHUtapLgB+Bmws6QfAC4F5JfR6o0Q0J8qutr1VxbpPAP4HeDnpB3wucIjtf5TQ3JP0\nw1jT9mxJzwI+XnAY39DcAfgasA3pLvsJwN7Z8RTV/BNphHI1TXdErUImU6w5G3ia7V9IWgdY3fa9\nBXQeS0oIPhdotGbcjhTL/Q/bywvaNiol/+4XAF8l3RGvSXI099ler4DWlZ1yAvmu9WDSxQrgYuCb\npAvkukW+1ybtp5PCtYcC02xvXEBjE9KFeYXtm4vaMor2n4Hn2L6zYt0NgOfnzUvL6vfESCBPNLte\n0iZFKkPG0L2DlICqkgWk2PgF+RhXSipzZ4DtJTlX0agWub6CO6PbbZ9VUqOjmnmofQDpznBzYGNS\nsvhlE9WyfR/wxjy83oZ0YbjG9g1F7Wtc5PPI7NqGc8qhhqcDNxbVJrVdfyMp9/NsUhVK0Wqh/ylh\nx6jkm7M43TGOAAAgAElEQVRzbO9M6+R6IQcgaQ/gxfkxgzRSu6igmSeR/q/vIoWVquQPwAMVa0Jy\n+v8kXb+3loTtXxYV6wknkKkyUQaApO+S7vzvztvrA1+0/c4Sdj6cw1XN+0rFHiW9nuFleFtIugcY\ntH17Qdkr83BzMakaAcqXiFateTDpzv3SLLRM0hOLGpfvCu+xfVa+0369pD/a/nFRzcwxpJLDBvfn\nfaXuvm3/QdI02yuAEyUtBeYXkHo/qbgAST+yXcnFMN+cPSppRuMcqohdgV8CX7F9Sxkh23Mrsag1\n/wKWSrqA4WHAMiWinyOFQa9lqBgG0vdRiF5yAq0SZWVjXc9s/vHa/qek7cf6QBtcI2k/YPVc43sI\ncElJzXcCLyCPLoC5wBXAppI+YbtI2eQ6pAv1LiP2l3ECVWs+ZPuhhkPNd55Fk43/Dbw9Pz+ZFAIc\nAF4taa7t9xe0EQDbzeGvFTmJXYb7c1z9KklHA7cyVOFShlKj0hbcDwxKOo/hN2eFL4S2D86htq2B\nW3IYcFqZ0BJAzv/NZnhNf9GSY4Cf5EfjNynKX5NeS0q2l0oGN9MzTsD2QKv4cElZSZrZyObnMrqy\nJ+/7SImih4CTSSVyZUtZHwM83fZtAJI2BL5HCjv9kgK187bnlbRpMjQvlHQEsI6kVwAHkUYZRXgT\n6aKyDvAXYKNcfrc6UDi3kvmzpENIoSoB7yHVupfhraTqt/eS8iwbU304owrOyI/KLoRVhgGbNL9P\ncoBLGX6HXdgJ2F6YHfUWedd1FYRp/wSsQcmKoGHY7okH8C5SCeKf8vYWwPklNd9Gmij2SeBT+fnb\nKrJ33Qr/9t+P2FZjH3BlQc2nAD8G7siPHwEbl7SzUk2SQ34XafLRD0kXBhXUurLV8zLfYdPnNwRO\nBW7Pj5OBJ5bUfH87+9rUWkGKzy8nlUAvb3rcW8Hvcx1gq7I6TXpXkeLizf9ngyU1f1/0tzOG5lzg\nJtKN2C9JOaCdSmqeQXIEx5KKQb4GfLWMZs+MBKg4Ppw1vitpCfBS0t3La223mlXaNpJ2JFWhTAee\nojTb9UDbB5WQvUDST0lJQpHuCAeUppgXjcWeCCwilfQB7Jf3vaKEnZVqOoVVTiLNSDXpTqvoXebj\nJL2O9P01ntPYLqjZ4Gm239C8I4ceiuZrIJUFjkzovqPFvnGxXXZ0OyrN1XBAJdVwVBgGbOJq4Emk\n+TxV8SVgF9uNjgNbkEply4SUz8qPZsqNrIqfM/VC0uW2n9sod8s/jCtcrq6dHLvdiBRaMqQJZGXs\nBPYGznQuy5N0je1tSmiuRmrF8KJs48XAj0pcEJF0le3txts3lZqSdiMlWBuhlc1IDvWc0T81qtZC\nxghZ2C5cM96qBLNoWaakN5Eq1l7M8IqY6aQyx8IhkU4g6QrSTdQFTb/3q20/o4Tm50k3N28jhcMO\nIlVfHTHmB8fWHCDNE7ic4UncMoUlvxt5/Wm1b6rppZFAlfFhACS9DziSdMfWHCfctoyuq5uF3NB7\nlKGQSFX8Q6kp2w9IF8U3AmXrnavW/BKws+0/wsrZk+fkx4RwB3IgucJoR+AJkg5jeKuQorPZLwH+\nTpoL8oUmzXtJPWrqRuXVcKQKqP2BQVK7iHNIo+syLMj/VpnEXSLpeOD7WW8/0ryTwuS5ByOx7cIJ\n/V5yAh8B/oNqfxiHkjLxhSeHtaCyWciS7mP0H6pdYOJQE+8kxRu/lLcvofwMyqo17204gMwNpIvh\nhJH0dlb9LldeCFysSmQN0gV/Wv63wb2k0eCEcZoHc5OklwMP5JDYlqQ5AoNjf3pKqLwazqkk9tj8\nqASnwpKNgOeQ/s8vd/Hy6gbvIYWpG5VQF5EmypXhOU3P1yL9jh4/ynvbopfCQe+3/T/j7Zug5gWk\nmF7ZjH6z5gakmZ5VzkL+FCmW+f28az/gybar7C9TG/K8CEjf4SakXAik1iF/sf2eAppfp7UT2IOU\nvC4cN5c02yVmB4+iuYQUElqfFP77DfBv2/tVeZyy5LzUEQyVBf+c1OL9wQJap9veR9LVrPp/5TJh\nFqVW9J8ntagGeAnwYZdo8Z7/9gez02qEltd0RW3pm45zhe3CeYZecgKt4q5Lbc8poXkCqcropwyf\n3PSl0T81pt7qwElVn6idiD2qAxPlqtIcI34v0v9PqRFLzrG8mTS6vBY4yiWav+UChf8klaA2mn/Z\n9ktLaDZyX+8D1rZ9dNmcTSeR9DjS31xopJY1nmz7FqVJfavMiSjjaCX9Dnh54+5fqWXM+SXPocuA\nlznNRkfSdODntncc+5Njajavz7Aaabb4e8r8v3d9OKgpUbappOYcwHSgbBjnL/mxRn6UihM6zaDc\nRNKarnCyB2ni0FtIpYeQYu33ldTsxES5SjRtz8sO9ZCiDrkVkh5DmjD2IVLF0d6Nyo6SLCKViO5O\nClXOI5XIliLnHPYjxcehhuuDSHoOcAKwXt6+m9RaesKxcQ/NDt4bOMXV9voRw/9P/kH5yXdrNhwA\ngO3lef5SGb7I0DXoEVLZ6b6jvrsNut4JMHqibDklJ/nYXlDKstb8GfiVpLNI08rzoUpdzN5MKg38\nSt6+mPI9jzoxUa4yzexQ38RQfqGsYe8lxW7PB15lu1UCriiPd1rr4BDbF5KKGEolCEn5qsOBH9u+\nJifFLxjnM1PBCcBBti8CUFr06QSgTIXMdOBcSf8klVye7jxRsgQ/A36u1NZEpNYM/1tS835JOziv\nSifp2ZTvJfROj+hnJWnTMoI9Ew7qBB0axi9o6DTvt/3xopqdQNLbSLHcxtyDfUhhkcIzKKvWlPRl\n0mzpU0ktCRrhoAkvKSrpUVIVWKs79LLx5kttP1+pX/1XSfmb021vXlSzWxglTFsqht2ksx3pLnhv\n4G9Fy2OVSpeeQkq6NrqdXuSSPaPyKOgU0k0qpHkIbygyCmrSXOW7k7TE9g5FNXthJACApOa+IWuQ\nLg6FWus20Ylh/LW2T2vekZNShcnVId8ktTrYRtIzgT1tf6qopjswUa4Dms/KOiPX6t25gNaWpJm9\nf2V4GOApDJ3ERfmUpBnAB0nVUetRciGhHPo0Q7aatIbEb4FvF0m8VkmOXUMa9XyboVDlGxhKvpbl\ndlLPpH+QIgFlOCfPXfhRaasytn+j1O66ubvvv8f6zGhkna2BGRqa1GjSb2mtMnb25EggJ/b2BJ5v\nu0hXxYbOFba3b06ySvqt7WeX0Kxs4lDT539JWkDnmJwsFGl9hcIT0PoNpRnXh49MAGeHepTtCa+F\nLOlMUmjuYuA3RS8Ao2h/FdiAdHFthC/uJdXgr2f7rVUdqwhKk6/GSt4XcdQN7YNII4AnAqcDp5a9\nQVGaef4N25eX0WnjOBvZvrXA5/YiNY/bg+EzhpeT8iOFy257ZiTQjNPkqZ/k0EthJ8BQRdCtknYn\nDePXLyKkzq4xvI7ty5Qn5Ni2pMrKWhtI+qnt3eqime+ujySV80Hq+vkJpwXDJ8qGrSqAbP+uRMz1\neNJksaOA7SRdx5BTuKRkHHvHETcjZzVuUCRVuSRoIdzZFs1PBQ61vXTcd7bP84G3SLqJ4d1Oq57d\n+x3SOsYTwvaZ+UblP21/ukqDesYJaKh2HFKVxA6UT8IcVeEwvpNrDN8h6WmNDUl7Uz6E0YoDaqZ5\nAmmC1D6k7/OtpF5ErxvrQ6Mw1hrDhYbbtheTZ63nGvFnkZqKfR7YlHKJ9nXVtIhSLptcN79W2Yij\nLLkM+G2s2qK5TCvp+ZJeLOkdtk/M5ZyPLZrMzyPnA0iVgB2lzE1ULoZ4LVCpE+iZcNCI2vFG6dRx\nLj/rr1IkrWH730qzhZ9BSmiVsjFXhhxLuuv8J6kCab8yddMj9GeSJkyVakugtITjA65o8kyruvii\ntfKSTgH+z/axI/YfQKoff0PrT46r+wTS/8uOpNbea5HaFf/a9klFNLPuq1m1b9JBpAqhA2x/ZbTP\nTiaSfg38muSsH2UoHFTmb19Ausnb0vYWkmYBp9l+4difHFVPpC6khfsZjaI7s8Xu5S4x+bTKYoiV\nmr3iBDpBrg46gFXvYiY8YSonx75m+2qliTOXkpzV44EP2f5BBfauC6zmkotrZK0LSfHH1UkjlzuA\ni20XHrWo4skzki4lzepsLj/8vO0XFNDaiNTm+t+kvxfShWZNUgJ7wiMrSX8gJWt/RJp3cHlz3XhZ\nJK0FbEW6+bl+qpPBraiqEmiE5lWkUdUSDzWlKzs5svKcgKQbSaGrf+Zd65MS2beSHPWSUT46luYA\nLeYqlcmx9FI4qPIKGeBMUh/w8xhqelXUa77Y9oH5+TtIJ+1r8sXnZ6SmahNC0gebNt20v3F3UKaG\n/nG275X0H8B3bR8pqWxvmqonz7wb+G52qpBOtrcXEbJ9q1Kb751JIzQDZ9v+vxL2nUBa8e31pLr4\nbfKd8ZWN0VBJtieFlVYn5RyK9jjqJD9QWgRmMU0LoTjPFSnIQ7Yf1VAr6XXHeX87dCIncB7wQ9s/\nB5C0C6mc9UTSIjjPnahgJ3ItPeMEgOPIFTJ5e5BUOVHGCaxt+yNlDcs0zxDehVTV0Lj4FNWczlCZ\n4IEM/e1VME3Sk0hVGB/N+8oOGyuZPCPpqbb/khODz2w4gYIJ4ZU4DYv/Lz9KY/szjef5JuUFpEVw\nXiTpTtsvGfXD46AOrITVIR4k5UCOYPiNVJllLE/PI+sZ2cG8k/LNIl9Z8vOteIHtlTkv2+dK+qLt\nd+Vw8ISpuBgC6C0n0IkKmbMl7Wb7p+XN4x5JewA3k+LD+8PKVgVFE48LGs8l7eVqJ5x9gtTs62Lb\nl+e8wx9Kah4KnCZp2OSZAjpnkhdpV4ULo3cKSZuR7vqelx9PpPzykjsAW7v+8dwPApvbLtuGfCW2\nP5/vqpeTent9zPZ5JTVvhJUh4FJ19038XdJHSBPGRLqhui3nwoq2066yGALoLSfQiQqZQ4H/kvRv\nhso47WIT0A4kzRbdiFTe1rDtpaQGdbUh/0if0jwUtv0nSq5h6+GTZxpx7LKOuuqF0StD0o9JYYZ7\nyWWhpN9AmRXQGnRiJaxO8AfKV+kNIyfbz8t31gLepPIL1exJ6svzZNIktE1ILd7LzLV5M+mu/Sd5\n+2LSWtbTKN7vZ3PbzRf8BTlHUphecgLvJVXIbCnpFnKFTBlB24+twrCsdT0thpw5Xvjzqo5TBU49\n6ivryzOCZzMUx96+pnHsqlhICv8sH5m0Vfkmgk8ArlVaqa6SlbA6xL+ApUpt2ZvtnHCJqNJM2WNJ\nN2QrlCaNLSCVdr6tpJ2fIoXrznOacLkz6S67MLbvIF2XWvHHUfaPxwOSXjyiGKJUa+qeqw7KZYgi\nddHc1/apBTSebvv3GqXDZalyrAoT2CMStZuTFqBuMrNUtcTIUrSGaJm/vWUc2/b7JqizgqEf/toM\nv9MsOlLrGK0qZMpWzUia22q/7YGimp1A0rz8dOSM4QmXiObf+2tt/1GpLcVlebvUCoJZe4ntHfJd\n9fb5RqhsxdGWpI60sxleXVim99gcUt5nWDGE7cKjga53AvmifyDpIng1KTm6F2mW5h+L3BlJOs72\nAZ0ox1KFLR4kzR7rdZfrrz5A9X/77+mOOHYl5MT6k0k9qN7M8H4vx9jeagrNmzQkrUmK3UMKhRUK\nAWpEe5WyIaAR2r8gtWX4DKkdx+3As4uWL2fN35GqgK5g6KbHBUtDn+qmtc2rKoaA3ggHfZcUc/01\nqepmHqki4c0uPq38Z5DKsdTU+rgiKktgN1/kJW1ISj5WsjReJ0rR6J44dlW8klSyOosUb26wHPiv\nIoKSLrb9QrVeWrSOo6C5wEnATXnXUyW93aml9kQZuVbzjKZtu1xJ9GtII8oPkMLI6wFlCy0etv2t\nkhoNOlYM0QtO4Gkeau52PCkZvIntMsmojzLUTfAXpHrsqqg8ga1Vl8b7uqSyS+NVXopG98SxK8H2\nQmChpL1t/7AizRfmfyvLV3WYL5GWaL0eQNIWpGqZIufU8Qxfq3nkdmE8NH9lhVKPnn849SArw2JJ\nBwNnUN0cCai4GKIXnEBzbHmFpJtLOoCRlF1daCSNBPZWVSWwSU7rOR6xNB55LkJBKi9FIyXx+pFf\nSfoOMMv2rpK2JtWQf6eMaK7i2pCm87g5ZFATVnfT6my2lymtCjdh3IFFnpRWZ/sMcBcpOfxdUjho\ntTxiKbOwzDzSaO1DI/aXWgSmanohJ9CcJIThicJCw2Olbo+NGO7IeG6p5GjTMaps8TBIWrrReXs1\n4Crb25bQrKwvT78j6WckB3qE7WfmuSFXlixpfB9ppHY7w2+ECv+fdwJJJ5Ls+z7pHNqP9LsvvFZ1\nlSitb3E4KdF6HLCr7UslbUVq0Vx4jfIq6WQxRNePBGyXXfKwFbcyFMNtft6gTHJ0LVK9/WzSrNxG\nPHPkwigToRNL41VWijZK/LpB7eLYHWAD26dKmg9g+2FJj5TUPJTUQK3sOtqd5j3AwaSlOwEuIlXH\n1YVpts8FkPQJ25cC2L5OUqE7ZEkvs32+UmfjVsUVZ0xUs0PXOaAHnEAn6FBStMGZwN2kJmWlG35l\nJ/I1hi+N922XXBqPavvydEv8ulPcJ+nxjQ1Jzyc1livDX0gFEbXG9oOSvg6cm3cVrg7qEM0X6aoa\n8L2EFI7dg9Y3PxN2Ap2k68NB3UaVZW1Zr1NtcDezfUNzKVpjX5XH6QdyTfvXSLNPryElyPcuVdst\nnUAqu/wpQ+sHlK2QqZxW1UGkuvbCS0xKOpQUXruXlBzeHpjv3KhtglpjhVnWtl34RrnV+VLHc2i1\nqTagD7kkTxCrhJwHWCJpwh0Jx+FHWf+epoqgMonmfuYuYCfSSO1AkjMo1ECsiZtIlWtrAI/Nj0oq\nZSqmUR30EqeGebsAXy6p+c78m9wFmEkqWvhsESHb02xPz4/Vm55PL+MAMq0qwmp3DkU4aJJQWvLv\nUVLfkHdI+jPDyyTLOIbK2uBqaEHrx6niBa37mB+RZoVfDSBpJ+AbpJbVEyZX12xp+83VmdgxKqsO\naqJRsbcb8D2nNTpKSlaHOrgofCcIJzB5PBmYQ/Ulp1BtG9wtSLHMx+V/GyynM8tL9gMHkta83p0U\nuvgM8KqiYk7LDD5V5fsPTQZL8vyd5uqg31ageS6pXv5wSetRvCtnJ+iqcyhyAi2Q9LURu+zc8ErS\nR2x/roDmsCnvVSPpxaSJc6XXXM16L7D96+os7G+UFqz5NinmvHvZGd2SvkdaVewshmLadcwJrEWq\nDmoULVwEfLOM88ol0M8C/mT77px0n+WSy59WTbecQzESaM0SRjS8anrt2oKaI6e8N1Pq5FXTmquk\nhNkapDuvQmuuZl6XQ1gPkEpQtwM+YPt7JTT7CkkjG5utTaoM+46ksjOl/5Qfq5HyASN/p7XAqXvq\nF1m1zLoMLyDNg7lP0ltJo6tarKk8gq44h2IkMEkoLaQy6spfLrEgjDqz5upVtreT9Fpgd+Aw4KKS\nuYu+QkOdPhurvzU/d5kKmaZjTCeJlZ50WCUaeynSUjmwxuTI/FhIqhDa1/ZORTU7QbecQzESGAdJ\ne9HUP8fF29beWuZCPw6dWHO18dvYnbRO6j1FJ8/0K7YHchL0F1XPPZG0LanFwePz9h2k0surqzxO\nCfYY/y2FecS2Jb2GtDj88ZL27+DxitIV51A4gTGQ9FnSJKxFpLu3QyTtaPvwqbVsFTqx5uri3D7j\nQeA9SsvuVTWZpm/ISdwVkmbYvrtC6WOBw2xfACtHHceSli6dctyijbmkDUiN2cpeCJdL+i/gLcCL\ncw+lx5TU7ARdcQ5FOGgM8rBzju0VeXsasLRIfxZJj696ir+kVzYmyCitubpLfulcYIbt00rqzwTu\ncWrMty4w3fatpYzuQySdRQrXncvwJO6EV9dq0qx1byeN3phtGvA2l2jMprROw5uA39i+SNJTgbmu\n4Qp13XAOxUhgbAzMABoX7xkUTL51qMfLOUqL1Lw19z9pTM1H0pVAYSeQf7AHk2Z4HkAqcd0SOLuU\nxf3JGazaKqDs3defJX0M+B5DpZd1mon6dYYas/0fIxqzUaK3le2/SzoDaLRkv5OhdXxrQ7ecQ+EE\nxuYzwBVKq2xBmvU5f+rMWYXfAScDv5Z0mEusH9CCE0lVUo3wwi2kGZC1+gF3A07rClTNO0mLnjSc\ny0V5X12ovDFbgxzyPIA0W3hzYGPSCl4vK2dy5XTFORROYAxsnyzpQtLi6AAfqdtQzvax2Un9QNKr\ngffavn+cj7XD5rb3lfTGfJz76zQrs5tQWkjl06RZpGvn3bZdeHEQp4VJJrQ28yTTicZsDQ4mraLX\ncCzLcry9bnTFORROYHyew1B1kIHSi1pXTT4JXgB8kjRyeVsFsg9JalywkLQ5TasjBRPiRFLv/y8B\nc4F3kGLjEybPPWguOW2m7NyDKnmmpEbZ6tpNz2HIERblIdsPNVXDrU4N50jQJedQOIEx6KLqIJza\n885XWsDkFFKnyjIsIE1w2VhpnYIXklZKCibO2rZ/oTRD7CZggaQrgI8V0Ho+8DdSGPCyvK95DkIt\ncAf73wMXSjoCWEfSK4CDqOHNGV1yDkV10BhUWR3UCSS91i3WDZC0PvBu258pqb8B6aIDcJntO8ro\n9SuSLgFeTIoHn0+KDX/G9pYFtFYHXkGqjtmW1Er6ZNvXVGdxvcnn4f4MVcP9HDi+gtLTyumGcyic\nwBhI+h2wc6OyJ/couaBuM/46QQ47nAycWVGOoW9RavP9e1J12SdJ3SSPbiRLS+iuSXIGXwAW2P56\nWVuD6uiWcyicwBhIehOpT/lA3rUTafGKU6bMqEkiTz56A/Bq4DekENPZuRdMMIXkpmy7AW8kLVN6\nFnCC7Zun0q7JQmmp0yNJf3sjpF0q0d4JuuUcCicwDpKeTMoLGLi8btVBnSaHH3YmleTt6t5fD7gy\nOpHEzd1DtwHOAU61PVaPnp5E0vWkNZavIC1iD4DtO6fMqDGo+zkUTmAcJM1i6I7DALZ/OZU2TRa5\nsmFPYF9Sp8azbde5LLFW5H4+oyZxizSQk/QoQwsHjcR1u8B0AkmX2X7eVNvRDt1wDoUTGANJnyMN\n565l+B1HJ5tj1QJJpwHPI1U3nAL8spEgD9ojkridIVftTSNNlFtZcmn7iikzqgXdcg6FExgDScuA\nbV3/1ZsqR9KuwHl1/NF2I5HErY48OXKVC5ftnSffmtHplnMonMAYSPpfUp/yWvVqnyyUVsPalOHJ\nt9o16aoz/Z7E7Xe64RyKyWIt0NDykv8Clko6n+GLwhfu/tgtSPo+aQ3XpTSFwkjdIIM2GJHE/UQ/\nJnGrRNJbbX9P0gcZPhJoLNJTt6U1u+IcCifQmublJUfOROyXodMOwNZ1nIDTRexHSuK+H3j/iL4x\nfZHErZh18r/TaeEEJt+ccemKcyjCQUFLJJ0OvN/2LVNtSxB0I91yDsVIYAw60f2xi3gCcK2kyxke\nCqtLg7KgT5F0NGmhmlov4E6XnEPhBMamsu6PXciCqTYgCEbhlbb/U2kB9xuB15HWU6ibE1gw1Qa0\nQziBsamy+2NXYXtgqm0IglHoigXcu+UcCifQglwaehDwYO5Y+EdJ7yV1f1x3So3rMJLuY/QkWyQz\ngzpQ6wXcu+0cisRwCyTtAxwFfB/4Mqn74ydI66WW7v4YBEE5umEB924hnMAoSHosKeyzKynW2Pii\nalePHAT9hKS3M3Q+riwPrdskrG4hwkGj8zBpsthapLrkR6fWnCAIMo2uvpDOz5eROoqGEyhAOIEW\n5J4fXyJNFHuW7X9NsUlBEGRsv7d5W9IM4NQpMqfrCSfQmiOAfaLbYxB0Bf8i9ecJChBOoDUvqftU\n7yDoV/JiPQ1WI03mPG2KzOl6IjEcBEFXkZdtbPAIcJPtv06ROV1POIEgCLoWSRsA/4iRe3FWm2oD\ngiAI2kHSCyQNSDpD0rMkXQ1cDdwu6VVTbV+3EiOBIAi6AklLgMNJkzaPIy3afqmkrYBTbM+ZUgO7\nlBgJBEHQLUyzfa7t04G/N2bu276Oeq4n0BWEEwiCoFtovtDXpldQtxPhoCAIugJJK0hzAiCt7/FA\n08tr246S9wKEEwiCIOhjIhwUBEHQx4QTCIIg6GPCCQRBEPQx4QSCIAj6mHACQe2QtELSlflxhaRN\nJF08icc/TtLTx3nPgKQdRtl/naSlkn4laYtxdBZKen2L/XMbjdIk7SHpI2NozJP0tbGOEwSjESVV\nQR35l+1njdj3wsk6uO0D2nkbrScoGXiz7SskHQB8HthrHJ3x7FlMWtuisMZYSFrNdiya1KfESCDo\nCvLi3Y075AFJp0v6vaTvN73nY5IulzQo6dtN+wckfVbSZZKul/SivH+apC/k918l6eCm92+fn39T\n0m8kXS1pwQTNvgh4WrP9+fnekk5set/L8zGul7Rbi7995Z2+pH2yvUslDTTeAjxZ0v9KWibpc02f\n3UXSJZKWSDotr8eLpBvzd7IE2HuCf1fQQ8RIIKgja0u6Mj+/wfbrGX63O4fUQ/7vwMWSXmj7YuDr\ntj8JIOm7kna3fXb+7DTbz8uNxo4EXgG8C3gqsJ3tRyWtn/Wbj3WE7X9Kmgb8QtK2tgfHsV/53z2A\n37XQ9Ij3bmL7OZKeBlyQ/x1J4zMfA3ax/XdJ6434TuYA/waul/RV4CHSAkkvs/1ADikdBnwy691p\ne5WQVtBfhBMI6sgDLcJBzVxu+xYASUuB2cDFwEslfRhYB5hJ6jB5dv7MGfnfK/L7Ia1N+61GKMT2\nP1sc6w05rLM68CTg6cBYTkDAIkkPAH8G3jfGeyFdjE/Lx/+jpBuArUbRhfR3niTptKa/ycD5tpcD\nSLo2/43rk5zlJZIA1gAuadKMJRmDcAJBV/JQ0/MVwDRJawHfAHawfbOkI0mLkI/8zAqG/+7FKEja\nFPgg8Gzb9+QQzlqjvT+zMifQYn+DtcfRGDU+b/s9kp4L7AYsyclpsep30vgbz7P95lHk7h/HjqAP\niFXPlnIAAAENSURBVJxA0Cs0Ls7/kPRYYJ82PnMecGAO9dAUDmqwHulCea+kDYF2e9a3ciy3SdpK\n0mrAaxlyCgL2UWJzYDPg+lGFpc1tX277SOAO4CmMnqC+FHhh1kXSupL+X5t/Q9AnxEggqCOjXdRG\nfd323ZKOI4WAbgUua0P/eGAL4HeSHgaOBb7ZpHlVzk1cB/wV+FUJ++eTQlN3AL8F1m1671+Ay0lO\n50Db/5bUXH3U/PzofCEX8Its45xWx7R9p6R5wMmS1sy7jwD+0ObfEfQB0UAuCIKgj4lwUBAEQR8T\nTiAIgqCPCScQBEHQx4QTCIIg6GPCCQRBEPQx4QSCIAj6mHACQRAEfUw4gSAIgj7m/wOO+0rT7UyH\nTAAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x107c8ecd0>"
]
}
],
"prompt_number": 14
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Financial Services, Personal Investing, Software and Insurance Companies categories appear to be at the very top of the list for financial publishers to advertise. Let's look deeper and see which are the top advertisers within each of the 4 top categories."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_publisher.Category.value_counts().plot(kind='bar',alpha=.30)\n",
"plt.xlabel('Categories')\n",
"plt.ylabel('Number of Occurances')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 15,
"text": [
"<matplotlib.text.Text at 0x107d8b590>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAGqCAYAAADtMvjRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXecJVWVx79nQCQ4SFAEERhEUUCQJCIYBgOiRFFRFsMo\nYhZcI5hAEcS4pgUEkUFEBNc0oCRZhiASHBgYQESSiglXQQET4bd/nPumq1+/cKvqdVdXz/l+Pu/T\nXdXv1Ln1ul7dWyeaJIIgCIJlk1lNDyAIgiBojpgEgiAIlmFiEgiCIFiGiUkgCIJgGSYmgSAIgmWY\nmASCIAiWYSZtEjCz9czsAjO73syuM7MD0/7DzOwOM7s6vV5UkDnEzH5pZjea2c6TNbYgCILAscnK\nEzCztYG1JS02s0cAi4C9gH2AeyR9ruv9mwLfBJ4GrAv8GNhY0kOTMsAgCIJg8p4EJP1B0uL0+73A\nz/GbO4D1ENkTOFXS/ZJuB24Gtpus8QVBEART5BMwsznAVsBladc7zOwaMzvBzFZL+x4L3FEQu4Ox\nSSMIgiCYBJafbAXJFPQ/wEGS7jWzY4CPpT8fDnwW2L+P+ARblZlFnYsgCIIKSJpghZnUJwEzexjw\nHeAbkr6fBnGnEsBXGTP5/BZYryD+uLRvApJ6vg499NC+f8t51ZFvo2xbxx2fVztk2zrumXrO/ZjM\n6CADTgBukPT5wv51Cm97CbAk/b4AeKWZrWBmGwJPBK6YrPEFQRAEk2sO2hF4FXCtmV2d9n0A2NfM\ntsRNPbcBbwKQdIOZnQ7cADwAvFWDpq8e3H777bUGXEe+jbJN6m6jbJO62yjbpO4453wmbRKQdAm9\nnzTOGiBzJHBkVZ1bbrllVdHa8m2UbVJ3G2Wb1N1G2SZ1xznnM2l5ApOFmZV9QAiCIFjmMTM01Y7h\nIAiCYHozoyaBhQsXNibfRtkmdbdRtkndbZRtUneccz4zahIIgiAIyhE+gSAIgmWA8AkEQRAEE5hR\nk8CyZsurK9uk7jbKNqm7jbJN6o5zzmdGTQJBEARBOcInEARBsAwQPoEgCIJgAjNqEljWbHl1ZZvU\n3UbZJnW3UbZJ3XHO+cyoSSAIgiAoR/gEgiAIlgHCJxAEQRBMYEZNAsuaLa+ubJO62yjbpO42yjap\nO845nxk1CQRBEATlCJ9AEATBMkD4BIIgCIIJzKhJYFmz5dWVbVJ3G2Wb1N1G2SZ1xznnM6MmgSAI\ngqAc4RMIgiBYBgifQBAEQTCBGTUJLGu2vLqyTepuo2yTutso26TuOOd8ZtQkEARBEJQjfAJBEATL\nAOETCIIgCCYwoyaBZc2WV1e2Sd1tlG1Sdxtlm9Qd55zPjJoEgiAIgnKETyAIgmAZIHwCQRAEwQRm\n1CSwrNny6so2qbuNsk3qbqNsk7rjnPOZUZNAEARBUI7W+wROOeUM7rmn93tnz4b99tt9ikYWBEEw\nfennE1i+icGMknvugXXX7X2j/+1vz5ji0QRBELSLGWUOWrJkYS35ttny6so2qbuNsk3qbqNsk7rj\nnPOZUZNAEARBUI5J8wmY2XrA14G1AAHHSfqima0BnAZsANwO7CPp7iRzCPB64EHgQEnn9jjuOJ/A\nsceeMdAc9OY3h08gCIKgiTyB+4H/lLQZsD3wNjPbBDgYOE/SxsD5aRsz2xR4BbApsAtwtJnFk0oQ\nBMEkMmk3WUl/kLQ4/X4v8HNgXWAP4KT0tpOAvdLvewKnSrpf0u3AzcB2ZXSGT6A9utso26TuNso2\nqTvOOZ8pWWmb2RxgK+By4DGS/pj+9EfgMen3xwJ3FMTuwCeNIAiCYJKY9BBRM3sE8B3gIEn3mI2Z\npCTJzAY5JXr+bd68ecyZMweA66+/g622ms3mm89l883nLn0a2HzzucDY7Dh37vDtuXPnlnr/KLc7\nlJXv7Kuqv458fF7xecXnNVr5zr5RfF4LFy5k/vz5AEvvl72Y1GQxM3sYcCZwlqTPp303AnMl/cHM\n1gEukPRkMzsYQNJR6X1nA4dKurzrmOEYDoIgKMmUO4bNl/wnADd0JoDEAuC16ffXAt8v7H+lma1g\nZhsCTwSuKKMzfALt0d1G2SZ1t1G2Sd1xzvlMpjloR+BVwLVmdnXadwhwFHC6me1PChEFkHSDmZ0O\n3AA8ALw1akYHQRBMLq2vHRTmoCAIguFEP4EgCIJgAjNqEgifQHt0t1G2Sd1tlG1Sd5xzPjNqEgiC\nIAjKET6BIAiCZYDwCQRBEAQTmFGTQPgE2qO7jbJN6m6jbJO645zzmVGTQBAEQVCOoT4BM/s0cDjw\nD+Bs4Kl4ieiTJ394PccTPoEgCIKS1PEJ7Czpb8BueIbvRsB7Rzu8IAiCoAlyJoFOaYndgP+R9Ff6\nVPdsmvAJtEd3G2Wb1N1G2SZ1xznnk1M76IxU+fOfwFvMbK30exAEQdBysvIEUl/gv0p60MxWAWZL\n+sOkj673WMInEARBUJLKPoF0038bcGza9Vhg29EOLwiCIGiCHJ/AicC/gR3S9u+AIyZtRDUIn0B7\ndLdRtkndbZRtUneccz45k8BGkj6JTwRIuq+SpiAIgmDakZMncCnwPOBSSVuZ2UbAqZK2m4oB9hhP\n+ASCIAhK0s8nkBMddBieJPY4M/sm3jFs3khHFwRBEDTCUHOQpHOBlwKvA74JbCPpgskeWBXCJ9Ae\n3W2UbVJ3G2Wb1B3nnE9OdNDewAOSzpR0JvCAme1VSVsQBEEwrcjxCVwj6ald+xZL2nJSR9Z/POET\nCIIgKEmd2kEThIDl6g8pCIIgaJqcSWCRmX3OzDYysyeY2X8BiyZ7YFUIn0B7dLdRtkndbZRtUnec\ncz45k8A7gPuB04Bv4XWD3lZJWxAEQTCtiB7DQRAEywCV8wTM7EnAe4A5hfdL0nNHOsIgCIJgyskx\nB30buAr4EN5MpvOadoRPoD262yjbpO42yjapO845n5yM4fslHVPp6EEQBMG0JidP4DDgT8B3gX91\n9kv6y6SOrP94wicQBEFQkjq1g+bh7STf07V/wxGMKwiCIGiQnNpBcyRt2P2aisGVJXwC7dHdRtkm\ndbdRtkndcc755DwJYGZPATYFVuzsk/T1ShqDIAiCaUOuT+A5wGbAD4EXAZdIetmkj673eMInEARB\nUJI6tYNeBjwf+L2k1wFPBVYb8fiCIAiCBsiZBP4h6UG8hPQjgTuB9SZ3WNUIn0B7dLdRtkndbZRt\nUneccz45PoErzWx14HjgZ8B9wKWVtAVBEATTioE+ATMzYD1Jv07bGwKrSrom6+BmXwN2Be6UtHna\ndxjwBjz3AOADks5KfzsEeD3wIHBg6mrWfczwCQRBEJSkjk/gR51fJN2WOwEkTgR26don4HOStkqv\nzgSwKfAKPAppF+BoM8sZXxAEQVCRgTfZtOReZGbbVTm4pIuBu3r8qVejmj2BUyXdL+l24GaglN7w\nCbRHdxtlm9TdRtkmdcc555Oz0t4e+KmZ3WpmS9Lr2kraxniHmV1jZieYWSfS6LHAHYX33AGsW1NP\nEARBMICcPIE5vfan1fpwBS5/RsEnsBZj/oDDgXUk7W9mXwIuk3RKet9XgR9J+m7X8cInEARBUJI6\ntYMeGuVAJN1ZGNRXgTPS5m8ZH3r6uLRvAvPmzWPOnDkAXH/9HWy11Ww233wuMGYS6mx3HpHmzo3t\n2I7t2F52thcuXMj8+fMBlt4veyJp4Au4DliSXr8EHgCuHyZXkJ8DLClsr1P4/T+Bb6bfNwUWAyvg\nxeluIT2pdB1PRY45ZoEWLJAWLJCOOOKCpb8vWOB/K8MFF1xQ6v1tl21Sdxtlm9TdRtkmdcc5TyTd\nOyfco4c+CUh6SnHbzLYms8ewmZ2Kl5x4lJn9BjgUmGtmW+JRQrcBb0p6bjCz04Eb0kTz1jTwIAiC\nYJKo1GPYzK7rnhymivAJBEEQlKdOj+F3FzZnAVvTx1YfBEEQtIucENHZwCPSawXgTDymf9oReQLt\n0d1G2SZ1t1G2Sd1xzvnk+AQOq3TkIAiCYNqTkydwHvBySXen7TXwzN4XTsH4eo0nfAJBEAQlqVM7\n6NGdCQCWNph/zCgHFwRBEDRDziTwoJlt0NlIGcAjTSAbFeETaI/uNso2qbuNsk3qjnPOJydj+IPA\nxWZ2IV747dnAGytpC4IgCKYVWXkCZvZovJCc8Po+/zfZAxswlvAJBEEQlKSyT8DM9gbul3SGpDPx\nNpN7TcYggyAIgqklxydwaJdj+G7gsEkbUQ3CJ9Ae3W2UbVJ3G2Wb1B3nnE+OT6BXA5jlKmmbZpxy\nyhncc8/Y9k03LeHGG33H7Nmw335hSgqCYGaTkydwIt4d7L/xCeFtwOqS5k366HqPZ2Q+gfAnBEGw\nrFAnT+AdwP3AacC3gH+SWUU0CIIgmN4MnQQk3Qt8HNhJ0raSDpF03+QPrTx1fQJ15NtmB2xadxtl\nm9TdRtkmdcc55zNwEjCzt5rZr4FfAb8ys1+ZWTwFBEEQzBD6+gTM7EPADsDbJd2a9j0e+CJwuaTD\np2yU48cVPoEgCIKSVPEJvAZ4aWcCAEi/vzz9LQiCIGg5gyaBhyT9o3tn2vfg5A2pOuETaI/uNso2\nqbuNsk3qjnPOZ9Ak8Dsze373TjN7HvD7StqCIAiCacUgn8BmwA+AS4BFeI7ANsAzgT0lXTdVg+wa\nV/gEgiAISlLaJyDpemBz4GJgDrABcBGwWVMTQBAEQTBaBoaISvqHpBMkvTu9TpD0z6kaXFnCJ9Ae\n3W2UbVJ3G2Wb1B3nnE9OxnAQBEEwQ8nqJzCdCJ9AEARBeUr7BMzs/PTzU5M5sCAIgqA5BpmD1jGz\nHYA9zGxrM9sm/dzazLaeqgGWIXwC7dHdRtkmdbdRtkndcc75DOoncCjwEWBd4LM9/r5TJY1BEATB\ntCGnn8BHJH1sisYzlPAJBEEQlKefT2BoZzFJHzOzPYFn443mL5R0xiSMMQiCIJhichrNHwUcCFwP\n/Bw40Mw+MdkDq0L4BNqju42yTepuo2yTuuOc88npMbwrsKWkBwHMbD6wGDikksYgCIJg2pDjE7gW\n7yr257S9JnCBpC2mYHy9xhM+gSAIgpJU9gkAnwCuMrML8CJyzwEOHvH4giAIggbI6TF8KvAM4HvA\nd4BnSPrWZA+sCuETaI/uNso2qbuNsk3qjnPOJ+dJAEm/w8tKB0EQBDOIqB0UPoEgCJYBqvQYHoXS\nr5nZH81sSWHfGmZ2npndZGbnmtlqhb8dYma/NLMbzWznyRxbEARBMGQSMLPlzewXNY5/IrBL176D\ngfMkbQycn7Yxs02BVwCbJpmjzazUJBU+gfbobqNsk7rbKNuk7jjnfIY1lXkAuNHMNqhycEkXA3d1\n7d4DOCn9fhKwV/p9T+BUSfdLuh24Gdiuit4gCIIgj5w8gYuBrYArgPvSbknaI0uB2RzgDEmbp+27\nJK2efjfgL5JWN7MvAZdJOiX97avAWZK+03W88AkEQRCUpE6ewId77BuJN1mSzGzQsXr+bd68ecyZ\nMweA66+/g622ms3mm88Fxkw6ne3OI9Lcub23u9/f2V5jDbLkYzu2Yzu2p+P2woULmT9/PsDS+2VP\nJA194Y3mn59+XxlYNUeuILuksH0jsHb6fR3gxvT7wcDBhfedDTy9x/FU5JhjFmjBAmnBAumIIy5Y\n+vuCBf63QRRlu+WHyXZzwQUXlHr/dJBtUncbZZvU3UbZJnXHOU8k3Tsn3KNzCsi9Efg28JW063F4\n4lhVFgCvTb+/Fvh+Yf8rzWwFM9sQeCJuggqCIAgmiRyfwDW4g/YySVulfUuUbPxDZE/Fy0w8Cvgj\n3qTmB8DpwPrA7cA+ku5O7/8A8HrgAeAgSef0OKaKYw6fQBAEwXDq+AT+Jelf7sP1sFEyfQKS9u3z\np+f3ef+RwJE5xw6CIAjqkxOHf6GZfRBY2cxegJuGpmVTmcgTaI/uNso2qbuNsk3qjnPOJ2cSOBj4\nE7AEeBPwI+BDlbQFQRAE04qs2kFm9nDgybgZ6EZJ/57sgQ0YS/gEgiAISlLZJ2BmuwLHAremXY83\nszdJ+tGIxxgEQRBMMTnmoM/hncWeI+k5wFzgvyZ1VBUJn0B7dLdRtkndbZRtUneccz45k8DfJN1c\n2L4V+FslbUEQBMG0oq9PwMxemn59PrABHtsP8HLg15LeMvnD6zmu8AkEQRCUpIpPYHfG8gHuxJO+\nwCOFVhzt8IIgCIIm6GsOkjRP0uvSa8LvUznIXMIn0B7dbZRtUncbZZvUHeecT0500OOBd+CF4Drv\nlzJLSQdBEATTl5zaQdcCXwWuAx5KuyXpwkkeW7/xhE8gCIKgJHVqB/1T0hcnYUxBEARBw+SEiH7J\nzA4zs2eY2dad16SPrALhE2iP7jbKNqm7jbJN6o5zzifnSWAz4NXAToyZg0jbQRAEQYvJ8QncAmzS\nZL2gIuETCIIgKE8/n0COOWgJsProhxQEQRA0Tc4ksDpwo5mda2ZnpNeCyR5YFcIn0B7dbZRtUncb\nZZvUHeecT45P4NBKRw6CIAimPVn9BKYT4RMIgiAoT51+AvcyVkNoBeBhwL2SVh3tEIMgCIKpZqhP\nQNIjJM2WNBtYCdgbOHrSR1aB8Am0R3cbZZvU3UbZJnXHOeeT4xheiqSHJH0f2KWStiAIgmBakZMn\n8NLC5ixgG+A5kp4xmQMbMJ7wCQRBEJSkTu2gYl+BB4DbgT1HN7QgCIKgKXJ8AsVeAgdIOkLSnVMx\nuLKET6A9utso26TuNso2qTvOOZ++TwJm1i8/QACSPlZJ4wzhlFPO4J57xrZvumkJN944tmP2bNhv\nvzAnBUEwvRnUY/g9jJmBOqwC7A88StIqkzy2nkwXn8Ag2Rz5IAiCqaS0T0DSZwrCqwIHAq8DvgV8\ndjIGGQRBEEwtA30CZrammX0cuAZPEtta0vvDJzBa2bBftkO2Sd1tlG1Sd5xzPoN8Ap8BXgIcB2wh\n6Z5+7w2CIAjaySCfwEPAv4H7e/xZTZWNCJ9AEARBear4BEplEwdBEATtY0bd6MMn0B7dbZRtUncb\nZZvUHeecz4yaBIIgCIJyRD+B8AkEQbAMUKfHcBAEQTBDaWwSMLPbzexaM7vazK5I+9Yws/PM7KbU\n03i1MscMn0B7dLdRtkndbZRtUneccz5NPgkImCtpK0nbpX0HA+dJ2hg4P20HQRAEk0RjPgEzuw3Y\nVtKfC/tuxHsV/NHM1gYWSnpyl1z4BIIgCEpSp5/AZCHgx2b2IPAVSccDj5H0x/T3PwKPaWx0k0h3\nBdJuogJpEARTRZOTwI6Sfm9mjwbOS08BS5EkM+v5mDJv3jzmzJkDwPXX38FWW81m883njrPLb775\nXGDMTjZ3bu/tjky3/BprMFC+Q7fOzvYg+UWLlrDTTh9YKn/rrYvZc893Lt2+6aZLl04Cw8b/+c9/\nni233LLv3ydTvvhZlJXvPkYZ+cWLF/POd75zys+3rnx8XjP/82ry8+517vPnzwdYer/sxbQIEU29\nC+4FDsD9BH8ws3WAC8qYg5YsWbj05g/lTTpF+Tqyw+TryHazcOHCpRdEFerIL2uyTepuo2yTuuOc\nJ9LPHNTIJGBmKwPLSbrHzFYBzgU+Cjwf+LOkT5rZwcBqkg7ukm29TyD8CUEQTDXTzSfwGOB7ZtYZ\nwymSzjWznwGnm9n+eC/jfRoaXxAEwTJBIyGikm6TtGV6PUXSJ9L+v0h6vqSNJe0s6e4yx21rnkBT\nOQZ15Zc12SZ1t1G2Sd1xzvlExnAQBMEyzLRwDJchfAJBEATlidpBQRAEwQRm1CQQPoGplV/WZJvU\n3UbZJnXHOeczoyaBIAiCoBzhEwifQBAEywDhEwiCIAgmMKMmgfAJTK38sibbpO42yjapO845nyYL\nyAUVKVYhvemmJdx441hJ0qhAGgRBGcIn0EKfQJ1xDypjHRNIEMxcplvtoKAh7rmHgRNIEATLFuET\nGJF8G2XryrfN9llXtkndbZRtUneccz4zahIIgiAIyjGjJoFiY5aplm+jbF35Oo032ijbpO42yjap\nO845nxk1CQRBEATlmFGTQPgEJlf+lFPO4Nhjx17veteR47ZPOSXfsdw2u2nTutso26TuOOd8Ijoo\nyKY7sugvf5nNuuvOXbo9KLqoOzQ18huCYHowoyaB8AlMX93dE0h3mGqZCQTgxhvH3l9mAlnW7L1N\nyjapO845nxk1CQQzk0G5DRD5DUFQh/AJjEi+jbJN6o5aSzNftkndcc75xJNAMOOJWktB0J8ZNQm0\nxT4+XWSb1D2VskVzUhlfRC/aZu9tUrZJ3XHO+cyoSSAIRk0U3AtmOuETGJF8G2Wb1N0W2c5TROfl\nYbH+e7/JoR9tsxXXlW1Sd5xzPvEkEASTRORGBG1gRk0CYR9vj+42ypaVbyo3IvIqwidQhhk1CQTB\nTKFObkTkVQRlCJ/AiOTbKNuk7jbKNql7KmWLNaLq1IeC9tnH68o2qTt8AkEQjITik0SZ+lBBO5lR\nk0DYx9uju42yTepui+x08UeETyCfGTUJBEHQLHX8EYNyMiCiqSaL8AmMSL6Nsk3qbqNsk7rbKFtW\nflBOxrC8jOnS66KufPgEgiAIKlCn1wUs2/WlZtQkEPbe9uhuo2yTutso26TuqawvNcgPUnYCCZ9A\nEARByxjkB2lDNNW08wmY2S5mdqOZ/dLM3l9GNuy97dHdRtkmdbdRtkndbT3nJnwC02oSMLPlgC8D\nuwCbAvua2Sa58rfeuriW/jrybZRtUncbZZvU3UbZJnW39ZwXL5562Wk1CQDbATdLul3S/cC3gD1z\nhe+77+5ayuvIt1G2Sd1tlG1Sdxtlm9Td1nO+++6pl51uk8C6wG8K23ekfUEQBMEkMN0cw6ojfOed\nt9dSXke+jbJN6m6jbJO62yjbpO62nHN3ZNE551zM2mtXqxZbRraISbXuuyPFzLYHDpO0S9o+BHhI\n0icL75k+Aw6CIGgRkqx733SbBJYHfgE8D/gdcAWwr6SfNzqwIAiCGcq0MgdJesDM3g6cAywHnBAT\nQBAEweQxrZ4EgiAIgqllWj0JBEHQLGa2Ro/d96SQ7WAG0uonATN7J3Ai8Dfgq8DWwMGSzsmUPwOP\nSOo4S5SOdSXwFUn/HCI/B3iCpB+b2crA8pL+VvIc1gAeJ+nazPd/FzgBOEvSQ2V09TjWcsAquWM2\nsyWM/7wA/op/Xh+X9OcBsp8GDgf+AZwNPBX4T0knVxx+acqcb7o2+iFJe0yW7vT+fYCzJf3NzD6M\nX9uHS7qqjN6ymNntwPrAXWnX6sAf0usASYv6yC0ZcFhJ2iJD9zOBxZLuNbNXA1sBX5D0qwzZxq6v\nNO5DgTmMLawl6fGZ8usm2eXw75YkXTREZhbwMkmnVxz2GJJa+wKuTT9fCHwPeApwdQn5LwLfBHYH\n9gBOAY4B/hs4eYjsG/Gb3y1pe2Pg/Ey9FwKrAmsAt+EO8P/KlH1BGvOtwFHAk0p+Zqcm3asANwC/\nBd6XKftp4BPA5sAWwJHA54GDgTOGyF6Tfr4En8Qe2fn/Zeh9Z3q/JdmrgRdO5vkCcwe8njMFn/WS\n9POZwEJgN+DyTNl9gFXT7x9O342tM2WPL362wM7AccAzgCsGyM1Jr0+lV+ca+STwydxzTv/jp6b/\n8duACzNl61xfZwAL0s/O798ADgJWzJD/BfAi4DHAozqvTN2fBG4HflTQP/C7VJBdlPO+occZxUGa\nehW+KF8E9k6/l5kEftZvH3D9sIsOeHhRX2c8GXoXp59vAD5aRrZwjNWAN+MJdZcCrwMeliHX+bLs\nB3wWeFiJcU/4bDv7hh2j83mmL+iLimPJ0Ft5sq9zvoVjrEzJyXYEn3XnGjkK2K/f599Hts4Ect2A\n4y3OHfew62bQ9YWvqt+Qfr8qU7bO9VV5MZjksz7bPrI3AQ+vKHsU8B5gPXxBuQawRtnjTLeM4bIs\nMrNzgRcDZ5vZqkAZE8kqZrZBZyP9vkra/PcQ2X9J+ldBdnnyk92WM7N18BXbD9O+bLucma0JzMMn\nkavwi3gb4LwM8eXN7GHAXviK4/6S4356YRzbMZZ1/sAQ2TPM7MY0zvPNbC1goLmtQMf8tCv+pbwu\nUw7qnS9mtge+Kj0nbW9lZgumQPdvzew44BXAD81sRfIz/B9MP3cDjpd0JrBCpuzvzez9ZraBmc0x\ns/cBf0zmrJzvliXzSGdjR8abDwdxj5l9AHgVcGbS+bBM2TrX1w6S/kPSGZIWSNoPeJqkt+FmuGFc\nYGafNrNnmNnWnVem7lvI/99080r8aekiYFHhVY6qM9h0eOE2tK2B1dL2msAWJeRfDPwaXy0tTL/v\nhk8E7xwi+2ngg/ij4AvwFeoRmXpfDlwLHJO2NwK+kyn7PeDnwAeAdbr+NvTxEDgQN0uchd9U5gAX\nZ+p+GnAd/vh6O/74vl36vPbJkF8TWC79vgqwdqbe+cC5wM34qnzVnHOte75J/ir8qav4xDdhtTwJ\nn/UqwEuBJ6btdYCdM2V/iJtwbktjX5H8VfGj8SKOV6fXl9O+FXD/1zD5bdK1/av0uoZ8U9Q6wLuA\nZ6Xt9YHXZMjNAnZM19fyFa6vnwMbFLY3AH6efh/6FIPfOy7ofmXq/i4+ERwHfCm9vph7fY7i1XbH\n8Cz8UXtDSR8zs/Xxf/wVJY6xIvBkfIX2Cw1xBnfpfgNuMwVfKX5Vk/iBJp0flHT4CI9p+I152Eq+\nKPNIAEl/zXjvSxmw+pX03YxjLIfbiW+VdHd6ElpXQ5zp6fN6uaTTCvtKna+ZXS7p6WZ2taSt0r5r\nleHo7HGssrrXAB6HOxs7DsOhjmEzWwU3nS2R9Mv01Lm5pHPLjrkqZa6RLrk5VAi2MLPFkrasONYX\nA8fifjaAxwNvxW/mB0j6fJXjZuqel37tfEc6/+eTMmRXwSfN9SUdYGZPxM2WZ5YaQ8sngWPxR9/n\nSXpy+tKcK2nbEsfYAdgQ/6IJQNLXh8gsj68Gn1xx3E8CjsYnrM3MbAtgD0kfz5CtfLEn+RXxFeYc\nxkcyfGwyZM1sPv65rgXsAPxv+tNOwKWSdsvQW3myN7NFkrYZ9r4B8l8Dzsed33vjq/uHSXpzhuza\nwBH4hLUunX4hAAAgAElEQVSLmW0KPEPSCRmyh+Mmv1spmGEk7ZQ57mfhN9MTzezRwGxJt2bIPQm3\nM89h/P/4uZl661xfbwQOwO3aG5nZxvjT8vMyZD8DXIY/UZe+qVVdDCbZ1XA/xrPTroXAx3InQDN7\nOB5YAnCjMsNxzex03PzzmnQfWQX/Tj01d+zQ/kngaklbda3Srsn9EMzsG/isv5gxOyqS3pEh+wPg\nQGWEr/WQvQh4L3BsGr/hk8pmGbJ1L/ZzgLvxi6d4zp+dZNnz8Iv192l7HeAkSTsPlqw32ZvZUcD/\nAacB9xXG/Jdhskl+FdzsV3ziOzznJmFmZ+MhzB+UtEXyD1wt6SkZsjcBT5E0zDfVS/Yw3CzzJEkb\npxDE0yXtmCF7Le4UvYqx/7HUJzS0h3yda+Qa3Lx4WeH7vETS5hmy9+KmwgcZ8wVI0qqZ4y69GCzI\nfhc3jZ6Er+RfjZul986QnZvkOveR9YHXSrowQ3aRpG2q3v86tD1Z7N/JVABAWvGUcQxvA2xa0YSz\nBnC9mV3B2M1FyosfX1nS5X7vdyEzy03GeTP+CPigmZW+2PFV6Qsz3ztK2fXwWPMOf8Qv+Bye3pns\nwW/g6YaawyvxL/XbuvZvmCMs6T7c//KBTH1FHiXpNDM7OB3rfjPLNbtdj8fo/7GC3pfgMfaLkt7f\nmtnsTNn7JR1TQWeHOtfIvyT9q/O9sBLBFpIeUVFn38UgkDUJABt13fAPSxNaDp/DfT2/SGPZGO+j\nkuNY/peZrdTZMLONgH8NeH9P2j4JfAl3lK5lZkcCLwM+VEL+OtwZ9bsKuj9cQabDn8zsCZ0NM3sZ\n8PscwToXe+JSM9timD19EmR/DJxjZt/EV0uvIC+aCWpM9pLmlBznOMzsgt6HzTKP3Jv8F51jbY8n\n1+VwJHC1mV3H2Bc7d5HxL0kPFW6mqwx5f5EzzOxtuMNy6Q0l98mJetfIhWb2QWBlM3sBbpfPatJb\nx2RIvcUgwD/M7FmSLk5jeSbw90zZ5TsTAICkm9Lkl8NheGLc49L3akfchFiKVpuDAMzbT3Zshuer\nRME5M1sIbIkna5X9olUmzdjH4Tbyu/Aojv0k3Z4he363jbTXvgHyPweekHQWzzkno7OybJLfG3hW\n2rxI0vcy5V6Fh9Nugz86vwz4kDKyJes6z8ysaHLq2LsfkPTeDNlt8IXKZvjK/tF4lufQVWL6rI/B\nFyqdCU+ZZoL34v+nnfHkvtcD35T0xQzZ2+mx+paU9eRU8/paDtifCsEWyWT4EPDcCibDbwMHSaqy\nGMTMtsSfGh6Zdt2Fm3Ry/s8n4k8f38AXR/sBsyS9fojcLDzK8Hxg+7T7ckl/Kj3+Nk8CaWV1g1L0\ngHmewCaSLs+Un9trv6SFGbLPwOPzN8GTxpYD7i1hluncoGZJuifjvSvhNs8L8KzVDqvi5QWynNTm\n0RcwPhqBzAloTq/9w2StpiM9HaPSZD8q51nXMa+U9LTM9z4MeBL+OZdx+mXr6CO/M4WbqaTcp65a\nVL1GkuwqwD8lPZi2l8MTqYauquv4B0e1GEz3H1SidIy5Q/pt+Coe4GLgaBVykAbI1gp66NB2c9Cx\nuO2zw3099vUl52Y/gC/j9ubTgW2B1+Bf9r6Y2aslnWxm76aw2kqOYUn63ADxN+Fp7I9lfELIPWks\nWUi6Pa1cnpXGcPGwFYuZrZou7FJ1kQo6HzCzX5jZBqrgSE/clPQvD8jM1pf06wy5jSTtY2avTGO5\nr2MmycHGF1Sbhf+vc52NbwdOUUpuM7PVzWxfSUdniF9sZp/ASxgUzTJZtYPk4aDZIaFm9jxJ51uf\nkF5lhPIm6tSz+l98or83ba+MPw3skCFbxz94WIkxLqXm9xn8Tf/Es8mHOs57cJ6ZvYeKQQ8d2j4J\nUHxUlPRg8ULoh5n9RNKOKaKg+4LPdrLKY7CXSyuXE81sMR5K2I+V08/ZXXqtxzi6dX0e+LyZvUPS\nl3LG1wszOwgPw/tu0vsNMzt+iKngVDxb96o+48wxFVR2pJvZO/AQvDsZ77gbGjVCfedZ8ZwfwJPk\n9s+UPUDS0gla0l3mYZA5k8DWSe/2Xfv7hojWvK6fjZsWdu8hC3695PCjgvyK+LXxC9wkNoyHS+pM\nAEi6xzxXIIfK/sEai8F+3+ehmNm3Jb08+Xx6/a9yTKy1gh6K2lr7wv/pB+Kp5SvgK+XvT5Hui3Az\n0Ml4wax3kZmVWVPvPnjMN7hz+rtkZmQmmSV4NcvO9iqUrKVTcdxze70yZW8B1qyod2e8YN+f8Pow\nvwJ2ypBbfwTnvAQ393W2l2NITarC+9412f+THnpnAa8Y8TG3xptD5bz3J8A2he1tgZ+W0LUJ8Pb0\n2iRHX/p5L/5EXXz9rYTeZ+bs6/r7Y9PPDRgrvtd5bTCV//e2+wQeg9vlO6uj83EHz52Z8idLevWw\nfX1kN8BXpisA/4mbCI6WdHOG7Fr4anwO4xNqBjqDkuwSSZunCISPA58BPiJpu2GyHXlgO0n/SNsr\n4dUhc1bVmMecb1AYNxpS9rYuKUJnZ5WsaV/HedZlW/6OpJeWHHYnp2N94Cv4U9ebgF9LeneGbCWf\nQF3/y6jszF3HvE55uRFPw8MjO5Fy6+CT0s8GyHT3PyiWhUclTSNVKF4rhX1XSRoa5mlmn5T0/mH7\n+si+lt6mu9zQVqDl5iBJf8RDDasy7sJMX6DcL8ATgTvlWYGHldT7A/xJ4jwKkR+ZshOKg5lnl+Zy\nInC5eYKL4cXNvpYjaGafxD/vGxhvlhk6CdR0pN+GF+n6IWOF/aQhNld5mOT75GUjSqXSd5FVF74H\n78dLjr8lbZ+H973I4RIz+zJj9t6sshGq73+pZWdO9vEOs/Angd/myEq6MgUAPImxzN1hE3/HXGdM\n7IPwKzJNI8mM/BjGL24G+pzSNb0D8GgzexdjE9Bs/PrOYWf8Oiny4h77evE0xu4bKwHPxT+PmT8J\nmNn7JX3SzHrZxiXpwCHyHwAOAVYys2Jkzv146GYOrwGONrO78JvgRcAlku4aLAbASjkzfR861SVf\nABxl5apLIulzZnYhXmZYwDxJV2eKvwQPryydkEIFR3qBX6fXCuk11IdSYCTOsyrIfUXHpFdZtsLP\nsbvcQk7ZiDqJjHXtzEX7+AP45PudQQI9nNKdm+nGZoYGOKWV8kDM7Hjge5J+lLZfhF+vQ6nhc1qB\nsRt+MRnvb7hPYpDOt+B5EBvZ+IY8s3Gz2FAkvb3rmKvh13kpWmkOMrPdJZ1hY8WXYOzikTKKL6Xj\nHCVpkCM35xiPxf/h78HtfEMnVjP7OG7r/OGw9/aQXQXYBa+xn10crBPhU3h8Lv3YbGZn4dVCh4a0\n9pDtpLgvLb5mNesgZeq9nQpx72b2IGMJPyvhHasK4v2fYEbk9KuMjYU+dxclG5pjUEPn25Wc4Gb2\nFJUo921mH5V0qI3VmRqHpNdlHGOCyamEGeoW3ETatzPeEPk5ygiB7ZJ5JP60chS+6u98H++pMY4V\ncFPgxkPfXJRr4yTQwcy2UWZNkz7yddrZvRpfTW+BOx0vwZ8ELs2Q7dQ5+Tf+9AGZUUnmmZATVsIZ\nj64/lLRrlZti4YnrsXg89fmMj6ce+OSVjnER/vTyVdzm+wc8oaZvHLeZfUHSQda71WPuynbKMbPH\nSvpd8htNiEcddMPoF3bI2I18aNhhOs7ajJkLrijhJ6tkZ+7yoUywkWfqXl4lqtl2yZ6LP413kq7+\nA3i2MkpYVPU5FeTXAt4HbIovGCAzqzyZlK5XhVynru/FrKT/9LJWhlaagwp8Nl3s3wZOK7P6SBwD\nPNXMnopH95yA29OekyH7eTxq5RhgoaTbcpWqXumHSiF4knZNP+dU0LmIsSetYl/mMiuI1+AX6ttx\nR/rj8OzbQXT6w1aJoQZG5zwrg8YyT18GfEtSlk08UTnssIN5f+JP41FRAF82s/dK+naG+EjszBW5\n1bzo3mnA/6rcCnVf3KTTyUK/KO3rS8F/cSuw0MzOpITPqcApacy74c7/efjCMIdjGF8nqEyu02cY\nW2Q8APxK0m8y9S6l1ZOApLk21qHrK2kWPV359fYfSM7DvYD/lvRVMxsaoZN4FH7jfRZwhHktoJsk\nvSpH2MxWx53LKxbOZ6iDtccj79ZMtN8O0lu67ISk+T2OswawnoYnmq0FPFrS9WnXP/ACW5sxpI6O\nUlSI6iX1NXlTmw2cm/xG3wK+LQ9mGMQcAEmHmdnOw8x8ffgQ3hnrTliaOHU+vlgaSA078yPNy4JY\n1+/psFnJZpvgN9K3A19LK93TlGryDBn3n/Fw8TJ0JtpfA79hzOdUljXTvePAZHK70Mz6RjR1I6lY\nKjwr1ymxq6T3FXfkRhZ1D2BGvHAnzjfwKoi5Mhfh1SF/CayNO3hye8Cuinvxj8J7/N4EfD1T9gA8\nhvxuvAzEP/CVT9VzH9rpCr8Brol3fVqj8JqDlzPI0bMwnfcaeMTOFcB/DZE5jR6N2fHkpG8OkV0y\n4JXVRLzHMVfDyyhM5bX5VLyvwC/wkheD3nt1r99L6ltCMvWm7Vm513WPY62AL26GvW8+Hnl2Ytfv\nJwInVtC7Ov4k+OCQ930h/Tyjx2tBpq4JXfF67Rsgf1n6eS4+iW0N3JIpWznXqdf1UeX/3OonAfMm\nHfvgj91/xm847ypxiFfgj4yvl/SHZG//dKbsJbgX/2Lgy5LuKKH3IHyF+lNJO5nZk/FCX0OpEYI3\nirITq8mdy2/AJ7xDuyIbevEE9XBISrrIzIZFzezeeTs9bOsV+TtlMyrrcyfuA/kzXkRusjmbiRVb\nz8oR7GdnHiYnaV75YU7Qbbgp9hV48MOV+Pd7EJ0nul4mw1xz0iFMPMde+/pxRHpiejeeubwqbvLM\n4c146HQnu/l8PKy4L6OILBp3vDR7tBIz+yl+4z9d1SsAzqFaO7t91FXF0sxergy7q5n9TNK25mUm\ntpf0TzO7QdKmGbKHMbGMwXeU3xazctmJdMHtjFfy/JCkK2xIq0Uzu0l9ohUG/a3wnuWB85TZUauH\n/EicZxV1vxW/ia3FmN/qhiEyd+A15g2/kXR+h0w7dbqZ7k2hKJnyK7Y+p6Cvsp25CiloYTH+nT5D\nhRISGbIvBc5UifBl8zDSF+OTzrcYH+e/qTITMKeaUUcWtfZJIN0cblON/p9WaGeHN3t/HO6oySnL\nfDATVwofIMPuCvwm+QS+j8ex34XfzIci6bCc9w3gb2b2mh7HzbGRfwwv6PWTNAFshJvSBnGzme2q\nrnBY876utwxTKE9+esjMVpN0d8YYuxmJ86wi6wHvlLS4hMxXGYs5L/5ehpVxk8J3zNtFPtnMHqa8\n6JfR2JlLkuzgX1NGG8o+7A78l3kOzGl4Zd1hkUa/w5+K92Ti03HuSh4zOwn/P9+VtlcHPqu8CgCl\nW83KE1T/amZfAO5SIbLIzJ6uzCrKS8fQ8ieBS/CWg1WSl7AK7exGvXowj+nulIPu20qwa0XbbR6R\nMsMlzbNQJzhKJQ1MbqmKeaekM3G/ySJ83NvgmZa7qdBQY8AxFuDREucyFrsv5YWmfqqhm9ryeOhf\nbkLcKHVfhYcvr46bB64E/i1pvwzZXiUQslo81sXql89eAXgR/vT1LPwJcmixP/Ny37Oo0Oc3yU/I\nd+m1r49snVazi/G6YQ+l7eWAn3X//4bR2ieBxG14ev0Cxt8cckO7qrSzuwu/me3B2E0NPEuwzOph\nG8aydi8ZNAEkOjbPl+BO7E489L6UaEGoCtEfNj5Du9cE1PdmLO+UtAUet925sC8E3pRrwsKL5HVH\nl+SuXl7QY19uWn5l0hPMjVavfHZVTNLfzWx/vJ7Vp2xIu8O6dmabmO1bRMqLDuouldERzi2f/W/z\nhMaH8Kehvcir+LojXX1+zey1vXxZfTAzW0Mp4TJFzuVG+NRpNYuqRxYtpe2TwC3pNQuoEnt/oZVv\nZ3e0pK1T+F5WZnI3ZvYRvLBZp37PiWb2PxoQ2qoUJmlmn9X4Al8LzKxywhx5jtKOHbuXnqE343Sz\nz6pP1Ed+flmZUTvPKlKnfEMtzJOQ9mPsJjistMg3cedxVTtzvxLUHXImgcqlMpJ5cZ/03oXA8fh3\nLIc6fX7BF2g/NW9gZEnvEZmylVvNAreZ2YG4CdvwGlW3ZsoupdXmoA5mtoq8IXhZuVnAGyjRzs7M\nrsf7vx6Ol4roJE11MjqHXuxmdhOwRWclbF7J85phTtL03p/jZpRb0vbjgR9K2mSYbHp/Y47SsthY\n+YVeEUga4pAeeVp+Wax35zrlrDDN7PGSbh22r4/sc/BIlZ+kJ7iN8Oq6OeazyhmsTWJmp+JPEGeV\nNQ/3Cm4YFvDQ4xib4aZV4eHeAwMACnKdVrPPwEPGbyO/1WytKspLj9PmScDMdiA5zyStZ575+yZJ\nb82U3xu/gZaJKHgWvsJ6Od71aRzKq3NyAbB3lyPpO8pLM98Fv2g6GcpzgDdKOidz/HMLm1mOUutd\ntqHDpK1sbaz8wpyOLlhaLfJgSS/OOEajNzWrHn3WyzZfusxzWug8Ikdnen9tO7OZ7YYvLoqJkEMd\nvubZ/0cA60raxTwE/BmSTsjUW7VUxolU6PNbkF+/82v62anHNbTznZltKOk2M3tE0vm3zr4c3aOg\n7ZPAFXiOwA8Kjt3rc5wq6b3z8dm7TERBR/YNknLLAnfL/gC/WDvZoC/AE6/uIK8K6orAk/GL7cay\nK5+y9FnRdshd2R4k6QvD9g2Q3xr3f7ycsbDYoaGuo3KeVcEK0WeSNkpmhmM0IDvbvJTypni+SvFJ\nc1XgvZkOw1PxvJAHcafwI/Gkqk9lyPZycmavis3sK4wFHHRMMpdnOmjPxpPLPihpi+SwvVp5ReCK\npTIMdwxnlcqwGn1+k3yxUODSUi6Z/6vKk32yIOzPxAk3t+oB0H6fAJJ+beN7xmYXoJI0z8YiCvbF\nS0NnRRQAXzdv1fjstL0Q9/DnOHW+x1iNk47s0mFlyG+NX2jL47WPhoZ4Wu+Wg0t1akDxOhXKNpjZ\nw/EJ6CH8Qh/m0O4wD+i+4b+ux76lmIfP7YtHYv0JD7+dJWlupk5gNM6ziryNFH2WdN9kXkZjEBvj\n9vVHMpYsBx62eECm3k3TinI/3M5/MF4qY+gkQH078w7ypkfXSvqomX0WT17L4VGSTjOzgwEk3W9m\nud/nOqUy6vT5pXuSsoxSLoXJvlhiozPZrzhItsDJwM/xxLqPAq9K26Vo+yTwazPbEZaGhx1IyQ9B\n1SMKjsE/v//G/4GvTvvekKFzfpkxFjGzb+BNThYzvvb5wElA9YrWdXTvihe36twUHm9mb1Kq4d5H\nZl88MmjDLrPSbDyDdhA/x8NLX9h5tDZv3lGGkTjPKlI6+kzSD4AfmNkOyqhI24fl0yq6UxPrfjPL\nfeQvncHaRafk9t/Nu9D9GY9my+FeM1uzs2Fm2zOkvlQBY3zRtj/TO1JpTGBwtvtAn9MgJF1lZk8f\n8rZRTPZPkPQyM9tT0knmGeKXlB1v2yeBt+AryXXx0gnnUq6YWp2Igqd1XSTnm9m1mXp3xyMg5jC+\nvWROl61t8JVeZTte8p08G78hXawhReAKfA7vz3tzOs5GeFXTvpMAnh/we7xcQjFx6x5gmN698SeB\ni5Kp4NsM+WL3oO5NrQ4XWvnosw43J9k5lGxBirezvB2vE3VR8ktk3UxVv1vfmcnH9WnGosmOz5R9\nN/75PN7MLsWvmdz8lSqlMvbGu4l1l3xZj/wIHaxCKZcRTfadp/C/mtnmeGmS0mVJWu0TqEshouBs\n5cesd2SvwotMFW+I31ZeX9Fb8Hj/64qmiky938YjAKqWyTgIX2kU20seL+mLGbLjknnMl7hXqEaC\nTw7JabYnPiHshD/1fE/VKmxOGcnstD8los8Ksj/FCxwuotCCVNLALl19jmXAcjn+rlHZmdOxVgRW\nVIlM7/QE00mwy2kv2Tm/9XA/W3apDPN2pQdLWtK1fwvgCEm795accJzDqFjKxczWwxcpz0y7LsK/\n30NrkZnX8PouXjxzPh4m/2FJx+aMe+lx2jgJJIfbwmRjNTwG/aX4hz9PmcklNcfwPNyJ1fHib4AX\novvfDNkLgefK2w+W1bsQb+xyBeMbu+RmDC/B6xXdl7ZXwTOmB2VJd+r+Px8/z065jJfjjdPf0lPQ\nZX8iacc+Poncp5/i8dbAV4evVF401chualVJpsqnAHeUiFip3HXNakTZmNn/4Ga4/SjYmYcFKxTk\nX1vYXPr/HuSzMrPtgN9I+n3hGJ3v82Ea0vUu3QOW5DiQu+R+JmnbPn/L6kpWFzP7Md6P4Btp1354\niGivJMeOzEGSvmBmz5RU2vwz4XgtnQSuB7ZMts7/wKMoXoAnmxwq6VmZx3kpHkf+GArhXYNuTMUL\nNq103oivpm8B3j/sgk3H2B43B11AySYW1idSR5k199MksJ2kf6TtlfDV/KBJYD5jX2jr/l0ZYbFN\nUfemVlHnV4AvSbrOPF/hMnyFuCbwHknfzDhGnRakdaJsFkvaMjl2O7KXSBpm4+7Ily5LYmZX4+Vf\n/mJmz8afzt+Of5+fPEi2cIyTcP/HFTnjTDI3S3pC2b8V3lO7lIuZXaOu7nq99vX6u1Xs4NZNW30C\n9xceE3fDyxr/GfixmeWWggaPlthNUhln8lcYKzC3HV5ytnPBHkeeDfNw3Ca+IiWbWOTe7AdwInC5\nmRXNQQOzeVWjTLCN9TTud+zJbvg+EudZSZ4l6U3p99fhZo290gr9bDw7dxjvBD5gZqVbkFIvyqaW\nnVnVmtLMKlwHrwC+ksxe37Eh5S4KbA+8ysx+xfjs7EHO3Z+Z2RslHdc15gPonR3fzShKufzZvFVt\nx5fxSuD/hsjcYGa/BNbt4dwu7dBu6yTwkHmD97/gN+QjC39bqbdIT/5QcgKA0Vyw6wx63OtFH3NK\nh2yziqTPJXNUp27RPElXZ47hxO7DpWMOMq1cxfgkr7vS/tXxWi2TXdt/JM6zkhTjy3cmhSnKe1Zk\nHUD1ornqRNkclybuD+HJkI8APlxjLDllSZazsSqnz2e84z73HtXxu5QJHHgn8D3zUNrOTX8b4OH4\njX0gGk0pl9fh/Tw6VoBL075BevdNC4pz8ciiWr022joJfARPglke7x50HSw1lQwtT1zgZ2Z2Gl7S\nuWiWGVT6YRQX7I/M7IXKzPJNg6oV4pls//dL+rekRWZ2H15IbUMgaxIAfsj4R/2X4OV4+6LU09jM\njseduT9K2y8i44s2AkZ9U8vhr+YRYL/Fq6XuD0udnlkx4OaZvvsBG0r6mHlW6tqZ5o7SUTY2lrh3\nY1rkXEiFCdqqNaU5FY+k+j980rg4HeuJeCmFQfoeg5dwfwIeDfUJZWZHp0l5BzzY4Cn4tX1mjl+v\ni5XNbCONL+Wy8hCZTsjwkbkO6CKS/gBUCmGdMI42+gRg6RdqdtGckG50psxmFMnWDV0r7EE2bvOw\nvV3xR7b1gG3kfYqfCMyXtGM/2cIx7sUvkiqP+pUws4txx/UvzQtWXYk/vm4KXCnp4ArHnIXXp3lG\nxnsnONom0/k2audZSd1PwiM+1sbbb85P+1+IFyp79wDxzjGOxaOCnivpyWkiO7efI7OHfCfKxsgo\njTwqO7NVbEpjXt5jbfwcO0ELG+MlL/oGepjZOcDP8Iljt/T+eVXHXwWrUcrFapTDN7NepSUk6fGl\njtPWSaBJql6wTWKFmvBmdjheyuBt5pErV1W5GZu3xTxzmAMtvfdcPPytYzf9D+DZkl5YVm/m2Ebq\nPJtqOuMujn+Yw7Ag+3bgFI2vTbWvpKMHyJwKbIvn3HQ/TWfbmW2K+zd0fyZN/b9tfCmXXyi/09/J\nwCbADyhZDt/MHlXYXBF/2ltTUqkn3baag2phXhe/H9KQyBFJP+2x76aSY9iTsYStCyXlJhFVpTjb\nP4/US1meMZ2Vq9DllxDu/Mr9cu8LHMpYuYyL0r7JYqTOswb4txXKW5iXQcjNKTlA0tK+0ZLuMg+r\n7jsJjNDOPNX9G6wQfGC4uXZpMMJkBh6Y2fs0Vo9pdxXqFJnZkZI+kHGYyuXwJXU7kD9vnr8Uk0AG\ni+jtZLU++0eKmR2FJ7acknQeaJ45eMgkql1iZp/BbfgbkYrXpVVi1jnX8UvIo7cOtIplvyvoG6nz\nrAG+hE+Ya5nZkfgq70ODRZYyy8xmaXzRvIcNE6pjZ7bm+jesysRIns628BIrk8W+jNVj6m4t+6K0\nry9mthVwPZ40Wrrmj3ljqs53dxb+JFe6LlYrzUFdJz+B6WqS6ZC+JFsqJYulL+liZbTwswq5DUlu\nZeAg3Iz1NaVSEckxtpGkkwfIbow/OXScb++RNDAtvscxapX9XhYxLzLWCUc+P/dGkSb79fFwZsMr\niv460xdRyc5s06B/w1TTZaobZ4YaZpYybyz1KnzC2h53aB/X7/19jrGQiZnKn1FGy9Zxx2npJLCQ\nwZPA0E5ETWJeY2inzpfDPJzvghwThXnJibK5DbVIzquTcOfb7nj26d4lj1Gr7HdVRuU8q6j7nXhe\nxt/wCXBrvExBbu+H1fGb+dLCczkLnLSoeCNjE8h5eLmKoRnqde3MZrYBPb6byqutf0+P3X/Fgxje\nrYyGOlNJzUngBmBbeRvQNYFzcp3+o6aV5iCVLCU8DfkEcJV5cxkDnoOX+82hSm5DXR4hqVME7Ebz\nDM/SqEbZ7xoU6xotvalNgV7waKzPp6igNfBKsyfjNYQGkpz38/CKp0VfQM4CZ0XgOEnHpGMth8e+\n/32gFCOxM5/ZNY4NgV8w1l96EF8AfoOHjIInTm2EhzB/DZibOYapYovCxLVS1yQ2LF/pX5L+Dm4q\nTZF2pUjO6Jfi0UjLwdIM/qENfIq0chIoYp4AtAnj68IMLKvcNJJONU/Y6nRBen+yx/bFxur3VMlt\nqMuK5jXSwS+0ldJ256LLMb/VLvtdhVE5zyrSmfF2BU6Wl5HIlX0FbqbL7ddQ5H/xp4BOqPTK+MSz\nw5VRvkUAACAASURBVDDBunbmbpOmZdTWL7BH19PwceZlLN5vZpPpL6uEpDp9KR5v43MqittSXi2w\nH+B5FIuAUgUwi7R6EjCv3vccfJXxQ9wZcwlDauvXjQ6qSoonni3p2/IqoD9I+19mZn+VdN4A8WIj\n738wliHZIWsSMLPN1VU1MYM/ML7hRvd2zuq0U9K5UtnvqozKeVaRRSk09vHAIeatLXMjfK7Hbey5\n5QeKPFyFXBlJ9ySfUA6fZaKdeZ8KY+jozqmt3+HvZvYKxhysL2Ps5jbQbm2e+3KHpH+a2U54Zc2v\nq0QF0ylmz67t4vcp10a/7ihCrFvpE+hg3tbtqXic+1PNswdPkfT8IXLzGF8ErYgknTTywbreS4G9\n1FVJMoX/nSFp+4xjTEh+6rVvgPwluGngRPyzyi0nUBnzzMiTJO032bp66F7ICJxnFXXPwmtK3SLp\n7mT7XVfS0L4TZvY0fJFwHSWrxZrZT4ADJS1K29viBe2GJvXVxXrX1l8j52ZlXo79C7ijFLzw3jvx\nRcM2g65x85It2+CmkR/hn91myuhD3VbM7DjgyznX0yBa/SQA/EPeLvCBFJ1wJ57FOxDV6OxVk4d3\nTwAAkv5knu2cwxfxL9awfT2R9MwU7fN63C9xBXCiJrE2v6QHzGwDM3u4Jrkfcg/dc6dSXxfPAK6R\ndK95kbCtgc9nyn4dj7S5jkI/gUzZdwKnm1mnMco6ZDaKGYGdeTbjJ90zgaweCPKyC7v1+fOwRc5D\n6TrbG5/wvlTVd9UingW8LgU/FBcKy0QBuQ5XpgiK4/HU8fvwAkxZmPd7fR9eOqHjyJEy6tRXZLaN\n1R0qjmNoTRnzLOUd8LjxdzH2BDObkuYNeR+GD+Gf2ReBLdOq9QOq0LQkk9uAS8xsASUzI+swKudZ\nRY7FnYdPBd6FRwh9HTdhDuNeZTT66YWkK1N46ZNIGay4YzqHWnZmSYeVlemQvo8HUK2b2r/Ny8q/\nBtjd3PkyNDei5bxoFAdp9SRQiDE/1ryGyKrKb5UInqx1Gr76eBMejfGnQQI1+S7u7HpHx2ZrZrPx\nR+BhNv0VGLvhzy7s/xv5LfhIN6R5+Dmfh4ebXmVelfUyMldtFaicGVmTkTjPKvKAJJlZp9fvV80s\np381wMVm9gm86N3Sp6dMJ3wnE/wOfAL8Ar7QWSdDtJKdOTk1u2vqF4aT7ei8CL8uyz79vB7/Dh8h\n6TYz2xCPxJrWmNnLVcg07revF5JuT+9fi/zm9BPH0EafgJltIunnhYiVceR+UczsKklbW2qgkfb1\n7TZUl7TiPxxvRt+Jm14fOAH4UPcTQp9jbCDpVzXGcBG+Iv2fToha4W+v6RVZZTWS88yb1szu4QdZ\nC08k+kdvydFgU9Qhqo/ui/D+Aa/DH93/RH5S4EJ6x9sPdMInB3CnFeeWeEbtXni7xZw8gUp2ZjP7\nE96r91Tg8s7usWHrwoxjVO6m1nWcNYDH1bWVTwW98gmG5RgU3rcH7lB+LG4K3wBvmFQq96atk8Dx\nkg6o+kUpHOcySdunCI4v4iUVvi1po5EOeKLelfHsW4Cbu2/GfWQG1RbKXWlVot/nXFDe9/M2LyF9\ndreZycxeglfU7NuachSMynlWUfc6+M34SkkXm5eDnttrou0h+3h1JUf12tf191OBp+ORV6fj5aBv\nlpRdEtrMfo5fm6XszMn5/wL8fDfHo/VOlXR9Cd11uqldiEfQLY8/9f0Jr3D7n2WPNRWYl1J/Me6r\n+RbjzbubStou4xjX4p3bzpMXG9wJeHWm+WzsOG2cBEaFec33i3Fn8pfwVdNhkhY0OrAeWJ+2kh1U\nrr1k92N7Jyvz4xpxin/naavP326QtOko9fXQUemmNkL9c/DuZj9Ok//yyqh33+tzM7NFGt+8pFtm\nMW7yOhU4Xd4C9baSk8CcXvs7pofMYzwcnww+g3+fvjxEpCNXucS6jbXFfAOwnqRDrVA5d7qRzLJb\n4W1mPwxL65bdg1cPuGuAeOcYiyRtkyKjtk5BMteWvbZb7RMws7cB31SJkrlFNFa5826mXzbiOHJv\n8hmcjUdtFNvZrYzHo8/HV1N9sfLJeYPi00tnSVZgJM6zKphX7jwAd8puBDwOOIaxcg69ZDbB7fer\npUiXzs1hVYbYfdNNcBP8BnxBMtHMNrO1NSQZsXCM29M4StuZkxN+V/yamoP7Ir43SKZLdx1f0XLp\nyWsfxgrtTdsVbvJdXmNmp+AO7PUl3VjyMHcln+LFwClmdidjCYLZtPpJwHo3ac62K9aMRmiEFN55\nJJ4g1/mSSpm1cAbZIIetnKxPcp4GNxG/CHivpMu79m+Hx+s/O2fcdem+qSmjls0IdF6D96G+TGM1\nZoZ9xnviHdd2x53CHe4BviWpTPTbtviE8HI8kSonY7iSndm8Lv5meIz+aSqRkDgKH5+ZvRxfUf9E\n0lvMcw4+JemlQ0QbJX3en8bDx+eYVxb9aI5518wegSeOdrrQrYrn/pR7mpfU2hewBO/529leDri+\nhPxPgU/iq4eXpddLp2Dcs/A6Mh9J2+sD22XK/gRva3kt/gU9DDi8hO5rgacXtrfDY9kBrh4ie136\njDvvfwzw4yEy2+EJWofhN7Y9gI+mfdtPwWe9B/BLPHz4NjzqJPsaqan7iuLnii80rs2UfUYFff+B\nF3vrdb09p8T18ajCmHfCq84Ok3sIn6h6vf42RPb49HMhcEH3ayr+V0298B7cqxW/e3hp6SkbQ6vN\nQXg9lG+ZWbFk7tkl5FfSJHU8GsLRpNaBuE3w3rQvJyppJbl92eRRQodZuVo4+wMnplUE+Jd0f/Nk\ntU8MkS2dnCfpCvOyAW/DQ1PBSyJspx6Jc5PAx/GkrXHOsynQC94394N4D9oX4PX2c5sH7W1m1+Mr\nvbPxzPj/1ICS3/hi4tvmtZl+DJyFT0QP4U7iHO6X9H9mNsvMlpN0gZl9YZiQpMqmPUkHpJ9zqx7D\nvKXn0Xgf5s3MbAu8FtHHqx5zirhfnk1e3DewtIh5obpB4bil2tS2fRJ4P14ytxNhch4e/pjLmWa2\nqypEI9Tk6emGdDV496MUPprDP82rQt5s3kbwd0ButjGSrgSekm7iaHzZiGENwUsn56XonLNw009W\nA/ARU+mmNiIOxifdJfgC5UfkX587S3pviqK6Hdgbt/32nQQkHQUcZV6j6Pl47PyxZnYj/j84R9Kw\nWkQjsTOXwbw44qDos5y6WMcD78UT9MA/81PxRcB05noz2w9Y3rxP+YEMT3g9H8/5+A5ueqscMg4t\n9wnUpU40Qk29l+PZvz9Lk8Gj8X7FObHB2+HVN1fDcw5WxW2fl2XqXg1v89ixxS8EPqaSNYTMk3GG\nJueZ2fa47+C5+Gd8Dh4yWiaprzJm9mPcxv4J3MxxJ17Hfah9vEks9VowsxPwnI6zevnAMo+1Gf4/\n2FlSd+HB7veOxs5cbnzz8UlgLfx78b/pTzsBl0rqV0qieIyfSdrWxtf4H0newWSSIsY+xFhByHNw\n8+7AxMb0Pd4bDzFdEV/AnaoK7TRbPQmY2TPxG9ocxjt2J71hSB3M7FW4H2IbvFnLy/BksWEr8eIx\nVlZGfkEPue/iq6ST8MfJVwNbaECTmFE47tJxHoVf7C/CY8mvBs4qc95laeKmVtBd+fo0b0G6Fx7y\nuR0+6Z8haWhFzvQ/PgH/bHOrljaOmZ0HvEbS79P2OnjhwYETV3rvWcA78DyfrczsZcD+khqLDhuE\neRLlmxnr1vc1ZSSL9jjOLNz5/wXgSFUow9L2SeAXeLGsq4Cl2ZCaWEN+0DGmuuF7R2/V1oG12jT2\niagauMK0ESXn9TjutsALJR1RRX66U/f6NM98/Wvyw6yC/8+Hhnom/8Pr8Gqcp+MFAgdWTR21nbkK\nyWy1idJNKd3gbpD05AzZjYDj8CeJu/AggP1UIr9hKjGz03ELxCXALsCvJB1UQn5HPBT32ekY35J0\ncaWxtHwSuDxnZTRAvrvh+ytxE82kNrBIJpIbOjbyZMPdRF1hlH1ka7VpNLPL8JDNi9P2M4FPa5LL\nDNvEVotbAYcos9ViBX3T4aZW+fpMN/134fHjByR78ZMknTlEtHiM1fBr+kN4mZLjgW/0WnGa2fcZ\noZ25Cmb2ZWBjxnJYXgH8UtI7ShxjFTxisFerymlDMVTYPNv6yhxzcHr/r/CJ7jTcP/AghcVZ7pP5\n0uO1fBI4Cg9Z/C4VimxZjYbvdTDP7NyqsOJZjuQfyJC9QtJ2XbbPbFuxmW2JV7J8ZNp1F/DaHBu9\n1UjOs5TJaN5q8c14NNPJuRd+WabJTa3y9ZlWiotw88hm6eZ2aYn/85q4qe9VePDAN4FnAk/pF4Uz\nSjtzFcxDZF7C2JP5RZIGJpvZ+P4FxZtZp1rspFaprYqV7EncJbsw/drz5l32ybzt0UHb4x9Ed2hl\n7ocg3NbasQ+vxhRlGaow+6bH/dxy0LXaNEpajJc3XjVtl4nYeaOk/y4c6y7zrNicDO06rRZLI2mv\nwk3tOPNs1im9qVHv+txI0j5m9koASfflfl5m9j3gyXgk0e4dGzseTr2on5y8C9fXkqO2Y2d+ODAl\nN9L0nfgumV3yEsX+BW2i2J8YxvcoHvik2m8Sr0qrJ4ERfBh1Gr7X4TYzOxAvIWB4iGvfwmBdvAX/\ncpZq09hvxZRWX7krpllmNqvjbEwTV25oa7HV4sFWrtViJabBTW1uDfF/JechsNTmPbQhT7KjXyXp\nJX3GNKj2ULed+SVV7cxVMA8VPQpPQixWIB10QzxsCoY2clSvP/FIabU5CMDMdsNrrRRLAmQ3DDGv\no99p+H5FjuOtLuZtML/I2IrwfOAgTWLylHnJh17/7M4k8NGMY3wGT0gqJuf9WtK7Bwqy9OZUqdVi\nVUbpPCup99WSTk4TbyUThZntDHwQv7bPA3YE5km6IEO2dGjkqO3MVTCzW/D+FtlPtgXZtiaLNU6r\nJwHzTOGV8Bj04/EaKZdLymrckW4SxfZ/WwFfaMJ+PAwz+1Jhs9vhKUkHTsEYlsOT8zpRTecBX1Ve\nnfqPSfpI17FOlvQfkzTWxm5qZvYmSV/pMfFmT7jpOI9irN/u5ZKyGh6lyfoy4DvK/IKP2s5cBTP7\niaQdK8peREoWk4eIGl5+oVRt/baQzu9xkn5T+1gtnwSWSNq84HR8BJ6I9MxceWCL9JqPR63sIymn\n/V9lrELhOjObx9jN/6PARxj/yHxSpu718KeQzmd0Ef4Ucke5syhHMsn8QtInzEsNn47XSzlskvQt\nTL82dlOrg3n/iFPxKLD7Ssp2kiAfZKyb2pRERNXBPJN7beD7ePgk+LiH+gispcliVUmTwBKNoGFS\nq30CeBIQwN/NbF3cwbt2Cfk67f/qULqNnqT5nd/N7KDcm34PTsRDYvdJ2/ulfS8YJmj1kvNej5ch\nOAR/cvuRpP8qN/R8Ru08q4KZfQovW1Cm/k+Hz+JROp8wsyvxxiNnakgmKdQuydwkj8Q/q+7ksBxH\n8Z/MrNOoCfNksd8PeH+rSfetRWa2naQr6hyr7U8CHwa+jN9UOlErx0vKKqZmNdr/1aHuCqVMOFkP\n2dLJYoX3lU5+svGtKR+G+xMu5f/bu/MgS6vyjuPfH/siDChEEIQJS5BVGJbIFmuEAqoCGFargkik\ngkIFAkhSGEvCEGMpEoQyqYQCZBFEBAQUDUuQsA8ZZgaYYRkqUJCqSIiGXdZifPLHOS/3dk8vd3/v\n7fP7VFHT/Xa/9z10933Pe855zvPkHDqDmGuuS/VzVcr/czAp7v++aKPoh1IM+VzSyPGgqZ7m1UUZ\n0FGnxmaxPUn1QYZ6s1gv5PfjVsB/kfJ4QQcFk0Z6JBAR38gf/kTSL4A1ckRIq44mPQkfHxEvKpX/\nO6/X7ZxAXYnrAF7K6x/NRWVa3WH9akTc2ub1zmfsjelVUlGa8/PnQz0t06Xq/XUwKf/Pa5JafurK\n0UGHkv5O55BSfUxl/M96vKH+WXe6uJvXl06KiP3ylPBKUU+ywkE7sBcvMtIjAfhgcXc2aVMOMG2l\nq+q8VUjphQf+xlAHievyOdUva00aU2HTnjvudWaTSmlWC44PAqdEC0VW1OXmvEHr5eJZh9fvJv/P\ndaR6wbeRpoLubWUBvhfy1Ops0u+6Wsy+dwDX7XhxV2kn/J6tLoTPJOqyYNJIdwKSribFnT/K2OmJ\nlraZS/olqYhMO6OHYqmL3EFKm7WOYMWbS8vhvO3q5eJZF23oNP/PQaSHlLZv/Ooi5YSkc0lrEU8y\n9j01ZdnRXuhmcVfSRaRqaNcDVWLFlhaVR5U6rAI33khPB5GycG7XRe//JrBUKXth85zaIMIt1we2\nZmwPPoinrY5Lana52PpT0lTQIhoRK33Vy8WzTkg6jtxp5g6p+juddqQaEbdJ2kspZXfz72nac0kL\n/YtIydQgpY24AWgl79BhpA5j2o1pfdDN4u4awMuk9cFmM7YToEcFk0a9E3iclB/mhQ7Pr7aoV2/O\n5jdq30g6gZTu4eOkdMqfIpW6HP8H3A9tRyY1U+eb8zaJiJ7MYbbpU8Dn876BjhfPOlRtQoT089qP\ntKjeynTlhKPcVs6li5QTwLPAarSwO7kPTiYt7m4j6QXy4m4rJ0bEn/WxXcOqJwWTRr0T2BB4Uimz\nZvVHG9FCkeb8jVcoFXXYLCKW9auREziVdIOYHxFzJX2C6Us79krHJTU1yea8Fk9/UNJO0ccdwpOo\no+MBICJObv5cKZfRj1s8vZtRbtspJ9TYjPgW8GieKm1+T/V9dBwRzwJjFneVss9eONk5ks6MiHM1\ndjNl00v2v9016kkVuFHvBOZ1c3KeUzuPlE9mtqRdgHNa7US68E5EvC0JSWtExLIcGTEI3UQm7RWN\nzXnnSDqf1ms67wt8UdJzjL259PWJvAoRHL94VpO3gN9v8Xu7GeXOI/1eNpV0DTnlxDTnLKIxarmF\nAY+Om0VE843sDKboBEhrF5Dav8JL9axRw+mzpKnV02kUTGppN3qzke4EIuLuLl9iHikC49/z6z0i\naRBVyf47rwncDPybpFdIdWQH4TTga5I6KanZzea8Wio8TbZ4BvQ9nYDSrt/KSqRptFarqHU8yo2I\nOyQtphEBdmpMk3Ii8mbE/BT+doxNr1535zmVrZRKrl4dEe/X3ZhByAv9H42I+/Oh5cAVSps5m7Mi\nt2QkOwHlHCPjwiYrLYdLkubUXh03X9r3cnwR8Sf5w3k54mZdWn+i7vba3ewmvSV3XufRePK6pMXr\nPg+1PJH3ZPGsQ+c3ffw+qXpUq+Gq8zq9aF5PuIe0Ma3dac47SUXqq6fxtUh1b4e1JvOmpJHCtkpp\nYO4nhT0/GINLGT5oFwITFb56PX+trUiukQwRlbR59CDJm6TLSMnFvkrKO/+XwKoRcWK3rz3FNVch\nxT5PWzKvj23YhPRE/MFDQLuRSTnks+XNeb0KZ2uXpEURsaukx4A5OVRzyYAWhpvbsQHw0iDi2CV9\nhjT9tg9pR+liUocw1bRKde4KIZmthml2apKHucpa0ULaZaV8VLuROvy98r+vRsS2PWvokKhCaSf5\n2uPthkSP5EgAuIm0gxJJP4mIIzp8nZNJpffeJSXruh34xpRndCki3pf0dK86snZNFgdOihhq5fwx\nm/MktbQ5j/qeyHuyeNYOSXuSFvpfJv09XQVsAKws6Qsxxa7raW6ILY1yI+KuvPFqN9Ii/onADkw9\nt155U9KuEbEot2c3xm5M7LkuR6eVNUkj6ln5vxdIBdxnovWm+Frbo+xR7QSa52/ansPPkRMnkp6S\nlpB2Gq5Qd7WPPgw8ked7m8MW+70gDV3EgXcZttiTcLYO9GTxrE3/RBquzyKtNx0UEQ/lKLBrgUk7\ngV7cEHNkz9qksOP7gd2i9VoVpwHXSari8zcmPTQMJUmXkNZa3gAWkKaCvhu5BOoMtVDSlyLi4uaD\nOfR80spxkxnVTqBbV5JSNtxPWrDcjhS2OSgtJbjrk27iwLsJWxzoE3mvF8/atHJE3JHb8XcR8RBA\njgIbxPzrEtIoYAfSPPErkuZHRCtP9EtJuZ2qaLWnSYvaw2ozUnTff5Iq7f2KtClxJjsNuEnSMTRu\n+ruSfg4TVpSbyqiuCSynsTW87Tw6ynUI8serAA9HnwqeD4umOOqPATuT1kLaigOXdD0p0qTtsMUq\n6oR0Q6meyH8YEX25GSslFPyb8fsSlJKSfTP6mAZBY9MedFxQvAftWIcUGvpXpKRsq7dwzuKImDPd\nsWGiVLVuexrrATuSOvmHoqmQ0UyiFM0yl9TRB/BERNzVyWuN5EiglYWiaXwQSpbn6Lt8ufaMm/dd\njZRi+bdtRDV1ohdx4N2ELVZP/cvzDfqlyLWK++SjE21Mi4glSqkY+qm5iHhzAXFIDy19JekU0sLw\nrqRdt5eRRr1TnbMx6QFhLUlzaPxdrEuKEBpa+e9oqaRXgddIo5+DSeHfM7ITyKPxu/J/XRnJTqAH\ndhr/xmz6vJ0Q0440z/vmp5hDacR09+uaV+TrdRMHPq/d645bJP170vrBBqSi9cdNtUjapZ4unrWj\nBw8p3VqDFIm1qI3Y+QNIo4ZNGBva+gbwtZ62rocknUojGuh90prAA8D3SRvubBojOR00E/U7DK/p\nOg8B+1dP5nnK4PaI6EscuKRFNBZJL2HcImm//p8lXQvcNcni2f4RMbSLnb0gaV9gq4i4XNKGwIci\n4rkWzjsyIm7ofwt7Q9IFpFHO/E6mKc2dQC0kNYe0rkQatn86IvYcwLXbjgPvZnNe82tLeqo5bruf\n8+OSNiKFEr/HBItnETFjSw8qFbjflRQF9gd5X8h10WIRd3WeJNBGUKnTQXU7hMbN9H1SyojPDuja\nncSB/yl0HL7Y3GkMJIU0QKRKcXsxdvHs550uno2Yw4BdyJ1fRPwqj/impe6SBNoI8kigMJJ2J2Wy\nrIbOGwOfi4iFU5zzQXRIu5vzponkWjMi/CDSY5IWRMQe1UhLqcjM/FZ2SVeRc9Wu6ryGdFtE7NP/\nllsd/AasgaTvkBZJ3yblDPokcHpEXNXva0fEw0oZS7chRYAsa2GjXMeb84ZgkbRE1+cn+vUkfQk4\nHri0xXO7SRJoI2iYN4HMZAdGKoR9MGkqaEtSbdW+y0+FXyXF+y8lpdA+eBDXtsGIiPNIlcRuIFWv\nOysivtfi6T/X2CSBz5NSqtgM5emgGkh6IiK2l/R94IaIuFXSYxHxyQFc+zrSm/sLuQ1rkzIuTnrt\nbjfn2WBMk3foXeAZ4OsRcecE555OCq1cXIWVqs0kgTaaPB1Uj1skLSMtlJ6klF55UIumbZce9JTO\naJhq4T7vjN8euIaJaylMmpK5D021IeKRQE0kfYSU6nZ5fhpfJyJeHMB1HyTVun0wLxpuCfwoIvbo\n97WtfpJOjIiLpvh6MSmZLfFIoD6fADaXtGr+PGgtG2dHJN0REQfQWelBmyGm6gCyklIyGx4J1GKy\nlMwRcUofr9mc1GwDGmkqHoqI/+vXdW00TJCSeT7pb2Mmp2Q2PBKoSzcpmTs1S9LhNBKDVQsBf6RU\nGObGAbbFhk+JKZkNdwJ1eZy0SWuQuU5mMXXtUXcCBYuIA8elZP4KsKOkGZ2S2TwdVAul4vI7k4bd\nbaVk7uKaA8tjb6NN0sdJi8J7k/ayfCQiZtXbKusXjwTqMa/uBpg1c0rmcnkkUAhJO+YdwmYrcErm\ncrkTGKBpdnR6562ZDZw7ATOzgjmBnJlZwbwwXBhJ+wBnA7Np/P4jItpKEW1mM4Ongwoj6WngNGAx\nY3cre9ewWYE8EijPqxFxa92NMLPh4JFAYSR9G1iZtEO42qhGRCyurVFmVht3AoXJu5VX+KVHxNzB\nt8bM6uZOwMysYA4RLYyk9SRdIGlR/u98Sc4LY1YodwLluQx4HTgKOJqUP/7yWltkZrXxdFBhJipo\nP6gi92Y2fDwSKM/bkvatPsmbx96qsT1mViOPBAojaWdSLeNqHeAV4LiIeKy+VplZXdwJFErSugAR\n8XrdbTGz+rgTKISkYyPiKklnMHafgEi5g75bU9PMrEZOG1GOtfK/6zB5TQMzK4xHAoWRtE9E3D/d\nMTMrgzuBwkxUcF7S4oiYU1ebzKw+ng4qhKQ9SYXEN5T0FdJaAKTpoZVra5iZ1cqdQDlWo3HDX6fp\n+OvAkbW0yMxq5+mgwkiaHRHP190OMxsOHgmU5y1J/wBsB6yZj0VEfKbGNplZTZw2ojw/BJYBWwDz\ngOeBhTW2x8xq5OmgwlSRQJKWRMRO+djCiNit7raZ2eB5Oqg87+V/X5R0MPACsH6N7TGzGrkTKM83\nJa0HnAH8I7AucHq9TTKzung6yMysYB4JFEbSFsApwGwav/+IiENra5SZ1cadQHluBi4FbgF+l495\nOGhWKE8HFUbSgojYo+52mNlwcCdQGEnHAlsCtwPvVscjYnFtjTKz2ng6qDzbA8cCc2lMB5E/N7PC\neCRQGEnPAttGxHvTfrOZzXhOG1GepXhzmJllng4qz/rAMkkP01gTcIioWaHcCZTnb2kUlKl4TtCs\nUF4TKIikVYAnImKbuttiZsPBawIFiYj3SVNBm9fdFjMbDp4OKs+HgSckLQDezMe8JmBWKHcC5Tkr\n/1vNAwqvCZgVy2sCBZK0EbA76ea/ICJ+XXOTzKwmXhMojKSjgf8AjgKOBhZIOqreVplZXTwSKIyk\nJcD+1dO/pA2BX1alJs2sLB4JlEfAb5o+f4kV9w2YWSG8MFye24DbJV1Duvl/Dri13iaZWV08HVQI\nSWtExDv54yOAvfOX7ouIm+prmZnVyZ1AISQtjog5kq6KiGPrbo+ZDQdPB5VjdUnHAHtLOrzpuEib\nxW6sqV1mViN3AuU4ETgGmAUcMsHX3QmYFcjTQYWR9OcRcWnd7TCz4eBOoECS9gY2J40Eq+mgH9Tb\nKjOrg6eDCiPpamAL4FFgedOX3AmYFcgjgcJIegrYLvyLNzO8Y7hEjwMb190IMxsOng4qz4bA9Lxa\n2wAAAyRJREFUk7megGsMmxXOnUB55tXdADMbHl4TMDMrmEcChZD0WyavIBYRse4g22Nmw8EjATOz\ngjk6yMysYO4EzMwK5k7AzKxg7gTMzArmTsCKIGkjSddKekbSQkm/kLT1JN87S9JJA2rXlyW5yI/V\nxtFBNuNJEvAgcHlEXJyP7QSsGxH3T/D9s4FbImLHPrdr5YhYPv13mvWPRwJWgrnAe1UHABARS4BH\nJN0paZGkJZKq1BnfBraU9IikcwEk/bWkBZIekzSveh1JZ0laJuk+SddIOiMf31nSQ/n7b5S0Xj5+\nt6QLJD0MnCrp7KZztpR0ax6p3Ctpm3z8KElLJT0q6Z7+/7isJN4sZiXYAVg0wfF3gMMi4g1JGwDz\ngZ8BZwLbR8QuAJIOALaKiD0krQT8VNK++fzDgZ2A1YDFwML82j8A/iIi7pN0DnA2cDppw96qEbF7\nfu2zaWziuxj4ckQ8I+kPgX8G9gPOAg6IiP+R5E191lPuBKwEk815rgR8K9/Qfwd8TNLvkQrtNDsA\nOEDSI/nztYGtgXWAmyPiPeA9SbcA5Bv1rIi4L3//lcD1Ta/34/ENkbQ2sBdwfZq9AlLHAvAAcKWk\n63AZUOsxdwJWgieAIyc4fgywATAnIpZLeg5YY5LX+FbzdBKApFMZ22GM7zwmO/7mBN+zEvBKNfpo\nFhEnSdoD+GNgkaRdI+LlSa5l1havCdiMFxF3AatLOqE6lheGNwN+nTuAuaSSmwBvkJ7yK7cDx+en\ndSRtImlD0hP6IZJWl/Qh0k2aiHgdeEXSPvn8Y4G7p2iiIuIN4DlJR+ZrKLcRSVtGxIKIOBv4DbBp\nxz8Ms3E8ErBSHAZcKOlM0lz+c8A5wPckLSHN5T8FEBEvSXpA0lLgXyPiTEnbAvPzVM0bwOcjYqGk\nnwFLgP8FlgKv5esdB1wkaS3gWeCLU7Stmq46BvgXSV8HVgV+lF/7OzmcVcCdeVHbrCccImrWBUlr\nR8Sb+WZ/D3BCRDxad7vMWuWRgFl3Lpa0HWkt4Qp3ADZqPBIwMyuYF4bNzArmTsDMrGDuBMzMCuZO\nwMysYO4EzMwK9v929Q++W5zB9QAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x107f188d0>"
]
}
],
"prompt_number": 15
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_publisher['Advertiser'].value_counts()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 16,
"text": [
"TD Ameritrade 75\n",
"Charles Schwab 41\n",
"IBM 33\n",
"Capital One Spark Business 23\n",
"Cognizant 21\n",
"Jp Morgan Asset Management 21\n",
"Air China 20\n",
"Chevron 19\n",
"Scottrade 19\n",
"Barron's 18\n",
"Fidelity 18\n",
"ETrade 18\n",
"Investor's Business Daily 16\n",
"Tiffany & Co. 16\n",
"Rolex 12\n",
"...\n",
"Wisdom Tree 1\n",
"Prodigy Network 1\n",
"Accenture 1\n",
"Aberdeen 1\n",
"T. Rowe Price 1\n",
"TIAA CREF Financial Services 1\n",
"Forbes 1\n",
"Select Sector SPDRs 1\n",
"MyCase 1\n",
"Jetblue 1\n",
"Healthcare Education Project 1\n",
"Chevrolet 1\n",
"Gilbarco Veeder-root 1\n",
"Toyota Corolla 1\n",
"Delta Airlines 1\n",
"Length: 143, dtype: int64"
]
}
],
"prompt_number": 16
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_publisher['Ad Type'].value_counts().plot(kind='bar',alpha=.30)\n",
"plt.xlabel(\"Advertising Type\")\n",
"plt.ylabel(\"Number of Occurances\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 17,
"text": [
"<matplotlib.text.Text at 0x1080fb110>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAFZCAYAAACVAyhlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXFWd//H3ByKyBQKKbCKNAkIw0ICgoiONIuIGKLsI\nNDL+VBTEUceAOkR0EDdk1BFUlAREtsGFqOxSAg8CAgk2xtggRA2rgKyKAvn8/ji3OpVOL7fTXXVu\ncr+v5+kndW8t99NL6tQ933PPkW1CCCHU10q5A4QQQsgrGoIQQqi5aAhCCKHmoiEIIYSai4YghBBq\nLhqCEEKoubY3BJJWljRH0uxie4akhcW+OZLe0vLY4yTdIWm+pD3anS2EEAJM6sAxPgLMAyYX2wZO\nsX1K64MkTQUOBKYCGwNXStrS9qIOZAwhhNpq6xmBpBcDbwXOANTc3XK71d7Aubafsb0AuBPYuZ35\nQgghtL9r6GvAJ4DWT/UGjpZ0m6TvSZpS7N8IWNjyuIWkM4MQQght1LaGQNLbgQdtz2HJM4DTgM2A\nbuA+4KsjvEzMfxFCCG3WzhrBLsBekt4KrAqsJeks24c1HyDpDGB2sXkPsEnL819c7FuCpGgcQghh\nGdgeqlu+fWcEto+3vYntzYCDgF/aPkzShi0PeyfQV9y+GDhI0iqSNgO2AG4a5rUn5OuEE06YsNeK\nTJGpqrkiU2SyR/783IlRQ5C6hppJviRpu2L7buD9ALbnSbqANMLoWeAoj5Z+nBYsWNDOl18mkamc\nKmaCauaKTOXUOVNHGgLbDaBR3D50hMedBJzUiUwhhBCSWl9Z3NvbmzvCUiJTOVXMBNXMFZnKqXMm\ntbn3ZcJJanePUQghrHAk4U4Xi5cHjUYjd4SlRKZyqpgJqpkrMpVT50ydKhZ31DnnzOaJJ0Z/XH9/\nH/Pnj/zAyZPhkEPeMUHJQgihelbIrqHTT5/NxhtPzJv3PffM5gMfiIYghLB8i66hEEIIw6p1Q9DX\n18gdYSl17qcciypmgmrmikzl1DlTrRuCEEIIUSMYVdQIQggrgqgRhBBCGFatG4KoEZQTmcqrYq7I\nVE6dM9W6IQghhBA1glFFjSCEsCKIGkEIIYRh1bohiBpBOZGpvCrmikzl1DlTrRuCEEIIHagRSFoZ\nuBlYaPsdktYFzgc2BRYAB9h+tHjsccB7geeAY2xfPsTrRY0ghBDGKHeN4COk5Seb797TgStsbwlc\nVWwjaSpwIDAV2BP4lqQ4YwkhhDZr6xutpBcDbwXOIK1bDLAXMKu4PQvYp7i9N3Cu7WdsLwDuBHZu\nZ76oEZQTmcqrYq7IVE6dM7X7E/fXgE8Ai1r2rW/7geL2A8D6xe2NgIUtj1sIbNzmfCGEUHttW5hG\n0tuBB23PkdQz1GNsW9JIHf5D3tfb20tXVxcAU6ZMobu7m56edIhGo0F/f99AjaD5qX/atJ6ltqdN\n6xnxfkiL1zQak5d4faBt2819nTpe2e3WbFXIU9Xt5r6q5InfX/ntnp6eSuVpWta/p0ajwcyZMwEG\n3i+H07ZisaSTgEOBZ4FVgbWAHwE7AT2275e0IXC17a0kTQewfXLx/EuBE2zfOOh1o1gcQghjlKVY\nbPt425vY3gw4CPil7UOBi4HDi4cdDvykuH0xcJCkVSRtBmwB3NSufBA1grIiU3lVzBWZyqlzpk6u\nWdz8GH8ycIGkIymGjwLYnifpAtIIo2eBo0b96B9CCGHcYq6hUUTXUAhhRZD7OoIQQggVVuuGIGoE\n5USm8qqYKzKVU+dMtW4IQgghRI1gVFEjCCGsCKJGEEIIYVi1bgiiRlBOZCqvirkiUzl1zlTrhiCE\nEELUCEYVNYIQwoogagQhhBCGVeuGIGoE5USm8qqYKzKVU+dMtW4IQgghRI1gVFEjCCGsCKJGEEII\nYVi1bgiiRlBOZCqvirkiUzl1zlTrhiCEEELUCEYVNYIQwoogS41A0qqSbpQ0V9I8SV8o9s+QtFDS\nnOLrLS3POU7SHZLmS9qjXdlCCCEs1s41i58GdrPdDWwL7CbpdaQlK0+xvX3xdQmApKnAgcBUYE/g\nW5La2nUVNYJyIlN5VcwVmcqpc6a2vtHa/ntxcxVgZeBvxfZQpyd7A+fafsb2AuBOYOd25gshhNDm\nGkHxif5W4GXAabb/U9IJwBHAY8DNwMdsPyrpG8ANts8pnnsGcIntiwa9ZtQIQghhjEaqEUxq54Ft\nLwK6Ja0NXCapBzgNOLF4yOeArwJHDvcSQ+3s7e2lq6sLgClTptDd3U1PTw+QTqX6+/sGGoJm98+0\naT3LtN3f30ejMXmJ1wdiO7ZjO7Yrvd1oNJg5cybAwPvlcDo2akjSZ4B/2P5Ky74uYLbtaZKmA9g+\nubjvUuAE2zcOep0JOyPo62sMvOEPp9NnBI1GY+CXWhWRqbwq5opM5azomXKNGnqhpCnF7dWANwFz\nJG3Q8rB3An3F7YuBgyStImkzYAvgpnblCyGEkLTtjEDSNGAWqbFZCTjb9pclnQV0k7p97gbeb/uB\n4jnHA+8FngU+YvuyIV43agQhhDBGWWoEtvuAHYbYf9gIzzkJOKldmUIIISyt1lNMxHUE5USm8qqY\nKzKVU+dMtW4IQgghlKgRSPoyaZjnP4BLge2Aj9o+u/3xhswTNYIQQhij8Y4a2sP248DbgQWki8M+\nMXHxQggh5FSmIWgWlN8O/J/txxjmQq/lTdQIyolM5VUxV2Qqp86Zyowami1pPvA08EFJLypuhxBC\nWAGUuo5A0rrAY7afk7QGMNn2/W1PN3SWqBGEEMIYjatGULzxfwg4vdi1EfDKiYsXQgghpzI1gjOB\nfwG7FNv3Av/dtkQdFDWCciJTeVXMFZnKqXOmMg3By2x/kdQYYPup9kYKIYTQSWWuI7geeCNwve3t\nJb2MtIBMlkVjokYQQghjN965hmaQLiR7saQfAq8FeicsXQghhKxG7RqyfTmwL2lVsR8CO9q+ut3B\nOiFqBOVEpvKqmCsylVPnTGVGDb0LeNb2z2z/DHhW0j7tjxZCCKETytQIbrO93aB9c213tzXZ8Hmi\nRhBCCGM03rmGhnriyuOLFEIIoSrKNAS3SDpF0sskbS7pa8Atoz1J0qqSbpQ0V9I8SV8o9q8r6QpJ\n/ZIuby5nWdx3nKQ7JM2XtMeyf1vlRI2gnMhUXhVzRaZy6pypTENwNPAMcD5wHmmeoQ+N9iTbTwO7\nFV1I2wK7SXodMB24wvaWwFXFNpKmAgcCU4E9gW9JivUSQgihzdq2ZvESB5FWB35FGnZ6EbCr7QeK\nhewbtreSdBywqLh4DUmXAjNs3zDotaJGEEIIYzSu6wgkvRz4ONDV8njbfkOJ564E3Epaw+A027+T\ntH5zsXrgAWD94vZGQOub/kJg49GOEUIIYXzKXFB2IXAacAbwXLGv1GmE7UVAt6S1gcsk7Tbofksa\n6bWGvK+3t5euri4ApkyZQnd3Nz09PUDqU+vv7xs4I2jWAaZN61lqu7VGMNT9AP39fTQak5d4faBt\n26eeeupS3087j1dme+7cuRx77LGVydPU09NTmTzx+xvbdnNfVfK0ZqlKHhjf31Oj0WDmzJkAA++X\nwykzfPQW2zuO+KASJH2GtNzlvwM9tu+XtCFwddE1NB3A9snF4y8FTrB946DXmbCuob6+xsAb/nA6\n3TXUaDQGfqlVEZnKq2KuyFTOip5ppK6hMg3BDOCvwI+Afzb3235klOe9kHQh2qOSVgMuAz4LvBl4\n2PYXizf/KbanF8XiHwI7k7qErgQ2H/yuHzWCEEIYu/HONdRL6qL5+KD9m43yvA2BWUWdYCXgbNtX\nSZoDXCDpSNIayAcA2J4n6QJgHvAscNSo7/ghhBDGrcxcQ122Nxv8VeJ5fbZ3sN1te1vbXy72P2J7\nd9tb2t7D9qMtzznJ9ua2t7J92fi+tdHFdQTlRKbyqpgrMpVT50xlzgiQ9ArS+P5Vm/tsn9WuUCGE\nEDqnbI1gV2Ab4OfAW4DrbO/X9nRD54kaQQghjNF45xraD9gduM/2EcB2wJSRnxJCCGF5UaYh+Ift\n50jTT68NPAhs0t5YnRE1gnIiU3lVzBWZyqlzpjI1gt9IWgf4LnAz8BRwfVtThRBC6JgRawSSBGxi\n+8/F9mbAWrZv61C+oTJFjSCEEMZovNcR/AJ4BYDtuycyWAghhPxGrBEUH71vkbRzh/J0VNQIyolM\n5VUxV2Qqp86ZypwRvBp4j6Q/keoDkNqIbdsXK4QQQqeUuY6ga6j9thdMfJzRRY0ghBDGbrw1gkUT\nnCeEEEKFlLmO4BekK4p/Tlpa8i7gknaG6pSoEZQTmcqrYq7IVE6dM416RmD7Fa3bknagxJrFIYQQ\nlg/LtGaxpNsHNxCdEjWCEEIYu/GuWfyxls2VgB2AeyYoWwghhMzK1AgmA2sWX6sAPwP2LvPikjaR\ndLWk30m6XdIxxf4ZkhZKmlN8vaXlOcdJukPSfEl7jP1bKi9qBOVEpvKqmCsylVPnTGVqBDPG8frP\nAB+1PVfSmqSL064grXh2iu1TWh9cLFd5IGntg42BKyVtaTtGLoUQQpuUuY7gCmD/5kpiktYFzrX9\n5jEfTPoJ8E3gtcCTtr866P7jgEW2v1hsXwrMsH1Dy2OiRhBCCGM03vUI1hu0nOQjwPrLEKIL2B5o\nvqkfLek2Sd+T1FzfYCNgYcvTFpLODEIIIbRJmYbgOUmbNjeKN/QxddUU3UL/B3zE9pPAacBmQDdw\nH/DVEZ7etgXso0ZQTmQqr4q5IlM5dc5U5sriTwHXSvoVIOD1wP8rewBJzwMuAn5g+ycAth9suf8M\nYHaxeQ9LLnrzYoYYodTb20tXVxcAU6ZMobu7m56eHiD94Pr7+wa6hppv9tOm9SzTdn9/H43G5CVe\nH2jb9ty5c9v6+suyPXfu3ErlaVWVPPH7G9t2U1XyVHV7PH9PjUaDmTNnAgy8Xw6n1HUEktYjTT5n\n4AbbD436JAbWM5gFPGz7oy37N7R9X3H7o8BOtt9dFIt/COxMUSwGNm8tCkSNIIQQxm681xG8C/il\n7dnF9hRJ+zQ/3Y/itcB7gN9KmlPsOx44WFI3qWG5G3g/gO15ki4A5gHPAkeN+q4fQghhXMrUCE4Y\nVCx+FJhR5sVtX2d7Jdvdtrcvvi6xfZjtbW1vZ3sf2w+0POck25vb3sr2ZWP+jsYgagTlRKbyqpgr\nMpVT50xlGoKhTiVWnuggIYQQ8ihzHcGZwN+A/yU1Ch8C1rHd2/Z0Q+eJGkEIIYzReK8jOJp0hfD5\nwHnA08TsoyGEsMIYtSEoxv1/HtjN9ittH2f7qdGetzyIGkE5kam8KuaKTOXUOdOIDYGkoyT9GfgT\n8CdJf5IUZwMhhLACGbZGIOnTwC7Ah23fVex7KfB14Ebbn+tYyiVzRY0ghBDGaFlrBIcB+zYbAYDi\n9v7FfSGEEFYAIzUEi2z/Y/DOYt9z7YvUOVEjKCcylVfFXJGpnDpnGqkhuFfS7oN3SnojaaK4EEII\nK4CRagTbAD8FrgNuIV1DsCPwOmBv27d3KuSgXFEjCCGEMVqmGoHt3wHTgGuBLmBT4Bpgm1yNQAgh\nhIk34vBR2/+w/T3bHyu+vmf76U6Fa7eoEZQTmcqrYq7IVE6dM5W5sjiEEMIKrNR6BFUSNYIQQhi7\nZaoRSLqq+PdL7QoWQgghv5G6hjaUtAuwl6QdJO1Y/LuDpB06FbCdokZQTmQqr4q5IlM5dc400gpl\nJwD/RVoycqjF5Xcb7cUlbQKcBbyItBrZd2x/XdK6pNlMNwUWAAc0F7+RdBzwXtJFa8fYvrz0dxNC\nCGHMyqxH8F+2T1ymF5c2ADawPVfSmqTrEfYBjgAesv0lSZ8krW8wvWXN4p1YvGbxlrYXtbxm1AhC\nCGGMxrVmse0TJe0NvJ70qf5XzfWLSzz3fuD+4vaTkn5PeoPfC9i1eNgsoAFMB/YGzrX9DLBA0p2k\nhexvKHO8EEIIYzfq8FFJJwPHAL8Dfg8cI+kLYz2QpC5ge+BGYP2WdYofANYvbm8ELGx52kJSw9EW\nUSMoJzKVV8VckamcOmca9YwAeBvQbfs5AEkzgbnAcWUPUnQLXQR8xPYT0uKzE9uWNFJfz/I1vjWE\nEJYzZRoCA1OAh4vtKYzhzVnS80iNwNm2f1LsfkDSBrbvl7Qh8GCx/x5gk5anv7jYt4Te3l66urpS\nmClT6O7upqenB0gtaH9/30CNoPmpf9q0nqW2p03rGfF+gP7+PhqNyUu8PtC27ea+Th2v7HZrtirk\nqep2c19V8sTvr/x2T09PpfI0LevfU6PRYObMmQAD75fDKVMsPhg4GbiaNPHcrsB02+eN+MT0XJFq\nAA/b/mjL/i8V+74oaTowZVCxeGcWF4s3b60OR7E4hBDGblyL19s+F3gN8GPSJ/vXlGkECq8F3gPs\nJmlO8bUnqWF5k6R+4A3FNrbnARcA84BLgKNGfdcfh6gRlBOZyqtirshUTp0zlekawva9pCmpx8T2\ndQzf2Cy11kHxnJOAk8Z6rBBCCMsm5hoaRXQNhRBWBOPqGgohhLBiG7EhkDRJ0h86FabTokZQTmQq\nr4q5IlM5dc402sI0zwLzJW3akTQhhBA6rszw0WtJVwTfBDxV7Lbtvdqcbbg8USMIIYQxGtdcQ8Bn\nhti3fFWYQwghDKvMdQQN0lTRk4rbNwFz2pqqQ6JGUE5kKq+KuSJTOXXOVGbSuf8HXAh8u9j1YtLF\nZSGEEFYAZWoEt1FMBW17+2Jfn+1pHcg3VJ6oEYQQwhiN9zqCf9r+Z8uLTSJqBCGEsMIo0xD8StKn\ngNUlvYnUTVRqYZqqixpBOZGpvCrmikzl1DlTmYZgOvBXoA94P/AL4NPtDBVCCKFzSs01JOn5wFak\nLqH5tv/V7mAjZIkaQQghjNG4riOQ9DbgdOCuYtdLJb3f9i8mMGMIIYRMynQNnQLsZntX27sCPcDX\n2pqqQ6JGUE5kKq+KuSJTOXXOVKYheNz2nS3bdwGPtylPCCGEDhu2RiBp3+Lm7sCmpJXDAPYH/mz7\ng6O+uPR94G3Ag83rDiTNAP6dVIAGON72JcV9xwHvBZ4DjrF9+RCvGTWCEEIYo2WtEbyDxdcLPEha\nqxjSG/iqJY99JvAN4KyWfQZOsX3KoJBTgQOBqRTrFUva0vaikscKIYSwDIbtGrLda/uI4mup22Ve\n3Pa1wN+GuGuoVmlv4Fzbz9heANxJuqK5baJGUE5kKq+KuSJTOXXOVGbU0EuBo4GulsePdxrqoyUd\nBtwMfMz2o8BGwA0tj1lIOjMIIYTQRmWmof4JcAbpauJmN814ppg4DTixuP054KvAkcM8dsjj9Pb2\n0tXVBcCUKVPo7u6mp6cHSC1of3/fQI2g+al/2rSepbanTesZ8X6A/v4+Go3JS7w+0Lbt5r5OHa/s\ndmu2KuSp6nZzX1XyxO+v/HZPT0+l8jQt699To9Fg5syZAAPvl8MpM+ncTbaXuYtGUhcwe6hJ6lrv\nkzQdwPbJxX2XAifYvnHQc6JYHEIIYzTeSee+IWmGpNdI2qH5NY4wG7ZsvpM0dQXAxcBBklaRtBmw\nBWntg7aJGkE5kam8KuaKTOXUOVOZrqFtgEOB3VjcNUSxPSJJ55JGG71Q0l+AE4AeSd2kbp+7SfMX\nYXuepAuAecCzwFGjfvQPIYQwbmW6hv4IbJ1zfqFW0TUUQghjN96uoT5gnYmNFEIIoSrKNATrAPMl\nXS5pdvF1cbuDdULUCMqJTOVVMVdkKqfOmcrUCE5oe4oQQgjZlFqPoEqiRhBCCGM33vUInmTxhV2r\nAM8DnrS91sRFDCGEkMuoNQLba9qebHsysBrwLuBbbU/WAVEjKCcylVfFXJGpnDpnKlMsHmB7ke2f\nAHu2KU8IIYQOK3Mdwb4tmysBOwK72n5NO4ONkCdqBCGEMEbjqhGw5LoEzwILSFNGhxBCWAGM2hDY\n7u1Ajiz6+hoDs4x2wjnnzOaJJ0Z+TH9/H1tuudT8fEuYPBkOOaRzZymtsx9WRRUzQTVzRaZy6pxp\n2IZA0nDXDxjA9onD3B+G8cQTjNpl9cgjk9l4454RH3PPPbMnMFUIoe5GOiN4iqXXA1iDtHbAC1m8\npsByq5NnA2VVMVPVPiVBNTNBNXNFpnLqnGnYhsD2V5q3Ja0FHAMcAZxHWkwmhBDCCmDE4aOSXiDp\n88BtpAvJdrD9SdsPdiRdm1XxOoIqZqrz+OqxqmKuyFROnTONVCP4CmnhmO8A29oepcwZQghheTTs\ndQSSFgH/Ap4Z4m7nmmJieb6OYKJyxbUNIYSxWqb1CGyvZHvV5vQSg75KNQKSvi/pAUl9LfvWlXSF\npP5iauspLfcdJ+kOSfMl7TGWbzKEEMKyGdMUE8vgTJaejmI6cIXtLYGrim0kTQUOBKYWz/mWpLbm\nq2J/fBUz1bnvdKyqmCsylVPnTG19o7V9LfC3Qbv3AmYVt2cB+xS39wbOtf2M7QXAncDO7cwXQgih\n/WcEQ1nf9gPF7QeA9YvbGwELWx63ENi4nUGqOGa/ipnqPL56rKqYKzKVU+dMZeYaahvbljRS5XfI\n+3p7e+nq6gJgypQpdHd3D/zAGo0G/f19A0XZZldL8w12rNv9/X00GpOXeH1gmbfHm6evr8FDD/WR\npoAaf57Yju3YXjG3G40GM2fOBBh4vxxO21cok9QFzLY9rdieD/TYvl/ShsDVtreSNB3A9snF4y4F\nTrB946DXm7BRQ2XmGur0qKFOZyqjUeM5WMaqirkiUzkreqZlGjXURhcDhxe3Dwd+0rL/IEmrSNoM\n2AK4KUO+EEKolbZ2DUk6F9gVeKGkvwD/BZwMXCDpSNKU1gcA2J4n6QJgHmm666NG/eg/TlXsj69i\npqp9SoJqZoJq5opM5dQ5U1sbAtsHD3PX7sM8/iTgpPYlCiGEMFiOrqHKqOKY/SpmahagqqSKmaCa\nuSJTOXXOVOuGIIQQQs0bgir2x1cxU537TseqirkiUzl1zlTrhiCEEELNG4Iq9sdXMVOd+07Hqoq5\nIlM5dc5U64YghBBCzRuCKvbHVzFTnftOx6qKuSJTOXXOVOuGIIQQQs0bgir2x1cxU537Tseqirki\nUzl1zlTrhiCEEELNG4Iq9sdXMVOd+07Hqoq5IlM5dc5U64YghBBCzRuCKvbHVzFTnftOx6qKuSJT\nOXXOVOuGIIQQQs0bgir2x1cxU537TseqirkiUzl1zpR1zeKQ3znnzOaJJ8b/OpMnwyGHdG75zBDC\nxMnWEEhaADwOPAc8Y3tnSesC5wObUqxeZvvRdmUosz5wp3U60xNPMGHrKHdSFdeXhWrmikzl1DlT\nzq4hkxax3972zsW+6cAVtrcEriq2QwghtFHuGoEGbe8FzCpuzwL2aefBq3Y2AJGprKp9cmuqYq7I\nVE6dM+WsERi4UtJzwLdtfxdY3/YDxf0PAOtnSxeymai6BUTtIoQycjYEr7V9n6T1gCskzW+907Yl\neagn9vb20tXVBcCUKVPo7u4eaDkbjQb9/X0D/d7NcfnNT7Wt261j9oe6H6C/v49GY/ISrw8s8/ZI\neQB++tNTeelLu4e9v6+vwUMP9QHvmJA8/f19PPLI5BGPd9ddc9l772NHzL/uukxInkajwS239LHb\nbsePeLzmvtF+nldffRIbbzxxv7/Rtk899dSl/h7bebwy23PnzuXYY4+tTJ6mnp6eyuRpzVKVPDC+\nv6dGo8HMmTMBBt4vhyN7yPfajpJ0AvAk8D5S3eB+SRsCV9veatBjPVrm00+fPWoBFMoXQT/wgYn5\nRFkmV2SauEwTnauMOhccxyIylTORmSRhe3B3PJCpRiBpdUmTi9trAHsAfcDFwOHFww4HftLOHFXs\n+45M5VQxE9S7n3ksIlM5ncqUq2tofeDHkpoZzrF9uaSbgQskHUkxfDRTvhCWEHWLsCLL0hDYvhvo\nHmL/I8DuncoR1xGUE5nKXW8Bcc1FWZGpnE5liiuLQ1hOlT1L6e/vY/78kR8YZyn1VuuGoGqfciEy\nlVXFTNDZXGXPUso8ptNnKVX75A31zpT7grIQQgiZ1bohqOLc/5GpnCpmgmrmqmKm1jH7VVHnTLVu\nCEIIIdS8IahiP3NkKqeKmaCauaqYqc798WMRNYIQQggdUeuGoIp9p5GpnCpmgmrmqmKmOvfHj0XU\nCEIIIXRErRuCKvadRqZyqpgJqpmripnq3B8/FlEjCCGE0BG1bgiq2HcamcqpYiaoZq4qZqpzf/xY\nRI0ghBBCR9S6Iahi32lkKqeKmaCauaqYqc798WMRNYIQQggdUbmGQNKekuZLukPSJ9t5rCr2nUam\ncqqYCaqZq4qZ6twfPxadylSpaaglrQx8k7Q4zT3AbyRdbPv37TjeXXfNrdxpc2Qqp4qZoJq5Op2p\nzDoJV13108qtkTB37tzKdQ91KlOlGgJgZ+BO2wsAJJ0H7A20pSF46qlH2/Gy4xKZyqliJqhmrk5n\nKrNOwqRJt4z6mIlcI6FM43TllTey6qojH7PTjdOjj3bmd1e1hmBj4C8t2wuBV2XKEkJYQZRpnCZP\n7mzjVCVVawjcyYM9+OCCTh6ulMhUThUzQTVzRaZyOp2pzFnKZZddywYbjN74jPdMRXZH33tHJOnV\nwAzbexbbxwGLbH+x5THVCRxCCMsR2xpqf9UagknAH4A3AvcCNwEHt6tYHEIIoWJdQ7aflfRh4DJg\nZeB70QiEEEJ7VeqMIIQQQudV7oKyEELoJEmr586QW6W6htpFUt8Id9v2th0LU5DUOhTAQGsRx7b3\n6nAkJO3ICCO3bN/awTgASNqXxT+fpbLZ/lGnM7WStLLt53JmGEzSXsDPbC/KnaVJ0uuAE4AuFr/v\n2PZLM2baBTgDmAxsIqkb+H+2j8qYaX/bF462b8KPW4euIUldxc3mL/hs0hvLIQC22zqVxTCZeoqb\n7wQ2AH5QZDoYeMD2sRkyNRi5Iditc2kSSTNJmV4E7AL8srhrN+B622/vdKZWku4CLgLOtD0vZ5Ym\nSecArwH+D/i+7fmZIyHpD8CxwK3AQMNp+6GMmW4C9gN+anv7Yt/vbG+TMdOcZpaR9k34cevQEDRJ\nmmu7e9Dumd/sAAAaB0lEQVS+tv+QR8l0i+0dR9tXd5KuAA6zfV+xvSEwy/YemXOtBRwE9JIGOHwf\nONf245lzrU36UNFLakjPLHKNMnK9bXlutF2pi0Ml3WR759b3AEm32d4uQ5a3AG8FDgTOY3EPwWRg\nqu2d23n8utUIVJyiNjdey5JdMjmsLullzQ1JLwWy91lKmibpAEmHNb8yR9oEuL9l+wHgJZmyDLD9\nuO3v2N4F+CTwX8D9kmZJ2jxjrsdIZwTnAxuRzjznSDomU6SrJX1Z0msk7dD8ypSl6c/FewCSVpH0\ncdo0nU0J9wK3AE8X/za/Lgbe3O6D1+2MYEfSJ6O1i12PAkfk6PtuybQn8B3g7mJXF6mf8rKMmWYA\nuwLbAD8H3gJcZ3u/jJm+CWwJ/JDUeB8I3GH76FyZilyTgLcBR5B+d2eRMr4OOMn2lhky7U06E9ii\nyDPT9oNFUXSe7a4MmRoMXePpeHdjk6T1gP8hTXIp4HLgGNsPZ8z0PNvPdPy4dWoImiRNIRWqHpO0\nk+3fZM6zKrAV6T/KfGCK7Qcy5rkd2A641fZ2ktYHzrG9e65MRa53Af9WbF5j+8c588BAjaABnGH7\n+kH3fSNHQyVpFukanGuGuG9321d2OlMYmaQLbe8/zMCWtg9oqWtDsA2p//Qg4LEq9MdLWgfYl5Rr\na9sbZczyG9s7SboFeAPwODDf9ssz5ZkE3G57qxzHH4mkybn63Zcnkv4I3ABcC1xr+3cZs3xjhLtt\nu+PdZ5I2sn1vy8CWJTRnZG6XWgwfBZC0GemN/2DgX6TT+Fe2+wc8SqbVSdNsHwx0A2sB+5D+s+T0\nm6Jh+i5wM/AUcP3IT2mf4orzP0ja1PafcuVoJWk1UvfUI5J+BnwCeD1wJ/C5zKNhXgN8HZgKrEIq\nYj9pe61cmUjdjK8idZl9RdKWQJ/tfTJkuYXF3VSDa4RZPhnbvrf4d0GO49fijEDSr0n/IS4ELrB9\nl6S7bW+WMdO5pP8YlwMXAL8ircWQLdNQigZ0Ldu3Zc5xLbA9af6pp4rdWa63KPJcSPpAsQawDnA7\n8DPSG912OYe1FmdyB5H+rl4JHAa83Pb0jJkmkdYbeT2pe+8FwG22358rU1MxwmpRFc7scjXidTkj\neAB4BbA+aTz6XXnjALA18CBplMLvbT8n5R3AJGlr278fajSHpB1yFtWBz2Q89lC2tv2K4g1uoe1d\ni/2XSMraaALYvqPlYrczJc0FsjUEpO7FPuAUUj0l2xlTk6SdSMN91yq2HwWOtH1zxljfZIhGvN0H\nrUVDYHufokD8LuDEYljfOpJeZfvGTJm6JW1N6ha6WtJfgcmSNrB9/yhPb5f/AN5H+s861KlithEe\nthu5jj2MZ2Cg2+q+QfflvqL3KUnPB26T9CXSsNvcw6QPJp0JHAW8T9L1pIJ/zsL194GjbF8LA1c/\nfx/o+EwDrXI04rXoGhqsGAVzAOmPcxPbm2SOhKRXFnn2J33C3CVjllVtPz3avg5nap4ybw08n8z9\n3kXDfS6Lh7K2XgR0oO0X5chVZOsinQWvAnyU9In3W7bvzJWpSdJWpAunjgVeZHvVjFmGuor3VtvZ\nrm+QdA3wJtLUF/eRGvHD232RWy0bglaSunIWjAeTtBLwb7Z/lTHDUv8ZKvAfpFL93pJ6WbLguMRt\n27Ny5KoqSReRBkT8EbiGNCDiJtv/yJClOUrwUGA1UoMOqUF/2vZHO52pSdKmpC7jjjbitW8IwmLF\ntA0bAecA72bxG9xawOk5h282p92Q9NvmmGoNMWVInQ0zBr2p7WPRR1L0x9/qCkzQN+jitqEa8Sxd\noEW9aZbtQzp97FrUCEJpbwYOBzYGvtqy/wng+CyJFqtiv3fVNBetHTybbRXcBnxY0uuL7Qbpw0XH\nr6K13dPpY5ZR1Js2lfR82//s5LHjjCAsRdK+ti/KnaNVlfu9q6T4VHlFzqkbhiLpe6QPnrNIjdSh\nwLO2/z1zrreThmoO1Cpsn5gxz9mkWQYuBv6+OJJPaedxa3FGMOhKwqHm/s81EVdzeol9WXqe9o7/\nMUo61PbZQJek/2i9iw78MY7E9oLijGAT0rTPf7D9r1x5qqr4VLlI0hTbj+bO02KnQV1TV0n6bbY0\ngKRvk2oEbyBdPLk/kGUUYYs/Fl8rAWt26qC1aAhIVxJCms9+KmlGRpF+8dkudS/8lDT5XXPmwZya\ns55OJtMVlsNRWr9hFtC8svglkg7PVVSv8ocL0gV3fUpTd7defJcz07OSNm+ewSnNuPtsxjwAu9ie\nVtSdPivpq8ClmTPNs31B6w5JB7T7oLVoCGzPBJD0QeB1zX5JSacB12WMBrCx7bZPM1uG7W8XN6+0\nvcTPRS3Td2dyCrCH7T8UebYkDdnMNZKpyh8uflR8DVUQzeUTwC8ltc6ye0S+OAA0Ryz9XdLGwMOk\nRaJyOo40Mm60fROqFg1BiymkvuXmNLOTi305XS9pW9tZT5MH+QZpOodWXyffmy7ApGYjAGC7v+gP\nz6LKHy5szyzmsXqJK7A6GYDtq4rG++WkRukPnS6IDuFnxZxaX2Zxw/7dHEG0eGGajSV9nSUXpml7\nQb1uDcHJwK2Srib9oHcFZmRNlK62PKL4pNT8j5FlqF9x0dYuwHpFjaD1j3HlTucZ5BZJZ7B4Sc9D\nSBPi5Va5DxdKaxZ/mXThXZek7YHP5piXScOvOb25pKxrTrfU4S6S9HNg1Yx1lebCNHsV/zZ/Xk+Q\nBke0VW0aguJCrX7g1aTJ3gxMd7H0YUZvKf4dbjbETlqFxW/6k1v2P05a2zWnDwIfApr93NcC38oX\nZ0Dzw0Wj2K7Ch4sZpL/xqwFsz1Fa+S6HdzDCmtOkLqyOammchrovS+Nk+zZJvyN1f3b8YsRaDR+t\n6gVIkrpJZwYmzdWee6bPTV1M9yxpZWBNp6UPsypGDQ0s4FOVUUPFhXjNNWVvzDhXVDPPjbZfpSXX\n4v1tjrPMlkyVWXNa0kxGaJycd+bY64A3drrbrG5rFl8paT/lnuazhaSPkLo71iPNjvoD5VtXtukL\nktaStAZpxsh5kv4zZyBJbyPN9f91Ug3jj5LemjMTDJxp7k6aevqnwCqS2rrQeAm/k3QIMEnSFsUI\np2zrSRQqs+a07V7bR5DOgKfa3tf2vqQ1E1bJkanF3cB1kj4j6WPF13+M+qxxqtsZwZOkIZLPsXio\npnNNXFZk6gNebfupYnsN4Abb0zJmus1picpDSAXi6aTpAXJm+gPwtkHDD3/hTKumteQ6nTTb6G62\nt5a0LnC57VdmzLQG8Cmg+Wn7MtJiOTknDazcmtOS5pOmE3exvRJp+GbOqVRmFDcHT3vx2XYetzY1\nAgDbHbtAY4wWDXM7l0mSnkdaLe1/bT8jKfcnhscHXUV8F6l2kdurbG8vaQ6A7UeKn11OL7d9PPmn\nBWl1NPBO0sI0Br7t/GtOXwlcJqm1cboiZyDbMwAkTS62O7JYTq0aAqC5NvAWLHlJ+VKLfHfQmcCN\nkn5E+mPchzQnek7fBhYAvwWuKaZ3yFIjKAp7ADdL+gWLx1PvTzVGDf2rqKMAIGk98jfmp0jagLQi\n3/m2b8+ch+JTd/P6hqqoXOMkaRpwFmkFt+Z054e3+3dYt66h95FGnWwCzCGNIPq17TdkzrUjaYnD\nZrF4TsYsKwH72z6/ZZ+AlW13/ErQlsIeDD1TZNaLkiS9h7S2xY6kK5/3Az49+OrQDLk2LHIdQBre\neoHtz2XMsy9phNX6LB4Zl7VbtoqUltU93vbVxXYPcJLbvD5J3RqC24GdSG/+3UqLZHzB9jszZjrb\n9qGj7etwplts7zj6I+utaDRfAzwCvLHYfZXt3+dLtaTiE+YnSYvlZOuykvRH4O0V+9lUrnFq1udG\n2zfR6tY19LTtf0hqrrg1X1LWYiNpLeUBxdWyud+Er5D0cdK0Cc25arD9SKeDaMk5fQbLOn+O7UWS\n/rcYklylN7ippDOB/UgXup1PWoY0p/ur1AgUvkTFGifgbkmfAc5m8YWTbV9jvW4NwV+KGsFPSG92\nfyP1hXecpONJc4isJqm1IPQM8J0cmVocROqC+dCg/ZtlyHLLCPdV4XT2Skn7ARe5OqfXZwI/I60P\n/BtnWAWsaVCN53zS/73m9R/OeWUx1WycjgBOZHEt5Vrgve0+aK26hloVfW9rAZfmvDBJ0hdsH5fr\n+GF8qjQkuRit9N/AkbTM0kpqGI53hkVgRqjxAJCzxiPpf0iTzGVvnCStBnwA2Jw0SOP7nfx91aIh\nKMZ2DytHl0eTpF8OLlZLusr2G4d7TgcyrUHqSniJ7fdJ2oI0JPFnGbLMHuFu55g/p6oknUqaw/6j\nzWGHktYirTb3d9sfyZmvaopGCirQOEm6gNQYXQfsCfypk7+vujQEC1g88dVLgL8Vd61D+oF3vMuj\n+ASwOmk+mJ6Wu5pnKTkvarmA1CVzmO1tiobh+nYXrIbJ0jPS/bYbnUkyPEl7s3gI4q9sj9R4tTPH\nncCWthcN2r8yabbPzXPkKjJ8Cfg8aernS4HtSA3W2bkyVYmkvuYFm0Wd8DfN6UE6oRY1AttdAJK+\nC/zY9i+K7beQxhHn8H7gI6TF4lv7wZ8Avpkl0WIvs32ApIMAbD+Va1aOKrzRj0TSyaSRaOeQPmgc\nI2mXTN19iwY3AgC2n5OU+9qGN9v+T0nvJNXl3kXq/87WEBQfxo4krSexGsWZge2298kPYWBottMq\ncx09eC0aghavsf2+5obtSyR9OUcQ26cCp0o62vZII2Ny+GfxnwQYmM4hy9zxki60vX8xFcdgdsaJ\n1ApvA7ptPwcD3Q1zSQMBOu33Squ2LTF7paRDgdzrEjTfa94O/J/txypwtfrZpNFeewKfBd5DvtFf\n2w4aNNI6iKTtNae6NQT3Svo0i+e0fzdwT95IPC7psME7bZ+VI0xhBun0/cXF5fevBXozZWn2k74j\n0/FHY9L6A831CKaQbzTTh4AfSXovi88ydyR1QWa7VqYwu5jb52ngg5JeRP6lWTe3vZ+kvW3PKv7W\nsywqZDvreh+1qBE0SXoBcAJpymeAa0gLduQsFn+TxW8czYW0b7Wddf5/SS8kXXkNaWrlv+bM06rI\n9nAVhmtKOph0UVLrYkfTbZ+XKY9If0PbkP6u5tm+KkeWwYpBG48VXVVrAJOdccpuSTfZ3lnStaSh\ntveT/tZzrd2QTa0aguWBpCmk+WGyrWM81KilXCOZlFZN+wLp6t3Pk+ZheSFp8ZzDbF/S6UyDSdqI\nVCcwcFPON7eqknQ4QwwjzXnmW0w5cxEwDZhJGnH1Gdun58qUS60aguIq4o+TFs5udos591xDrSSt\nAtxue8sMx67cSCZJt5D629cmrSe7p+0biulBznPmhYYkvRa4zfaTRV/89sD/uFjYJySDznxXJU3J\nkf3MNyR1qxFcCJwGnEG6AAgyX506aJz8SqQRDLkmLKviSKaVbV8OIOlE2zcAFNODVOFTzOmkQt92\npGsvziCdteyaNVXF2P5w63bzzDdTnGaGF5K6igcmfAROtP3wiE9cAdWtIXjG9mm5Qwzy1Zbbz5Ku\na/hLjiAtI5mOsf31HBmG0Ppmn7u4OJRnbVtSc+2GMyQdmTvUcuDv5JmypNV5wK9IQ1mbg0fOJ604\nVyt16xqaAfyVNI/HwHDInMXiVhUrgu7Ckl1oWfpzJT1HetOAVExvnTdnNdtZP8xIuoY0wuoI0iCE\nvwJznXE1tyoa7szX9iczRULS7bYHT/rYV8ffXd0aggUM0RWU6cri1iLo50hjmitRBJX0A+ClpPHw\nzS40nHFZwapSmvf/3aQi8bWSXkJatnLWKE+tFUnNrjKR+cy3SdIpwG9Y3EW1P7Cz7Y/lS5VHrRqC\nKqlyEVTS70mLescfRxiX3JOpjaRlwsDmVdcrsXja9SwTB+ZStxoBkl5BOi1tXaoyxxC2KhdBbwc2\nBO7NnKPyVMHFTSpmFmkytWuBt5D+71Vi8jtXdw3zjqtVQ1DUCHYlXWzzc9If5nWkUR6dVuUi6HrA\nPEk3sbiWEjN9Dq2Ki5tUydYtk6l9j9QVUwmSjrT9vZbtScCnbH82Y6wsatUQkFZs2o40fvkISeuT\nJgvLoXVukcGL06w21BM6aEbm4y9Pqri4SZVknUxtFLsXZ3T/DqxLWrfhmryR8qhbQ/CP4vL2ZyWt\nDTxIWsi+43LPLTKSqs/4WTFVXHmrSrJOpjYS2wcXM+z+llQbOMR2lrmGcqtbQ3Cz0lKV3wVuJv3y\nr88bqTqK4tlw9Yno9x7a2qQhrXsM2h8NAdX+wCNpS+AY0u9qa+A9kubYfmrkZ654ajtqSNJmwFq2\nb8udJYTQecVsqB+2faWklYCPAkfanpo5WsfVqiGo0mRqYcUgaRPg66RpCiD1MX/E9sJ8qUIZkta2\n/digfVva7s+VKZeVcgfoBEmrFVNQrydp3ZavLmDjvOnCcu5M4GLS/EwbAbOLfaGiJP0nQLE4zv6D\n7u7tfKL8anFGIOlYFk+m1jo2/gngO7ZzLw0ZllOSbvOgtZyH2heqo6gDbD/49lDbdVGLYnFFJ1ML\nK4aHi+mnf0i6oOwg4KG8kUIYm7p0De0kacNmIyDpcEkXS/p6sWpSCMvqvcABpNWt7iPNV3NE1kQh\njFFduobmAG+0/Yik15MmmfowaRGRrWJxjBDqo+oz2uZQizMCYKWWqaYPBL5t+yLbnwa2yJgrLOck\nvUzSbEkPSfqrpJ9Kqt2at8sT2yvbnlx8TWq5PbmOjQDUpyFYWdLzitu7k5ZibKrlLz5MmB+SVpTb\nkDQY4ULg3KyJQhijujQE5wK/knQx6ZTwWgBJWwCP5gwWlnur2T7b9jPF1w9omdk2hOVBLWoEMLAQ\nzAbA5c1LyItLzNe0fWvWcGG5JemLpA8TzbOAA4F1SLOSVmb1uxBGUpuGIIR2GG7Vu4JtR72ggoop\np6+wvVvuLFUQ/eMhjIPtrtwZwtgVU2IvkjTFdu27h6MhCGEZSNoZ+Ivt+4rtw4F9gQXAjOgSWi48\nBfRJuoIll6g8JmOmLKJrKIRlENemLP8k9RY3m2+CIjUEs/IkyicaghCWQet8QpL+F/ir7RmD7wvV\nJml14CW25+fOklNdho+GMNHi2pTlnKS9gDnApcX29sUQ89qJP9gQlk3z2pSHiGtTllczgFdRNOK2\n59T1qvBoCEJYBrb/W9IvWXxtyqLiLgFH50sWxuAZ249Kat23aLgHr8iiIQhhGdn+9RD7are61XLs\nd5IOASYVZ3LHUNM1zKNGEEKoq6OBbYB/krr6HgeOzZookxg1FEKoPUkrk6abeWzUB6+A4owghFBL\nks6VtJakNYA+YF5zPeO6iYYghFBXU20/DuwDXAJ0AYdmTZRJNAQhhLqaVFwLsg8w2/YzDD+B4Aot\nGoIQQl19mzQ31JrANZK6gFrWCKJYHEIIgNIFBZOKM4NaiesIQgi1IuljLZsuvh4CrrN9d55UeUXX\nUAihbiaTuoPWLG6vBewEXCrp4JzBcomuoRBCACStC1xle/vcWTotzghCCIF6ry8dDUEIIQCSdgP+\nljtHDlEsDiHUiqS+IXavA9wHHNbhOJUQNYIQQq0U1wu0MvCw7Sc7n6YaoiEIIYSaixpBCCHUXDQE\nIYRQc9EQhBBCzUVDEJYrkvaRtEjSy0d4TEPSjhN0vGMlrday/XNJa43w+O9K2nqcx3yBpDnF132S\nFha3by1mywxhQkWxOCxXJJ0PrAbcanvGMI+5GviY7VvHeayVgTuBV9p+eDyvNY4MJwBP2D4lx/FD\nPcQZQVhuSFoTeBXwYeDAlv2rSTpP0jxJPyI1FJL0fklfanlcr6RvFLffI+nG4pP26ZJWKvY/Kekr\nkuYCxwMbAVdLuqq4f4GkdSWtUZwdzJXUJ2n/4v6GpB1aXuvzxWN+LelFxf6XSbpB0m+L+58Y/VvX\nZEl3S5pU7FhL0l2SJhXHPLX4Xvok7VQ8Zg1J3y++z1sl7TXuX0JYIUVDEJYnewOX2v4z8NfmGy7w\nQeBJ21OBE4AdSWPDLwLe2fL8A4Bzi66bA4BdinllFgGHFI9ZHbjBdrftzwH3Aj2231jc3zyF3hO4\np3jcNOCyQfc3X+vXtruBa4D3Ffv/B/ia7W2Bv5T5xm0/AVwNvK3YdRBwke1ni2OuVnwvRwHfLx7z\nKdLcOa8C3gB8WdLqZY4X6iUagrA8ORi4sLh9YbEN8G/ADwBs9wG/LW4/BNwl6VWSXgBsZft64I2k\nxuJmSXNIb5KbFa/1HKkBGc1vgTdJOlnS64olDwf7l+2fF7dvIS2FCPDqlu/j3BLHajoDOKK43Quc\n2XLfuQC2rwXWkrQ2sAcwvfgerwaeD2wyhuOFmogpJsJyoZgZcjfgFZIMrEz6JP+J5kOGeep5pE//\n84EfteyfZfv4IR7/tEsUzmzfIWl70if0z0u6qjiDaNW6wMkixvn/zfb1krok9QAr25430sOLf99l\n+47xHDes+OKMICwv9gPOst1lezPbLwEWSPo3UrfLuwEkvQLYtuV5PyatSXswqVEAuArYT9J6xXPW\nlfSSYY77BGm++iVI2pDUaJwDfAUYy9TFNxTfD6QunrE4CziHxd0/TQcWuV4HPFqcoVwGHNOSuXbT\nK4dyoiEIy4uDSG/qrS4q9p8GrClpHvBZ4ObmA2w/CswDXmL75mLf74FPA5dLug24HNig+ZRBx/gO\nacGSqwbtnwbcWHS7/Bfw+SEye9Dt5vaxwH8UBemXMfo6ua2v80PSBGmDu5SelnQr8C3gyGLf54Dn\nFUXp20k/mxCWEsNHQ+gwSavZ/kdx+yDgQNvvHOVpzefuB7zD9uEt+yZkuGyor6gRhNB5O0r6Jqmu\n8TfgvWWeVAx9fTPw1jZmCzUUZwQhhFBzUSMIIYSai4YghBBqLhqCEEKouWgIQgih5qIhCCGEmouG\nIIQQau7/A+OnAz1VhSLfAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x107f4c050>"
]
}
],
"prompt_number": 17
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Advertiser by Industry\n",
"\n",
"financial_services = pd.read_csv('/Users/olehdubno/Desktop/Moat/moat_advertisers/Advertisers By Industry Financial Services.csv')\n",
"personal_investing = pd.read_csv('/Users/olehdubno/Desktop/Moat/moat_advertisers/Advertisers By Industry Personal Investing.csv')\n",
"insurance_companies = pd.read_csv('/Users/olehdubno/Desktop/Moat/moat_advertisers/Advertisers By Industry - Insurance Companies.csv')\n",
"software = pd.read_csv('/Users/olehdubno/Desktop/Moat/moat_advertisers/Advertisers By Industry Software.csv')"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 18
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"####Percentage In-Play\n",
"Advertisers which are likely to be working closely with a specific publisher are identified as In-Play for that publisher.\n",
"\n",
"These advertisers are typically buying ad impressions directly from the publisher, instead of through a network or exchange.\n",
"\n",
"Advertisers considered In-Play are reported on advertiser and publisher pages.\n",
"\n",
"####Activity\n",
"Activity is an indicator of total impression volume observed from an advertiser. The more impressions an advertiser is observed running on a publisher, the higher the advertiser's Activity will be for that publisher.\n",
"\n",
"####Tags\n",
"Any third-party which plays a technical role in serving ads or measuring their effectiveness, including Ad Networks, Ad Servers, and Ad Verification providers.\n",
"\n",
"####Creatives\n",
"Total ads in circulation\n",
"\n",
"####Trend\n",
"Change in rank since last period\n",
"\n",
"####Rank\n",
"Indiates greatest Activity. (Activity Rank)"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"financial_services.head()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Rank</th>\n",
" <th>Trend</th>\n",
" <th>Advertiser</th>\n",
" <th>Industry</th>\n",
" <th>Activity</th>\n",
" <th>Percentage In-Play</th>\n",
" <th>Creatives</th>\n",
" <th>Publishers</th>\n",
" <th>Tags</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" <td> Merrill Lynch</td>\n",
" <td> Financial Services</td>\n",
" <td> 100.00</td>\n",
" <td> 28.67</td>\n",
" <td> 92</td>\n",
" <td> 1298</td>\n",
" <td> 29</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 2</td>\n",
" <td> 0</td>\n",
" <td> Merrill Edge</td>\n",
" <td> Financial Services</td>\n",
" <td> 79.15</td>\n",
" <td> 23.51</td>\n",
" <td> 86</td>\n",
" <td> 1253</td>\n",
" <td> 28</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 3</td>\n",
" <td> 5</td>\n",
" <td> Equifax</td>\n",
" <td> Financial Services</td>\n",
" <td> 18.78</td>\n",
" <td> 35.86</td>\n",
" <td> 39</td>\n",
" <td> 869</td>\n",
" <td> 26</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 4</td>\n",
" <td> 5</td>\n",
" <td> Moneygram</td>\n",
" <td> Financial Services</td>\n",
" <td> 14.73</td>\n",
" <td> 0.67</td>\n",
" <td> 49</td>\n",
" <td> 1408</td>\n",
" <td> 31</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 5</td>\n",
" <td>-2</td>\n",
" <td> Usaa</td>\n",
" <td> Financial Services</td>\n",
" <td> 11.38</td>\n",
" <td> 72.79</td>\n",
" <td> 45</td>\n",
" <td> 144</td>\n",
" <td> 13</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 19,
"text": [
" Rank Trend Advertiser Industry Activity \\\n",
"0 1 0 Merrill Lynch Financial Services 100.00 \n",
"1 2 0 Merrill Edge Financial Services 79.15 \n",
"2 3 5 Equifax Financial Services 18.78 \n",
"3 4 5 Moneygram Financial Services 14.73 \n",
"4 5 -2 Usaa Financial Services 11.38 \n",
"\n",
" Percentage In-Play Creatives Publishers Tags \n",
"0 28.67 92 1298 29 \n",
"1 23.51 86 1253 28 \n",
"2 35.86 39 869 26 \n",
"3 0.67 49 1408 31 \n",
"4 72.79 45 144 13 "
]
}
],
"prompt_number": 19
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_advertiser = pd.concat([financial_services,personal_investing,insurance_companies,software],ignore_index=True)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 20
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_advertiser['Count'] = 1"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 21
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_advertiser.Industry.value_counts().plot(kind='bar',alpha =.30)\n",
"plt.xlabel(\"Category\")\n",
"plt.ylabel('Number of Occurances')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 22,
"text": [
"<matplotlib.text.Text at 0x1080bc9d0>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAFoCAYAAAC2fFs+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcZGV59vHfBahsgyMuiEQZFTcQHMDggokgQjAKils0\niA6uRALGxAR8XRjRN6KJJtE3OhrQgQRxFxg3QKQRREWWgQHEiQJGRwEjCAOCbNf7xzk1NGPPdHXX\nU33qnLq+n099ps7pqtN33zR3n7rPc55HtomIiG7boOkAIiJi+FLsIyLGQIp9RMQYSLGPiBgDKfYR\nEWMgxT4iYgwMrdhL2ljSDyQtl3SFpPfX+xdL+oWki+vHvsOKISIiKhrmOHtJm9r+naSNgHOBtwF7\nAattf3ho3zgiIu5jqG0c27+rn94f2BC4sd7WML9vRETc11CLvaQNJC0HrgPOsn15/aXDJF0i6ThJ\n84cZQ0REDLmNs+abSA8ETgOOBK4Afl1/6b3A1rZft9brM4dDRMQs2J6yczIno3Fs3wR8DXiq7etd\nA44FdlvHe0b+cdRRRzUeQ5ceyWfyOaqPtuRyfYY5GuchvRaNpE2AvYGLJT180ssOAFYMK4aIiKhs\nNMRjbw0cL2kDqj8q/2n7TEknSFoIGLgaeNMQYxiqa665pukQOiX5LCv5LKcLuRxasbe9Athliv2v\nHtb3nGsLFy5sOoROST7LSj7L6UIu5+QC7UxJ8ijGFRExyiThJi/QRkREs1LsBzAxMdF0CJ2SfJaV\nfJbThVym2EdEjIH07CMiOiI9+4iIMZdiP4Au9PFGSfJZVvJZThdymWIfETEG0rOPiOiI9OwjIsZc\niv0AutDHGyXJZ1nJZzldyGWKfUTEGEjPPiKiI9Kzj4gYcyn2A+hCH2+UJJ9lJZ/ldCGXKfYREWMg\nPfuIiI5Izz4iYsyl2A+gC328UZJ8lpV8ltOFXKbYR0SMgfTsIyI6Yn09+43mOpimnHjiMlavbjqK\n6c2bBwceuF/TYUREx4xNsV+9GrbZpmwRXbFigh133KPoMVetWlb0eG0yMTHBHnvs0XQYnZF8ltOF\nXA6tZy9pY0k/kLRc0hWS3l/v31LSGZJWSjpd0vxhxRAREZWhFXvbtwN72l4I7ATsKelZwJHAGbYf\nD5xZb7dS6bP6cdf2M6dRk3yW04VcDnU0ju3f1U/vD2wI3AjsDxxf7z8eeNEwY4iIiCEXe0kbSFoO\nXAecZftyYCvb19UvuQ7YapgxDNOKFRNNh9ApXRjLPEqSz3K6kMuhXqC1fQ+wUNIDgdMk7bnW1y1p\nyjGWixYtYsGCBQDMnz+fhQsXrvko1Uv8TLZXrlyx5gJtr0j32jCz3e4pdbze9mx+vi5s94xKPG3f\n7hmVeNq8vXz58pGKp7c9MTHB0qVLAdbUy3WZs3H2kt4F3Aa8HtjD9rWStqY643/iWq8tPs5+yZJl\nxUfjDMOqVcs45JDRjzMiRk8jc+NIekhvpI2kTYC9gYuBU4HX1C97DXDysGKIiIjKMHv2WwPfrnv2\nPwCW2T4TOAbYW9JK4Dn1diulZ1/W2u2HGEzyWU4Xcjm0nr3tFcAuU+y/AXjusL5vRET8oUyENoCM\nsy+rdwEqykg+y+lCLlPsIyLGQIr9ANKzL6sLfdFRknyW04VcpthHRIyBFPsBpGdfVhf6oqMk+Syn\nC7lMsY+IGAMp9gNIz76sLvRFR0nyWU4XcpliHxExBlLsB5CefVld6IuOkuSznC7kMsU+ImIMpNgP\nID37srrQFx0lyWc5Xchlin1ExBhIsR9AevZldaEvOkqSz3K6kMsU+4iIMZBiP4D07MvqQl90lCSf\n5XQhlyn2ERFjIMV+AOnZl9WFvugoST7L6UIuU+wjIsZAiv0A0rMvqwt90VGSfJbThVym2EdEjIFp\ni72kf5K0haT7STpT0v9KOmgught16dmX1YW+6ChJPsvpQi436uM1+9j+e0kHANcALwbOAf5zmIHF\naDvxxGWsXt10FNObNw8OPHC/psOIaFw/xb73mhcAX7R9kyQPMabWWLFiYmzP7levhm22KVtEh5HP\nVauWFT1em0xMTHTijHQUdCGX/fTsl0m6EtgVOFPSw4Dbp3uTpEdKOkvS5ZIuk3R4vX+xpF9Iurh+\n7DvYjxAREdOZ9sze9pGSPgjcZPtuSbcCL+zj2HcCb7W9XNLmwIWSzgAMfNj2hweKfASM61n9sCSf\nZbX9THSUdCGX/Vyg3Qw4FFhS73oE8NTp3mf7WtvL6+e3AD8CtukddlbRRkTErPTTxvk0cAfwzHr7\nl8D/nck3kbQA2Bn4fr3rMEmXSDpO0vyZHGuUZJx9WclnWV0YGz4qupDLfi7QPtb2yyW9AsD2rVL/\nJ+Z1C+eLwFts3yLp48DR9ZffC3wIeN3a71u0aBELFiwAYP78+SxcuHDNR6le4meyvXLlijUXFHtF\npdc2mO12T6nj9bZn8/PN9XbyOfrbPaMST5u3ly9fPlLx9LYnJiZYunQpwJp6uS6y1z+wRtJ5wF7A\nebZ3lvRY4CTbu633jdV77wd8FfiG7X+d4usLgGW2d1xrv6eLa6aWLFlWfPTIMKxatYxDDhn9OJPP\niNEjCdtTno33c2a/GPgm8EeSPgPsDizq45sKOA64YnKhl7S17V/VmwcAK/qIISIiBjBtz9726cBL\ngIOBzwC72j6rj2PvDrwK2HPSMMvnAR+QdKmkS4BnA2+dffjNSo+5rOSzrC70mUdFF3I57Zm9pBcD\n37b91Xp7vqQX2T55fe+zfS5T/zH5xqwijYiIWetnNM5Rtn/b26ifLx5aRC2SceFlJZ9ldWFs+Kjo\nQi77KfZTNfs3LB1IREQMTz/F/kJJH5b0WEnbSfoX4MJhB9YG6TGXlXyW1YU+86joQi77KfaHUU19\n8Dngs1Tz4hw6zKAiIqKsfubGuQU4Yg5iaZ30mMtKPsvqQp95VHQhl/2MxnkC8DZgwaTX2/ZzhhhX\nREQU1E8b5wvARcA7gb+f9Bh76TGXlXyW1YU+86joQi77uYP2TtsfH3okERExNP0uXnKopK0lbdl7\nDD2yFkiPuazks6wu9JlHRRdy2c+Z/SKqBUfettb+RxePJiIihqKfuXEW2H702o+5CG7UpcdcVvJZ\nVhf6zKOiC7ns58weSU8Gtgc27u2zfcKwgoqIiLL6GXq5mGp2yh2ArwHPA84Fxr7Yp8dcVvJZVhf6\nzKOiC7ns5wLtS4HnAr+yfTDwFKC1SwlGRIyjfor9bbbvBu6S9EDgeuCRww2rHdJjLiv5LKsLfeZR\n0YVc9tOz/6GkBwH/AVwA3AqcN9SoIiKiqPUW+3ppwWNs3wgskXQasIXtS+YkuhGXHnNZyWdZXegz\nj4ou5LKfM/uvA08GsH31cMOJiIhhWG/P3rap5rPfbY7iaZX0mMtKPsvqQp95VHQhl/2c2T8deJWk\nn1H166H6O7DT8MKKiIiS+in2fzb0KFoqPeayks+yutBnHhVdyGU/xf6eoUcRERFD1c84+69T3Tn7\nNeBM4CrgG8MMqi3SYy4r+SyrC33mUdGFXPYzEdqTbe9YPx4H7AZ8f7r3SXqkpLMkXS7pMkmH1/u3\nlHSGpJWSTpeUu3EjIoasnzP7+7B9EfC0Pl56J/BW2ztQXeQ9VNKTgCOBM2w/nuqTwpEzjWFUpMdc\nVvJZVhf6zKOiC7nsZyK0v5u0uQGwC7BquvfZvha4tn5+i6QfAdsA+1NNrAZwPDBBiwt+REQb9HNm\nPw/YvH7cH/gq8MKZfBNJC4CdgR8AW9m+rv7SdcBWMznWKEmPuazks6wu9JlHRRdyOe2Zve3Fg3wD\nSZsDXwLeYnt1NQPDmmNbkqd636JFi1iwYAEA8+fPZ+HChWs+SvUSP5PtlStXsM02+wH3FpVe22C2\n2z2ljtfbns3PN9fbyefob/eMSjxt3l6+fPlIxdPbnpiYYOnSpQBr6uW6qLpJdj0vkM4AXmb7t/X2\nlsBJtqcdfy/pflSfBL5h+1/rfVcCe9i+VtLWwFm2n7jW+zxdXDO1ZMmyNcVplK1atYxDDhn9OJPP\niNEjCdua6mv9tHEe2iv0ALZvoI/WSz2J2nHAFb1CXzsVeE39/DXAyX3EEBERA+in2N8tadveRt1/\n7+dGq92BVwF7Srq4fuwLHAPsLWkl8Jx6u5XSYy4r+SyrC33mUdGFXPZzB+07gHMknQ0I+FPgjdO9\nyfa5rPuPyXP7jjAiIgbWzwXab0ralWqsvIG/sf2/Q4+sBTIuvKzks6wujA0fFV3I5bRtHEkvBu60\nvcz2V6mWJ3zR8EOLiIhS+unZH7XWBdrfAouHFlGLpMdcVvJZVhf6zKOiC7nsp9hPNYxnw9KBRETE\n8PRT7C+U9GFJj5W0naR/AS4cdmBtkB5zWclnWV3oM4+KLuSyn2J/GNWkZp8DPgvcDhw6zKAiIqKs\nfqY4vgV4H7Cn7afafrvtW6d73zhIj7ms5LOsLvSZR0UXcrneYi/pzZL+B/gZ8DNJP5OUs/qIiJZZ\n5zh7Se8Enkk1j81V9b7HAB+RtKXt985RjCMrPeayxjmfJ564jNWryx/3yiuXFT3evHlw4IHjN9dQ\nF3r267up6tXAU2zf1tth+ypJLwMuBca+2EeUsno1rZlYLtppfW2ceyYX+p56393DC6k90mMuK/ks\nK/ksp+s9+19K+oM5bCTtBfxqeCFFRERp62vjHAacIulcqnH1AnYFnsUMV6rqqnHuMQ9D8llW8llO\nF3r26zyzt305sCNwDrAA2Bb4DrCD7cvmJLqIiChivUMvbd9m+zjbf1c/jrN9+1wFN+rSEy0r+Swr\n+Syn6z37iIjoiBT7AaQnWlbyWVbyWU6ne/aSzqz//eDchRMREcOwvjP7rSU9E9hf0i6Sdq3/3UXS\nLnMV4ChLT7Ss5LOs5LOcLvTs1zf08ijg3cA2wIem+PqeQ4koIiKKW2ext/0F4AuS3m376DmMqTXS\nEy0r+Swr+SynCz37fhYcP1rSC4E/pVpw/GzbmSAjIqJF+llw/BjgcOBy4EfA4ZLeP+zA2iA90bKS\nz7KSz3K60LPvZ+jl84F9bH/K9nHAvsAL+jm4pE9Juk7Sikn7Fkv6haSL68e+sws9IiL61U+xNzB/\n0vb8el8/Pk31x2Ht433Y9s7145t9HmvkpCdaVvJZVvJZzlj07IH3AxdJOotqMrRnA0f2c3Db50ha\nMMWX1G+AERExuH7WoD0JeAbwFeBLwDNsf3bA73uYpEskHSdp/vQvH03piZaVfJaVfJbThZ59P2f2\n2P4lcEqh7/lxoDeU871UY/hft/aLFi1axIIFCwCYP38+CxcuXPNRqpf4mWyvXLlizUpAvf8Jeh9z\nZ7vdU+p4ve3Z/HxzvZ18Jp+jlL9hby9fvnyk4ultT0xMsHTpUoA19XJdZPfbfp+duo2zzPaO/X5N\nkkvHtWTJstYs+3bIIaMfZ/JZVvIZJUjC9pRt8jmfCE3S1pM2DwBWrOu1ERFRxnqLvaSNJP14tgeX\ndBJwHvAEST+X9FrgA5IulXQJ1cXet872+E1LT7Ss5LOs5LOczvfsbd8l6UpJ29r+2UwPbvuVU+z+\n1EyPExERg+nnAu2WwOWSzgdurffZ9v7DC6sdMo65rOSzrOSznHEZZ/+uKfYN96puREQU1c84+wng\nGmCj+vn5wMVDjaol0hMtK/ksK/kspws9+34mQnsj8AXgE/WuP6K6wSoiIlqin6GXhwLPAm4GsL0S\neNgwg2qL9ETLSj7LSj7L6ULPvp9i/3vbv+9tSNqI9OwjIlqln2J/tqR3AJtK2puqpZPFS0hPtLTk\ns6zks5yx6NlTzXD5a6o7Xd8EfB145zCDioiIsvpZlvBuSccDP6Bq31xZfOKalkpPtKzks6zks5wu\n9OynLfaSng8sAa6qdz1G0ptsf32okUVERDH9tHE+DOxp+9m2nw3sAfzLUKNqifREy0o+y0o+yxmX\nnv3Ntn8yafsq6mGYERHRDuts40h6Sf30AklfBz5fb78MuGDYgbVBeqJlJZ9lJZ/ldL1nvx/3jqe/\nnmo6YqhG5mw8zKAiIqKsdRZ724vmMI5WWrFiImdPBSWfZSWf5UxMTLT+7L6f0TiPAQ4DFkx6faY4\njohokX6mOD4ZOJbqrtl76n0ZZ096oqUln2Uln+W0/awe+iv2t9v+yNAjiYiIoeln6OVHJS2W9AxJ\nu/QeQ4+sBTKOuazks6zks5wujLPv58x+B+AgYE/ubeNQb0dERAv0U+xfBjza9h3DDqZt0hMtK/ks\nK/kspws9+37aOCuABw07kIiIGJ5+iv2DgCslnS5pWf04ddiBtUF6omUln2Uln+WMS8/+qNkeXNKn\ngOcD19vesd63JfA5YFuqhcxfbvu3s/0eERExvWnP7G1PTPXo8/ifBvZda9+RwBm2Hw+cWW+3Unqi\nZSWfZSWf5YxFz17SLZJW14/fS7pHUl+zXto+B7hxrd37A8fXz48HXjSjiCMiYsb6ObPf3PY82/OA\nTYAXAx8b4HtuZfu6+vl1wFYDHKtR6YmWlXyWlXyWMy49+zVs3wOcLGkxBdovti1pyqkXFi1axIIF\nCwCYP38+CxcuXPNRqpf4mWyvXLmCbbbZD7j3f4Lex9zZbveUOl5vezY/31xvJ5/J5yjlb9jby5cv\nH6l4etsTExMsXboUYE29XBdNt5zspHntofoksCvwbNvPWO8b733/AmDZpAu0VwJ72L5W0tbAWbaf\nuNZ7ii9zu2TJsjX/M42yVauWccghox9n8llW8hklSMK2pvpaP2f2k+e1v4tqBM0LB4jnVOA1wAfq\nf08e4FgREdGHfnr2i2wfXD/eYPv/2r6+n4NLOgk4D3iCpJ9LOhg4Bthb0krgOfV2K6UnWlbyWVby\nWU6ne/aS1jW+3gC2j57u4LZfuY4vPXf60CIiopT1tXFu5Q/nrd8MeB3wEGDaYt91GcdcVvJZVvJZ\nThfG2a9vWcJ/7j2XtAVwOHAw8FngQ8MPLSIiSllvz17SgyW9D7gEuB+wi+0j+u3Zd116omUln2Ul\nn+V0vWf/z8ABwCeBnWyvnrOoIiKiqPWd2f8tsA3wTuCXk6ZMWN3vdAldl55oWclnWclnOV3v2fcz\n/XFERLRACvoA0hMtK/ksK/kspws9+xT7iIgxkGI/gPREy0o+y0o+y+lCzz7FPiJiDKTYDyA90bKS\nz7KSz3LSs4+IiFZIsR9AeqJlJZ9lJZ/lpGcfERGtMKNlCeO+VqyYyNlTQclnWeOazxNPXMbqwpO7\nrFy5gsc/fseix5w3Dw48cO5W/Uqxj4hOWb2a4ks83nDDPLbZZo+ix1y1alnR400nbZwBjONZ0zAl\nn2Uln+V0IZcp9hERYyDFfgAZx1xW8llW8llOF3KZYh8RMQZS7AfQhT7eKEk+y0o+y+lCLlPsIyLG\nQIr9ALrQxxslyWdZyWc5XchlY+PsJV0D3AzcDdxpe7emYomI6Lomb6oysIftGxqMYSBd6OONkuSz\nrOSznC7ksuk2jhr+/hERY6HJYm/gW5IukPSGBuOYtS708UZJ8llW8llOF3LZZBtnd9u/kvRQ4AxJ\nV9o+p/fFRYsWsWDBAgDmz5/PwoUL10wz2ltIYCbbK1euWDNfRu8/XO+j2Wy3e0odr7c9m59vrreT\nz+RzlPI3eXvlyhXccMO8Yj/vihUTXHXV8qLHA9hySwb+eScmJli6dCnAmnq5LrK93hfMBUlHAbfY\n/lC97dJxLVmyrPjkSMOwatUyDjlk9ONMPstKPssZ51xKwvaU7fFG2jiSNpU0r36+GbAPsKKJWCIi\nxkFTPfutgHMkLQd+AHzV9ukNxTJrXejjjZLks6zks5wu5LKRnr3tq4GFTXzviIhx1PTQy1brwtjb\nUZJ8lpV8ltOFXKbYR0SMgRT7AXShjzdKks+yks9yupDLFPuIiDGQYj+ALvTxRknyWVbyWU4Xcpli\nHxExBlLsB9CFPt4oST7LSj7L6UIuU+wjIsZAiv0AutDHGyXJZ1nJZzldyGWKfUTEGEixH0AX+nij\nJPksK/kspwu5TLGPiBgDKfYD6EIfb5Qkn2Uln+V0IZcp9hERYyDFfgBd6OONkuSzrOSznC7kMsU+\nImIMpNgPoAt9vFGSfJaVfJbThVym2EdEjIEU+wF0oY83SpLPspLPcrqQyxT7iIgxkGI/gC708UZJ\n8llW8llOF3KZYh8RMQYaKfaS9pV0paT/lnREEzGU0IU+3ihJPstKPsvpQi7nvNhL2hD4f8C+wPbA\nKyU9aa7jKOGqq5Y3HUKnJJ9lJZ/ldCGXTZzZ7wb8xPY1tu8EPgu8sIE4Bnbrrb9tOoROST7LSj7L\n6UIumyj22wA/n7T9i3pfREQMSRPF3g18z6G4/vprmg6hU5LPspLPcrqQS9lzW3slPR1YbHvfevvt\nwD22PzDpNZ35gxARMZdsa6r9TRT7jYAfA3sBvwTOB15p+0dzGkhExBjZaK6/oe27JP01cBqwIXBc\nCn1ExHDN+Zl9RETMvdxBGxExBua8jdN2khYA29n+lqRNgY1s39xsVO0kaUPbdzcdR1dI+hvg08DN\nwLHALsCRtk9rNLAWkrSMauRg72KnqfL6Q+ATtm9vKrbZypn9DEh6I/AF4BP1rj8CvtJcRK3335L+\nSdL2TQfSEa+1fROwD7AlcBBwTLMhtdbVwC3AJ4H/AFbXj8fX262TM/uZOZTqDuDvA9heKelhzYbU\naguBVwDH1tNofAo4KZ+UZq13Fvp84D9tXyZNOQovpvdM20+dtH2qpAtsP1XS5Y1FNYCc2c/M723/\nvrdRDyPNFe5Zsn2z7U/afiZwBPBu4FpJx0varuHw2uhCSacDfw58U9IWwD0Nx9RWm0natrdRP9+s\n3ryjmZAGkzP7mTlb0juATSXtDbwZWNZwTK1V/7F8PnAwsAD4EPAZ4FnA16k+Mkf/Xgc8BbjK9u8k\nPZgqtzFzfwecI+mqevsxwJslbQYc31xYs5ehlzMgaQPg9VQ9UajuFTjWSeKs1P8jTVDl8Ly1vvZR\n24c1ElhL1b+fBwKPtn20pEcBD7d9fsOhtZKkjYEnUn16/3EbL8pOlmLfp/os9DLbT2w6lq6QNM/2\n6qbj6ApJS4C7gb1sP1HSlsDpa/Weo0+Sngk8mqoDYgDbJzQa1ADSxulTfefvjyVta/tnTcfTEZtI\nOpyqhdP7XbTt1zYXUqs9zfbOki4GsH2DpPs1HVQbSfovqtbNcqo/oD0p9mNiS+BySecDt9b7bHv/\nBmNqs1OA7wBncO+FxHzUnL076lFNAEh6KLlAO1u7Att3qUWbYj8z72o6gI7ZxHZrl6UcQR+luu/j\nYZL+EXgp8M5mQ2qty4CtqSZr7IT07KMxkt4HfM/215qOpSvqJT73qjfPzCSDsyNpguo+kPOB3nDr\nVn+KT7GfAUnPAD4CPAl4ANWsnbfY3qLRwFpK0i3AplTjlu+sdzv5nJ16rYgrejel1ePsn2T7B81G\n1j6S9phqv+2JuY2knBT7GZB0IdUdn58Hngq8GniC7SMbDSwCkLQc2LnXZ6779xfY3rnZyGIUpGc/\nQ7b/e9IEXp+u/wdLsZ8lSQ8CHgds3Ntn+zvNRdRuky8o2r578gXbmJ6k79revf7UufaZcKs/dabY\nz8ytkh4AXCLpg8C13DsfScyQpDcAhwOPBC4Gng58D3hOk3G12NX1UNaPU/1e/hVw1frfEpPZ3r3+\nd/OmYyktc+PMzEFUOftr4HdUs16+pNGI2u0tVBPLXWN7T2Bn4KZmQ2q1Q4DdgVXAL6j+eL6x0Yha\nStJ/9rOvTXJmPzOPA66vp5Fd3HAsXXC77dskIWlj21dKekLTQbWV7euAv2g6jo548uSN+g76XRuK\npYgU+5l5NfAxSTdS3Qz0HeBc2zc2G1Zr/bzu2Z8MnFHn9ZpmQ2ofSUfY/oCkj07xZds+fM6DailJ\n/wd4O9Xd3ZOn8riTam771sponFmQ9AiqG1beBjzCdv5oDqge6rYF8E3brZxCtimS9rO9TNKiSbt7\nqyzZditnaWySpGO6NsouRWoGJB1ENf3uTsCvgf8HnNtoUC0naVeqnJrqU1IK/QzZ7k2zvcL2hY0G\n0x1flbS57Vvq/+93Bv6tzfNi5cx+BiT9Bvgp1WiHCdtXNxxSq0l6N/Ay4MtUZ6EvBL5o+72NBtZS\n9V2fD6daOvNzti9rNqL2krSCam2AHYGlwHHAy2w/u8m4BpFiPwOq1njbAfiT+rEdsNL2qxoNrKUk\nrQR26s0TLmkT4BLbWbRkliRtDby8fmwBfD5/PGdO0sX1DKJHAatsHyvpItu7NB3bbGXo5czMAx4F\nbEs1Le98MqvgIFYBm0za3phqyGDMku1f2f43qmGYl1At9Rgzt7q+WPsqqpbOhkCrp4vOmf0MSLoU\n+C5wDvAd2ylMA5B0CvDHwOn1rr2pJp76BRlFMmOStqc6o38p8Bvgc1RtsesbDayF6k9IrwR+aPuc\netWvPdq8eEmK/QxIerntz6+172W2v9BUTG221uiRtWUUyQxJ+h5Vgf+87c5MzdsUSQuA7Wx/S9Km\nwEa9SebaKMV+Bqbq2fV6e03FFAFrbvo5wfZfNh1LF0h6I/AGYEvbj5X0eODjtvea5q0jK0Mv+yDp\necCfA38k6SPcOx/OPO6dmjdmSNJ+wNH84bKErZ1sqin1spmPkvQA27+f/h0xjUOppvL4PoDtlZIe\n1mxIg0mx78+NwIXA/vW/vWJ/M/DWpoLqgH8FDqBayD0Xugd3NXCupFOp5m6C6o/nhxuMqa1+b/v3\n1QC8NZ+cWt0GSbHvz8ds7yJpn/SRi/oFcHkKfTE/rR8bAJ2btXGOnS3pHcCmkvYG3gwsm+Y9Iy09\n+z5Iuhz4R+C9VFMkiPvejv7lBsNrrXplpaOBs6hWq4KciQ5M0ma2b206jjaTtAHwemCfetdpwLFt\nXoA8Z/b9OQQ4EHggsN8UX0+xn533Aqupxtffv+FYWk/SM4Fjqa4lPVLSU4A32X5zs5G10ouA4223\nevKzyXJmPwOSXm/72Kbj6ApJl9l+8vSvjH5IOp9qjP0pvRFiki63vUOzkbWPpKVUi+icTTWc9Zu2\n72o0qAHdMJMvAAAM9klEQVTlDtqZOUHSWyR9qX4cJqnVd9U17OuS/qzpILrE9v+stavVBaopthdR\nTYfyRaqbq66SdFyjQQ0obZyZ+ThVzv6dql9/UL3v9U0G1WJvBt4m6Q7uHcKaoZez9z+SdgeQdH+q\nJR9/1GxI7WX7DknfoJoSZVOq1s7rmo1q9tLGmQFJl9reabp9EU2Q9FDg34DnUp2MnA4cbvs3jQbW\nQpL+nGrqiT2BCapWzultbuXkzH5m7pK0ne2fAEh6LPmYPBBJLwT+lGp009mT5maPGbL9ayB30JZx\nEFWBP6Q3K2vb5cx+BiTtBXya6uYVqGa/fK3tbzcXVXtJOoZqIrQTqc5EXwFcYPvtjQbWMvWt/RP1\nXZ4CPgW8hGqJx0W2L2oyvhgNKfZ9kLQb8HPbv5K0MfBGqv7dT4EjbN/QaIAtVS8QsdD23fX2hsBy\n2zs2G1m71PeBLLR9p6S/pLoXZG+q1ZWOsv0njQbYQpJeAhwDbMW9d8y3+npSRuP05xNAb76R3agW\nJP534Dpavghxw0y1JkDPfFp+S3pD7rTdu8D9AqoJ0X5j+1vkTtrZ+iCwv+0tbM+rH60t9JCefb82\nmHT2/hfAJ2x/CfiSpEsajKvt3g9cJOksqrOnZwOdWuR5jtwj6RHADcBeVHd792wy9VtiGtfa7tRI\nphT7/mwo6X712dNzqdo4PcnhLNk+SdLZVH17U7XErm04rDZ6N/BDqt/FU3trz0rag6rVGDN3gaTP\nASdz36k8Wnu3fHr2fagnRHo+8L/AI4Fdbd8j6XHAUtu7Nxpgy0jaF5i39qIvkl4K3GT7jGYia6/6\n5r55k68fSdqM6v/xW5qLrJ3qO2hhrbai7YPnPpoyUuz7JOkZwMOpxtreWu97PLB5RjvMjKTzgBet\nvVxePU58me2nNxNZRHelBdEn29+bYt/KJmLpgAdMtS6q7V/XZ6MRjZD00fV8udXrIqfYRxPmTboG\nskbditi4oZgioFqcaKp2h9axvzXSxok5V99MtRVwWK+fLGke1a3+v7Z9RJPxtY2kXVlPIUqbMSDF\nPhpQn8G/l2oCud4sjY8CjgPeufYZf6yfpAnWX+z3nLtoYlSl2EdjJG1KNY0swE9s/259r4+I2Uux\nj+gQSTsCT2LStQ/bJzQXUYyKFPuIjpC0mOou5B2ArwHPA861/dIm42qTjMaJiDZ4KfAU4CLbB0va\nimpG0ejf5NE4WutrrT4zTrGPxkjagGoh90fbPlrSo4CH2z6/4dDa6jbbd0u6S9IDgeup7viOPtle\n2nQMw5JiH036GNWSb88BjgZuqfc9tcmgWuyHkh4E/AdwAXArcF6zIbWTpIcB/wBsz72Tydn2c5qL\najAp9tGkp9neWdLFALZvyALus2f7zfXTJZJOA7awnVlZZ+dEqpWqXgC8CVgE/LrJgAaV+eyjSXfU\nC5YAa+bGuafBeFpJ0pPqf3fpPYAHUc3Wukuz0bXWg20fC9xh++x6ArTWntVDzuyjWR8FvgI8TNI/\nUl1gfGezIbXS3wJvAD7M1BcRc1PVzPWmNb5W0guAX1L9AW2tDL2MRtVnpXvVm2d2bcGIaCdJ+wHn\nUF3g/iiwBbDY9qmNBjaAFPtojKSnA1fYvrne3gJ4ku0fNBtZO0k6FPiM7Rvr7QcBr7T9sWYji1GQ\nYh+NkbQc2Nn1L2Hdv7/A9s7NRtZOki6x/ZS19i23vbCpmNqqHo3zBmAB97a7bfu1jQU1oPTso1Ge\ndLZRjxHfcH2vj/XaQNIGtu+BNX88M7ppdk4BvgOcwb2DBlp9ZpxiH026WtLhwMep7lb8K+CqZkNq\ntdOAz0r6BFU+3wR8s9mQWmuTrk21nTZONKa+nf8j3Dta5EzgLVOtYhXTq8/k38i9F7zPAI61fXdz\nUbWTpPcB37P9taZjKSXFPiJiLZJuATalGoLZW1/BtrdoLqrBpNhHY7p4EaxJkp4FHMUf5vMxjQUV\nIyM9+2hS5y6CNew44G+Ai4C0bgYk6YXAn1L9Tp5te1nDIQ0kZ/bRmAwLLEvSD2w/rek4uqBeJ/mP\nqebIEfAKqmHBb280sAGk2EdjungRrEl1gdoQ+DLw+97+LDg+c5JWAAt7F7fri9/Lbe/YbGSzl2If\njeniRbAmrWvh8Sw4PnOSLgX2tP2bevvBwFm2d2o2stlLzz4aY3vzpmPoEtt7NB1Dh7wfuEjSWVRt\nnGcDRzYb0mByZh+NqudveRz3XSD7O81F1G71DI3bc998Ht1cRO0l6RFUfXsD59u+tuGQBpL57KMx\nkt5ANRrndOA9VHeALm4ypjar75x9OXA41dnoy4FtGw2qpSTtDtxs+xTggcA/SGp1LlPso0lvAXYD\nrqn7yjsDNzUbUqs90/argRtsvwd4OvCEhmNqqyXArZKeQrVewE+BE5oNaTAp9tGk223fBiBpY9tX\nkuI0iNvqf38naRvgLuDhDcbTZnfVk/S9CPh32/8OzGs4poHkAm006Rd1z/5k4AxJNwLXNBtSqy2r\n8/lPwIX1vv9oMJ42Wy3p/wCvAv6kCzOI5gJtjARJe1CtBvRN23dM8/KYhqSNgY1t/7bpWNpI0sOB\nA6kuzJ4j6VHAHrZb28pJsY9GSNoIuMz2E5uOpUvqC4sLqG6uAqDNBaoJ9e/mGV27PyFtnGiE7bsk\n/VjStrZ/1nQ8XSDpv4DHAMu579w4KfYzUP9u3iNpfpc+GaXYR5O2BC6XdD5wa73PtvdvMKY22xXY\n3vm4XsKtwApJZ3Df383DG4xpICn20aR3NR1Ax1wGbA38sulAOuDL9aP3h1O0fEbW9OwjOqKeG2ch\ncD73ToSWT0qzJGlT4FH1kODWy5l9NKaeCK13tnF/qqFtt2QitFlb3HQAXSFpf6ohrA8AFkjaGXhP\nm/9wpthHYyZPhCZpA2B/qrs+YxZsTzQdQ4csBp4GnAVg+2JJrV7xK3fQxkiwfY/tk4F9m46lbSR9\nt/73Fkmr13rc3HR8LXXnFCNx7pnylS2RM/tojKSXTNrcgGo0yW3reHms219Cpowu7HJJBwIbSXoc\n1eRy5zUc00ByZh9N2g94Qf3YB1gNvLDRiNrpK70nkr7UZCAd8tfADlQXuk8CbqZa37e1cmYfjbG9\nqOkYOkKTnre6r9w0SZsAhwDbAZcCz7B95/rf1Q45s4/GSPqgpC0k3U/SmZL+V9JBTccVY+14qnbi\nCuB5wD83G045GWcfjZF0ie2nSDqAqpXzt8A5bV7nswmS7gZ+V29uwn2ve2RN3xmQtKK3qHg9R84P\nbe/ccFhFpI0TTer9/r0A+KLtmyTl7GOGbG84/auiT3f1ntRz5DQZS1Ep9tGkZZKuBG4H/krSw+rn\nEU3ZSdLqSdubTNpu9aektHGiUZIeDPzW9t2SNgPmtX1h54hRlDP7aNoTgW0l9VYBMpmSN6K4FPto\nTOZfj5g7aeNEYyT9iMy/HjEnMs4+mtSbfz0ihixtnGjSQ4Er6pWqMv96xBCl2EeTFjcdQMS4SM8+\nImIM5Mw+5txaK1StrdU3rkSMqpzZR0SMgYzGiYgYAyn2ERFjIMU+ImIMpNhHRIyBFPvoNEkPl/RZ\nST+RdIGkr9ULSE/12gdK+qu5jjFiLqTYR2epWnniK8C3bW9n+6nA24Gt1vGWBwFvnoO4sthIzLkU\n++iyPYE7bH+yt8P2pcDFkr4l6UJJl0rqTc9wDPBYSRdL+gCApL+XdL6kSyQt7h1H0rskXSnpHEmf\nkfR39f6Fkr5fv/7LkubX+yck/YukHwLvkHRVvewd9Tq8V+WPQAxTbqqKLnsycOEU+28HDrC9WtJD\ngO8BpwJHADv01hyVtA+wne3dJG0AnCLpT+r3vxjYCbg/cBFwQX3sE4BDbZ8j6T3AUcBbqW4iu5/t\nP66PvQB4PnAK8ArgS7YnT/McUVSKfXTZuu4Y3AB4f1247wEeUS+JuPaCo/sA+0i6uN7eDHgcMA84\n2fYdwB2SlkF1hg480PY59euPB74w6Xifm/T8WOAfqIr9IuD1M//xIvqXYh9ddjnw0in2Hwg8BNil\nXg7xamDjdRzj/ZPbQACS3sJ9/zCsa1Xqtfff2nti+zxJCyTtAWxo+4p1/xgRg0vPPjrL9reBB0h6\nQ2+fpJ2ARwHX14V+T2Db+surqc7ae04DXluvjYukbSQ9FPgusJ+kB0janKodg+2bgRslPat+/0HA\nxHpCPAE4EfjUYD9pxPRyZh9ddwDwr5KOoOq1Xw28B/iIpEupeu0/ArD9G0nflbQC+LrtIyQ9Cfhe\nNbCH1cCrbF8g6VTgUuA6YAVwU/39XgMskbQp8FPg4PXE9hngfcBJRX/iiClkIrSIWZC0me1b66J+\nNvAG28tneIyXAvvZfs1QgoyYJGf2EbPzSUnbU/X6l86i0H8U+DPgz4cRXMTacmYfETEGcoE2ImIM\npNhHRIyBFPuIiDGQYh8RMQZS7CMixsD/B5s1jmLnnSJEAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x10842f6d0>"
]
}
],
"prompt_number": 22
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_advertiser.groupby(['Industry','Advertiser']).sum()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th>Rank</th>\n",
" <th>Trend</th>\n",
" <th>Activity</th>\n",
" <th>Percentage In-Play</th>\n",
" <th>Creatives</th>\n",
" <th>Publishers</th>\n",
" <th>Tags</th>\n",
" <th>Count</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Industry</th>\n",
" <th>Advertiser</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"18\" valign=\"top\">Financial Services</th>\n",
" <th>Advance America</th>\n",
" <td> 9</td>\n",
" <td> -3</td>\n",
" <td> 8.81</td>\n",
" <td> 2.93</td>\n",
" <td> 49</td>\n",
" <td> 688</td>\n",
" <td> 37</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Ameriprise Financial</th>\n",
" <td> 17</td>\n",
" <td> 0</td>\n",
" <td> 0.26</td>\n",
" <td> 84.84</td>\n",
" <td> 14</td>\n",
" <td> 25</td>\n",
" <td> 14</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Barclays</th>\n",
" <td> 11</td>\n",
" <td> -4</td>\n",
" <td> 2.22</td>\n",
" <td> 45.51</td>\n",
" <td> 18</td>\n",
" <td> 17</td>\n",
" <td> 6</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Bloomberg</th>\n",
" <td> 16</td>\n",
" <td> -1</td>\n",
" <td> 0.62</td>\n",
" <td> 41.23</td>\n",
" <td> 57</td>\n",
" <td> 36</td>\n",
" <td> 8</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>CFP</th>\n",
" <td> 18</td>\n",
" <td> -2</td>\n",
" <td> 0.05</td>\n",
" <td> 0.00</td>\n",
" <td> 8</td>\n",
" <td> 32</td>\n",
" <td> 39</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Credit Suisse</th>\n",
" <td> 13</td>\n",
" <td> -1</td>\n",
" <td> 2.06</td>\n",
" <td> 45.59</td>\n",
" <td> 19</td>\n",
" <td> 51</td>\n",
" <td> 18</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Equifax</th>\n",
" <td> 3</td>\n",
" <td> 5</td>\n",
" <td> 18.78</td>\n",
" <td> 35.86</td>\n",
" <td> 39</td>\n",
" <td> 869</td>\n",
" <td> 26</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>GE Capital</th>\n",
" <td> 12</td>\n",
" <td> -1</td>\n",
" <td> 2.16</td>\n",
" <td> 92.88</td>\n",
" <td> 14</td>\n",
" <td> 24</td>\n",
" <td> 7</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Mass Mutual Financial Group</th>\n",
" <td> 15</td>\n",
" <td> -1</td>\n",
" <td> 0.83</td>\n",
" <td> 62.11</td>\n",
" <td> 23</td>\n",
" <td> 10</td>\n",
" <td> 4</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Merrill Edge</th>\n",
" <td> 2</td>\n",
" <td> 0</td>\n",
" <td> 79.15</td>\n",
" <td> 23.51</td>\n",
" <td> 86</td>\n",
" <td> 1253</td>\n",
" <td> 28</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Merrill Lynch</th>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" <td> 100.00</td>\n",
" <td> 28.67</td>\n",
" <td> 92</td>\n",
" <td> 1298</td>\n",
" <td> 29</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Moneygram</th>\n",
" <td> 4</td>\n",
" <td> 5</td>\n",
" <td> 14.73</td>\n",
" <td> 0.67</td>\n",
" <td> 49</td>\n",
" <td> 1408</td>\n",
" <td> 31</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Pimco</th>\n",
" <td> 6</td>\n",
" <td> -1</td>\n",
" <td> 10.37</td>\n",
" <td> 39.02</td>\n",
" <td> 27</td>\n",
" <td> 465</td>\n",
" <td> 18</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Ul</th>\n",
" <td> 10</td>\n",
" <td> 3</td>\n",
" <td> 2.55</td>\n",
" <td> 84.09</td>\n",
" <td> 38</td>\n",
" <td> 81</td>\n",
" <td> 9</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Usaa</th>\n",
" <td> 5</td>\n",
" <td> -2</td>\n",
" <td> 11.38</td>\n",
" <td> 72.79</td>\n",
" <td> 45</td>\n",
" <td> 144</td>\n",
" <td> 13</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Veterans United Home Loans</th>\n",
" <td> 14</td>\n",
" <td> 0</td>\n",
" <td> 1.98</td>\n",
" <td> 8.72</td>\n",
" <td> 6</td>\n",
" <td> 235</td>\n",
" <td> 22</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Vulcan Inc.</th>\n",
" <td> 7</td>\n",
" <td> 3</td>\n",
" <td> 9.90</td>\n",
" <td> 71.67</td>\n",
" <td> 66</td>\n",
" <td> 269</td>\n",
" <td> 14</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Zurich</th>\n",
" <td> 8</td>\n",
" <td> -4</td>\n",
" <td> 9.15</td>\n",
" <td> 99.11</td>\n",
" <td> 34</td>\n",
" <td> 27</td>\n",
" <td> 5</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"12\" valign=\"top\">Insurance Company</th>\n",
" <th>AAA insurance</th>\n",
" <td> 22</td>\n",
" <td> -1</td>\n",
" <td> 2.08</td>\n",
" <td> 65.66</td>\n",
" <td> 60</td>\n",
" <td> 543</td>\n",
" <td> 27</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Aetna</th>\n",
" <td> 7</td>\n",
" <td> 0</td>\n",
" <td> 27.11</td>\n",
" <td> 43.49</td>\n",
" <td> 83</td>\n",
" <td> 1509</td>\n",
" <td> 24</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Aflac</th>\n",
" <td> 21</td>\n",
" <td> 2</td>\n",
" <td> 2.16</td>\n",
" <td> 41.72</td>\n",
" <td> 35</td>\n",
" <td> 308</td>\n",
" <td> 12</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Allianz</th>\n",
" <td> 20</td>\n",
" <td> 2</td>\n",
" <td> 2.64</td>\n",
" <td> 61.97</td>\n",
" <td> 57</td>\n",
" <td> 223</td>\n",
" <td> 17</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Allstate</th>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" <td> 100.00</td>\n",
" <td> 22.69</td>\n",
" <td> 281</td>\n",
" <td> 4058</td>\n",
" <td> 33</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>American Family Insurance</th>\n",
" <td> 6</td>\n",
" <td> 6</td>\n",
" <td> 33.02</td>\n",
" <td> 19.23</td>\n",
" <td> 89</td>\n",
" <td> 2016</td>\n",
" <td> 37</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Bluecross Blueshield</th>\n",
" <td> 14</td>\n",
" <td> -3</td>\n",
" <td> 11.81</td>\n",
" <td> 37.62</td>\n",
" <td> 227</td>\n",
" <td> 1800</td>\n",
" <td> 33</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Cigna</th>\n",
" <td> 16</td>\n",
" <td> 8</td>\n",
" <td> 4.70</td>\n",
" <td> 5.57</td>\n",
" <td> 40</td>\n",
" <td> 891</td>\n",
" <td> 23</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Cuidadodesalud.gov</th>\n",
" <td> 25</td>\n",
" <td> 2</td>\n",
" <td> 0.71</td>\n",
" <td> 2.25</td>\n",
" <td> 7</td>\n",
" <td> 221</td>\n",
" <td> 30</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Esurance</th>\n",
" <td> 24</td>\n",
" <td> 1</td>\n",
" <td> 0.73</td>\n",
" <td> 34.92</td>\n",
" <td> 23</td>\n",
" <td> 318</td>\n",
" <td> 20</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Farmers Insurance</th>\n",
" <td> 10</td>\n",
" <td> -1</td>\n",
" <td> 15.89</td>\n",
" <td> 12.27</td>\n",
" <td> 58</td>\n",
" <td> 2134</td>\n",
" <td> 31</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Fidelity</th>\n",
" <td> 9</td>\n",
" <td> -1</td>\n",
" <td> 20.78</td>\n",
" <td> 57.13</td>\n",
" <td> 243</td>\n",
" <td> 1770</td>\n",
" <td> 24</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"30\" valign=\"top\">Software</th>\n",
" <th>Apple</th>\n",
" <td> 25</td>\n",
" <td> -5</td>\n",
" <td> 0.25</td>\n",
" <td> 73.76</td>\n",
" <td> 15</td>\n",
" <td> 112</td>\n",
" <td> 17</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Ca Technologies</th>\n",
" <td> 23</td>\n",
" <td> -4</td>\n",
" <td> 0.30</td>\n",
" <td> 92.89</td>\n",
" <td> 58</td>\n",
" <td> 147</td>\n",
" <td> 9</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Carbonite</th>\n",
" <td> 19</td>\n",
" <td> 3</td>\n",
" <td> 2.09</td>\n",
" <td> 82.34</td>\n",
" <td> 72</td>\n",
" <td> 708</td>\n",
" <td> 19</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Cisco</th>\n",
" <td> 6</td>\n",
" <td> 3</td>\n",
" <td> 13.42</td>\n",
" <td> 51.48</td>\n",
" <td> 97</td>\n",
" <td> 1147</td>\n",
" <td> 19</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Cisco Webex</th>\n",
" <td> 16</td>\n",
" <td> 2</td>\n",
" <td> 2.38</td>\n",
" <td> 0.00</td>\n",
" <td> 10</td>\n",
" <td> 666</td>\n",
" <td> 27</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Citrix</th>\n",
" <td> 11</td>\n",
" <td> 3</td>\n",
" <td> 5.54</td>\n",
" <td> 47.06</td>\n",
" <td> 199</td>\n",
" <td> 2256</td>\n",
" <td> 26</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>E-verify</th>\n",
" <td> 12</td>\n",
" <td> -6</td>\n",
" <td> 5.09</td>\n",
" <td> 30.76</td>\n",
" <td> 63</td>\n",
" <td> 1224</td>\n",
" <td> 28</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Emc2</th>\n",
" <td> 14</td>\n",
" <td> 2</td>\n",
" <td> 3.07</td>\n",
" <td> 73.16</td>\n",
" <td> 205</td>\n",
" <td> 962</td>\n",
" <td> 15</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Film Fanatic</th>\n",
" <td> 31</td>\n",
" <td> -4</td>\n",
" <td> 0.02</td>\n",
" <td> 8.43</td>\n",
" <td> 11</td>\n",
" <td> 24</td>\n",
" <td> 12</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Google</th>\n",
" <td> 2</td>\n",
" <td> -1</td>\n",
" <td> 97.37</td>\n",
" <td> 13.92</td>\n",
" <td> 341</td>\n",
" <td> 5666</td>\n",
" <td> 18</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Google Play</th>\n",
" <td> 10</td>\n",
" <td> 2</td>\n",
" <td> 7.20</td>\n",
" <td> 81.15</td>\n",
" <td> 76</td>\n",
" <td> 428</td>\n",
" <td> 10</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Google Software</th>\n",
" <td> 8</td>\n",
" <td> -3</td>\n",
" <td> 10.25</td>\n",
" <td> 56.41</td>\n",
" <td> 159</td>\n",
" <td> 1351</td>\n",
" <td> 12</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>IBM</th>\n",
" <td> 3</td>\n",
" <td> 0</td>\n",
" <td> 43.27</td>\n",
" <td> 47.57</td>\n",
" <td> 379</td>\n",
" <td> 2004</td>\n",
" <td> 24</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Join.me</th>\n",
" <td> 22</td>\n",
" <td> 1</td>\n",
" <td> 0.38</td>\n",
" <td> 3.59</td>\n",
" <td> 8</td>\n",
" <td> 316</td>\n",
" <td> 21</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>LifeLock</th>\n",
" <td> 9</td>\n",
" <td> 1</td>\n",
" <td> 7.26</td>\n",
" <td> 10.26</td>\n",
" <td> 61</td>\n",
" <td> 2052</td>\n",
" <td> 34</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Log Me In Rescue</th>\n",
" <td> 28</td>\n",
" <td> 0</td>\n",
" <td> 0.18</td>\n",
" <td> 75.00</td>\n",
" <td> 5</td>\n",
" <td> 162</td>\n",
" <td> 11</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Manage Engine</th>\n",
" <td> 21</td>\n",
" <td> -4</td>\n",
" <td> 0.86</td>\n",
" <td> 31.78</td>\n",
" <td> 64</td>\n",
" <td> 122</td>\n",
" <td> 9</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Microsoft</th>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" <td> 100.00</td>\n",
" <td> 46.31</td>\n",
" <td> 757</td>\n",
" <td> 6314</td>\n",
" <td> 43</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Microsoft Software</th>\n",
" <td> 4</td>\n",
" <td> 4</td>\n",
" <td> 21.03</td>\n",
" <td> 7.65</td>\n",
" <td> 127</td>\n",
" <td> 3860</td>\n",
" <td> 39</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Norton</th>\n",
" <td> 5</td>\n",
" <td> 2</td>\n",
" <td> 15.96</td>\n",
" <td> 24.02</td>\n",
" <td> 51</td>\n",
" <td> 2771</td>\n",
" <td> 32</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Redhat</th>\n",
" <td> 24</td>\n",
" <td> -3</td>\n",
" <td> 0.27</td>\n",
" <td> 99.44</td>\n",
" <td> 30</td>\n",
" <td> 30</td>\n",
" <td> 2</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Rescue</th>\n",
" <td> 27</td>\n",
" <td> 0</td>\n",
" <td> 0.19</td>\n",
" <td> 72.86</td>\n",
" <td> 1</td>\n",
" <td> 165</td>\n",
" <td> 13</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Safecount.net</th>\n",
" <td> 26</td>\n",
" <td> 0</td>\n",
" <td> 0.21</td>\n",
" <td> 0.00</td>\n",
" <td> 11</td>\n",
" <td> 225</td>\n",
" <td> 37</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sage</th>\n",
" <td> 30</td>\n",
" <td> -5</td>\n",
" <td> 0.04</td>\n",
" <td> 63.49</td>\n",
" <td> 42</td>\n",
" <td> 44</td>\n",
" <td> 10</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Skype</th>\n",
" <td> 20</td>\n",
" <td> 0</td>\n",
" <td> 1.66</td>\n",
" <td> 55.32</td>\n",
" <td> 28</td>\n",
" <td> 30</td>\n",
" <td> 11</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Visual Studio</th>\n",
" <td> 29</td>\n",
" <td> 0</td>\n",
" <td> 0.06</td>\n",
" <td> 99.77</td>\n",
" <td> 4</td>\n",
" <td> 14</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Windows</th>\n",
" <td> 17</td>\n",
" <td> 11</td>\n",
" <td> 2.13</td>\n",
" <td> 78.59</td>\n",
" <td> 21</td>\n",
" <td> 223</td>\n",
" <td> 14</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Xfinity</th>\n",
" <td> 7</td>\n",
" <td> -3</td>\n",
" <td> 11.24</td>\n",
" <td> 41.17</td>\n",
" <td> 247</td>\n",
" <td> 1895</td>\n",
" <td> 34</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Zendesk</th>\n",
" <td> 18</td>\n",
" <td> -5</td>\n",
" <td> 2.13</td>\n",
" <td> 19.69</td>\n",
" <td> 70</td>\n",
" <td> 1591</td>\n",
" <td> 21</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>iLivid</th>\n",
" <td> 15</td>\n",
" <td> 0</td>\n",
" <td> 2.99</td>\n",
" <td> 50.13</td>\n",
" <td> 117</td>\n",
" <td> 174</td>\n",
" <td> 21</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>82 rows \u00d7 8 columns</p>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 23,
"text": [
" Rank Trend Activity \\\n",
"Industry Advertiser \n",
"Financial Services Advance America 9 -3 8.81 \n",
" Ameriprise Financial 17 0 0.26 \n",
" Barclays 11 -4 2.22 \n",
" Bloomberg 16 -1 0.62 \n",
" CFP 18 -2 0.05 \n",
" Credit Suisse 13 -1 2.06 \n",
" Equifax 3 5 18.78 \n",
" GE Capital 12 -1 2.16 \n",
" Mass Mutual Financial Group 15 -1 0.83 \n",
" Merrill Edge 2 0 79.15 \n",
" Merrill Lynch 1 0 100.00 \n",
" Moneygram 4 5 14.73 \n",
" Pimco 6 -1 10.37 \n",
" Ul 10 3 2.55 \n",
" Usaa 5 -2 11.38 \n",
" Veterans United Home Loans 14 0 1.98 \n",
" Vulcan Inc. 7 3 9.90 \n",
" Zurich 8 -4 9.15 \n",
"Insurance Company AAA insurance 22 -1 2.08 \n",
" Aetna 7 0 27.11 \n",
" Aflac 21 2 2.16 \n",
" Allianz 20 2 2.64 \n",
" Allstate 1 1 100.00 \n",
" American Family Insurance 6 6 33.02 \n",
" Bluecross Blueshield 14 -3 11.81 \n",
" Cigna 16 8 4.70 \n",
" Cuidadodesalud.gov 25 2 0.71 \n",
" Esurance 24 1 0.73 \n",
" Farmers Insurance 10 -1 15.89 \n",
" Fidelity 9 -1 20.78 \n",
"... ... ... ... \n",
"Software Apple 25 -5 0.25 \n",
" Ca Technologies 23 -4 0.30 \n",
" Carbonite 19 3 2.09 \n",
" Cisco 6 3 13.42 \n",
" Cisco Webex 16 2 2.38 \n",
" Citrix 11 3 5.54 \n",
" E-verify 12 -6 5.09 \n",
" Emc2 14 2 3.07 \n",
" Film Fanatic 31 -4 0.02 \n",
" Google 2 -1 97.37 \n",
" Google Play 10 2 7.20 \n",
" Google Software 8 -3 10.25 \n",
" IBM 3 0 43.27 \n",
" Join.me 22 1 0.38 \n",
" LifeLock 9 1 7.26 \n",
" Log Me In Rescue 28 0 0.18 \n",
" Manage Engine 21 -4 0.86 \n",
" Microsoft 1 1 100.00 \n",
" Microsoft Software 4 4 21.03 \n",
" Norton 5 2 15.96 \n",
" Redhat 24 -3 0.27 \n",
" Rescue 27 0 0.19 \n",
" Safecount.net 26 0 0.21 \n",
" Sage 30 -5 0.04 \n",
" Skype 20 0 1.66 \n",
" Visual Studio 29 0 0.06 \n",
" Windows 17 11 2.13 \n",
" Xfinity 7 -3 11.24 \n",
" Zendesk 18 -5 2.13 \n",
" iLivid 15 0 2.99 \n",
"\n",
" Percentage In-Play Creatives \\\n",
"Industry Advertiser \n",
"Financial Services Advance America 2.93 49 \n",
" Ameriprise Financial 84.84 14 \n",
" Barclays 45.51 18 \n",
" Bloomberg 41.23 57 \n",
" CFP 0.00 8 \n",
" Credit Suisse 45.59 19 \n",
" Equifax 35.86 39 \n",
" GE Capital 92.88 14 \n",
" Mass Mutual Financial Group 62.11 23 \n",
" Merrill Edge 23.51 86 \n",
" Merrill Lynch 28.67 92 \n",
" Moneygram 0.67 49 \n",
" Pimco 39.02 27 \n",
" Ul 84.09 38 \n",
" Usaa 72.79 45 \n",
" Veterans United Home Loans 8.72 6 \n",
" Vulcan Inc. 71.67 66 \n",
" Zurich 99.11 34 \n",
"Insurance Company AAA insurance 65.66 60 \n",
" Aetna 43.49 83 \n",
" Aflac 41.72 35 \n",
" Allianz 61.97 57 \n",
" Allstate 22.69 281 \n",
" American Family Insurance 19.23 89 \n",
" Bluecross Blueshield 37.62 227 \n",
" Cigna 5.57 40 \n",
" Cuidadodesalud.gov 2.25 7 \n",
" Esurance 34.92 23 \n",
" Farmers Insurance 12.27 58 \n",
" Fidelity 57.13 243 \n",
"... ... ... \n",
"Software Apple 73.76 15 \n",
" Ca Technologies 92.89 58 \n",
" Carbonite 82.34 72 \n",
" Cisco 51.48 97 \n",
" Cisco Webex 0.00 10 \n",
" Citrix 47.06 199 \n",
" E-verify 30.76 63 \n",
" Emc2 73.16 205 \n",
" Film Fanatic 8.43 11 \n",
" Google 13.92 341 \n",
" Google Play 81.15 76 \n",
" Google Software 56.41 159 \n",
" IBM 47.57 379 \n",
" Join.me 3.59 8 \n",
" LifeLock 10.26 61 \n",
" Log Me In Rescue 75.00 5 \n",
" Manage Engine 31.78 64 \n",
" Microsoft 46.31 757 \n",
" Microsoft Software 7.65 127 \n",
" Norton 24.02 51 \n",
" Redhat 99.44 30 \n",
" Rescue 72.86 1 \n",
" Safecount.net 0.00 11 \n",
" Sage 63.49 42 \n",
" Skype 55.32 28 \n",
" Visual Studio 99.77 4 \n",
" Windows 78.59 21 \n",
" Xfinity 41.17 247 \n",
" Zendesk 19.69 70 \n",
" iLivid 50.13 117 \n",
"\n",
" Publishers Tags Count \n",
"Industry Advertiser \n",
"Financial Services Advance America 688 37 1 \n",
" Ameriprise Financial 25 14 1 \n",
" Barclays 17 6 1 \n",
" Bloomberg 36 8 1 \n",
" CFP 32 39 1 \n",
" Credit Suisse 51 18 1 \n",
" Equifax 869 26 1 \n",
" GE Capital 24 7 1 \n",
" Mass Mutual Financial Group 10 4 1 \n",
" Merrill Edge 1253 28 1 \n",
" Merrill Lynch 1298 29 1 \n",
" Moneygram 1408 31 1 \n",
" Pimco 465 18 1 \n",
" Ul 81 9 1 \n",
" Usaa 144 13 1 \n",
" Veterans United Home Loans 235 22 1 \n",
" Vulcan Inc. 269 14 1 \n",
" Zurich 27 5 1 \n",
"Insurance Company AAA insurance 543 27 1 \n",
" Aetna 1509 24 1 \n",
" Aflac 308 12 1 \n",
" Allianz 223 17 1 \n",
" Allstate 4058 33 1 \n",
" American Family Insurance 2016 37 1 \n",
" Bluecross Blueshield 1800 33 1 \n",
" Cigna 891 23 1 \n",
" Cuidadodesalud.gov 221 30 1 \n",
" Esurance 318 20 1 \n",
" Farmers Insurance 2134 31 1 \n",
" Fidelity 1770 24 1 \n",
"... ... ... ... \n",
"Software Apple 112 17 1 \n",
" Ca Technologies 147 9 1 \n",
" Carbonite 708 19 1 \n",
" Cisco 1147 19 1 \n",
" Cisco Webex 666 27 1 \n",
" Citrix 2256 26 1 \n",
" E-verify 1224 28 1 \n",
" Emc2 962 15 1 \n",
" Film Fanatic 24 12 1 \n",
" Google 5666 18 1 \n",
" Google Play 428 10 1 \n",
" Google Software 1351 12 1 \n",
" IBM 2004 24 1 \n",
" Join.me 316 21 1 \n",
" LifeLock 2052 34 1 \n",
" Log Me In Rescue 162 11 1 \n",
" Manage Engine 122 9 1 \n",
" Microsoft 6314 43 1 \n",
" Microsoft Software 3860 39 1 \n",
" Norton 2771 32 1 \n",
" Redhat 30 2 1 \n",
" Rescue 165 13 1 \n",
" Safecount.net 225 37 1 \n",
" Sage 44 10 1 \n",
" Skype 30 11 1 \n",
" Visual Studio 14 1 1 \n",
" Windows 223 14 1 \n",
" Xfinity 1895 34 1 \n",
" Zendesk 1591 21 1 \n",
" iLivid 174 21 1 \n",
"\n",
"[82 rows x 8 columns]"
]
}
],
"prompt_number": 23
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_advertiser.info()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 82 entries, 0 to 81\n",
"Data columns (total 10 columns):\n",
"Rank 82 non-null int64\n",
"Trend 82 non-null int64\n",
"Advertiser 82 non-null object\n",
"Industry 82 non-null object\n",
"Activity 82 non-null float64\n",
"Percentage In-Play 82 non-null float64\n",
"Creatives 82 non-null int64\n",
"Publishers 82 non-null int64\n",
"Tags 82 non-null int64\n",
"Count 82 non-null int64\n",
"dtypes: float64(2), int64(6), object(2)\n",
"memory usage: 7.0+ KB\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Converting the Trend column to binary. 1 for Yes as in the trend went up and 0 for No as in no the trend either remained the same or went down. "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_advertiser['trend_clean'] = df_advertiser['Trend'].apply(lambda Trend: 1 if Trend > 0 else 0)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 25
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A lot more "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_advertiser.trend_clean.value_counts()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 26,
"text": [
"0 55\n",
"1 27\n",
"dtype: int64"
]
}
],
"prompt_number": 26
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_advertiser.trend_clean.value_counts().plot(kind='bar',alpha=.30)\n",
"plt.xlabel(\"Not Trending Trending\")\n",
"plt.ylabel(\"Number of Occurances\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 27,
"text": [
"<matplotlib.text.Text at 0x108444dd0>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEKCAYAAADzQPVvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGq9JREFUeJzt3X+UXWV97/H3ByIXhcCYqiEdWQw/bkQwdEiUKtAytJGL\nVwIWrqy6KGW4VJuKaFt1GVotqav3CvVXrdbmUi0TK4igV8oAlUTKoSj3Sgk/HMWYKoZqkIkRkJAq\nP8K3f+x9wnEy58ye5Ox9npP9ea01a/bznHP2+c6cZ77znO959t6KCMzMbM+2V68DMDOz8jnZm5nV\ngJO9mVkNONmbmdWAk72ZWQ042ZuZ1UDpyV7SgKQvSPq2pPsl/aqkeZLWStogaY2kgbLjMDOrsypm\n9h8DboqIlwPHAOuBFcDaiFgI3JK3zcysJCrzoCpJBwL3RMRhU/rXAydFxKSkg4BGRBxZWiBmZjVX\n9sz+UODHkq6QdLekv5O0HzA/Iibz+0wC80uOw8ys1spO9nOAxcAnI2IxsI0pJZvI3lr4nA1mZiWa\nU/L+fwj8MCL+NW9/AbgYeFjSQRHxsKQFwOapD5TkfwBmZrsgIjS1r9RknyfzH0haGBEbgKXAt/Kv\n84DL8u/XtXl8meHVxsqVK1m5cmWvwzCblsdnd0k75Xmg/Jk9wEXAlZL2Ab4HnA/sDVwj6QJgI3B2\nBXHU1saNG3sdgllbHp/VKD3ZR8R9wKumuWlp2c9tZmYZH0FbA6Ojo70Owawtj89qlLrOfndIilRj\nMzNLlaRpP6D1zL4GGo1Gr0Mwa8vjsxpO9mZmNeAyjpnZHsRlHDOzGnOyrwHXRC1lHp/VcLI3M6sB\n1+zNzPYgrtmbmdWYk30NuCZqKfP4rIaTvZlZDbhmb2a2B3HN3sysxqo4n/0e7corx9m6tddRdLZh\nwwQLFy7qdRgzmjsXzjlnWa/DsIo1Gg1GRkZ6HcYez8l+N23dCoODaSeoRx6Zy+DgSK/DmNGmTeO9\nDsFsj+UyTg0sWjTS6xDM2vKsvhpO9mZmNeBkXwMTE41eh2DWltfZV8PJ3sysBpzsa8A1e0uZa/bV\ncLI3M6sBJ/sacM3eUuaafTWc7M3MasDJvgZcs7eUuWZfDSd7M7MacLKvAdfsLWWu2VfDyd7MrAZK\nPxGapI3A48B24OmIOE7SPODzwCHARuDsiHis7FjqyjV7S5lr9tWoYmYfwEhEHBsRx+V9K4C1EbEQ\nuCVvm5lZSaoq40y9asrpwOp8ezXwhoriqCXX7C1lrtlXo6qZ/Vck3SXpzXnf/IiYzLcngfkVxGFm\nVltVXLzkhIj4kaQXA2slrW+9MSJCki82WyLX7C1lrtlXo/RkHxE/yr//WNKXgOOASUkHRcTDkhYA\nm6d77OjoKENDQwAMDAwwPDy8Y2A03/r1ut3ULJU0E6vbs29v2TIBZFf9SuX1ddvt1NuNRoOxsTGA\nHflyOooob1It6QXA3hGxVdJ+wBrgz4GlwE8i4jJJK4CBiFgx5bFRZmzdsmrVePKXJZyYaPTF7H7T\npnGWL0/7d2nd1/A1aLtKEhEx9XPS0mf284EvSWo+15URsUbSXcA1ki4gX3pZchxmZrVWarKPiO8D\nw9P0P0I2u7cK9MOs3urLs/pq+AhaM7MacLKvAa+zt5R5nX01nOzNzGrAyb4GXLO3lLlmXw0nezOz\nGnCyrwHX7C1lrtlXw8nezKwGnOxrwDV7S5lr9tVwsjczqwEn+xpwzd5S5pp9NZzszcxqwMm+Blyz\nt5S5Zl8NJ3szsxpwsq8B1+wtZa7ZV8PJ3sysBmZM9pI+KOkASc+TdIukLZLOrSI46w7X7C1lrtlX\no8jM/pSIeBw4jeyqUocD7y4zKDMz664iyb55NavTgC9ExE+B9C8Oazu4Zm8pc82+GkUuSzguaT3w\nc+APJL0k3zYzsz4x48w+IlYAxwNLIuIpYBtwRtmBWfe4Zm8pc82+GkU+oN0PuBBYlXf9MvDKMoMy\nM7PuKlKzvwJ4imx2D/AQ8L9Ki8i6zjV7S5lr9tUokuwPj4jLyBI+EbGt3JDMzKzbiiT7JyU9v9mQ\ndDjwZHkhWbe5Zm8pc82+GkVW46wEvgy8VNJVwAnAaIkxmZlZlxVZjbMGOAs4H7iKbFXOrWUHZt3j\nmr2lzDX7ahRZjXMm8ExE3BARNwDPSHpD+aGZmVm3FKnZXxIRjzUb+fbK0iKyrnPN3lLmmn01iiR7\nTdO3d7cDMTOz8hRJ9uskfUTS4ZKOkPRRYF3RJ5C0t6R7JI3n7XmS1kraIGmNpIFdDd6Kcc3eUuaa\nfTWKJPuLgKeBzwNXk50X58JZPMc7gPt57uRpK4C1EbEQuCVvm5lZiWZcehkRTwDv2ZWdS3op8N/J\njrj947z7dOCkfHs10MAJv1Su2VvKXLOvxozJXtLLgHcBQy33j4j4jQL7/yjZue8PaOmbHxGT+fYk\nML9wtGZmtkuKHFR1LfC3wKeA7XnfjOezl3QasDki7pE0Mt19IiIktd3X6OgoQ0NDAAwMDDA8PLxj\nFtCs8/W63dSsizdn0Sm1W2v2KcTTrr1lywSwDEjn9XW7/Hbr31IK8fRbu9FoMDY2BrAjX05HEZ3z\ntqR1EbGk452mf9z/Bs4FngH2JZvd/1/gVcBIRDwsaQFwa0QcOc3jY6bYUrBq1TiDg8t6HUZHExON\nvijlbNo0zvLlaf8urfsajYZLOV0kiYjYaRVlkQ9oxyVdKGlBvpJmnqR5Mz0oIv4kIg6OiEOB3wb+\nOSLOBa4Hzsvvdh5w3Sx+DtsF/ZDorb6c6KtRpIwzSla2edeU/kNn+VzNafqlwDWSLiC7pu3Zs9yP\nmZnNUpFz4wxFxKFTv2bzJBFxW0Scnm8/EhFLI2JhRJzSenSulcPr7C1lXmdfjSIzeyS9AjiKrPYO\nQER8pqygzMysu4osvVxJti7+aOBG4HXAVwEn+z7hmr2lzDX7ahT5gPZ/AEuBH0XE+cCvAD7FgZlZ\nHymS7H8WEdvJTm18ILAZOLjcsKybXLO3lLlmX40iNft/lfRC4O+Au4BtwB2lRmVmZl3VMdlLEnBp\nRDwKrJJ0M3BARNxXSXTWFa7ZW8pcs69GkZn9TcArACLi++WGY2ZmZehYs8/PV7BO0nEVxWMlcM3e\nUuaafTWKzOxfDfyOpAfJ6vWQ/R84prywzMysm4ok+/9WehRWKtfsLWWu2VejSLJ/tvQozMysVEXW\n2d9EduTsjWSXEXwA+Kcyg7Lucs3eUuaafTWKXJbwFa1tSYuZ3TVozcysx4rM7H9BRNwN/GoJsVhJ\nXLO3lLlmX40iJ0J7Z0tzL2AxsKm0iMzMrOuKzOznAvvnX/sANwBnlBmUdZdr9pYy1+yrUaRmv7KC\nOMzMrEQzzuwlrZU00NKel58jx/qEa/aWMtfsq1GkjPPi1ksHRsQjwPzyQjIzs24rkuy3Szqk2ZA0\nhA+06iuu2VvKXLOvRpEjaP8UuF3SbYCAXwfeUmpUZmbWVUU+oP2ypCVkJ0QL4A8jYkvpkVnXuGZv\nKXPNvhpFPqA9E3g6IsYj4gayyxO+ofzQzMysW4rU7C+Z8gHtY8DK0iKyrnPN3lLmmn01iiR7TdO3\nd7cDMTOz8hRJ9uskfUTS4ZKOkPRRYF3ZgVn3uGZvKXPNvhpFkv1FwNPA54GrgZ/js16amfWVGZN9\nRDwB/AVwckS8MiIujohtMz3O0uGavaXMNftqdEz2kt4q6d+BB4EHJT0oqdCsXtK+kr4u6V5J90v6\nQN4/Lz8FwwZJa1pPxWBmZuVom+wlvRc4DRiJiHkRMQ84GXidpPfNtOOI+DnZu4Fh4BjgZEknAiuA\ntRGxkOzKVyu68HNYB67ZW8pcs69Gp5n97wJnRcQDzY58+435bTOKiP/IN/chW8HzKHA6sDrvXw14\nzb6ZWck6JftnI+JnUzvzvu1Fdi5pL0n3ApPArRHxLWB+REzmd5nEJ1UrnWv2ljLX7KvR6XQJD0la\nGhFfae2U9JvAj4rsPCKeBYYlHQjcLOnkKbeHpGj3+NHRUYaGhgAYGBhgeHh4x1u+5gDpdbupmVCb\nJRO3Z9/esmUCWAak8/q67Xbq7UajwdjYGMCOfDkdRUyfayUdDfwj8FWydfUClgAnAmdExDfb7nX6\n/b0P+Bnwe2SfAzwsaQHZjP/Iae4f7WJLyapV4wwOLut1GHuETZvGWb7cv0uz3SGJiNjpYNi2ZZy8\n5LIIuB0YAg4B/gU4ukiil/Si5kobSc8HXgvcA1wPnJff7Tzguln9JGZmNmsdz3qZ1+c/vYv7XgCs\nlrQX2T+Vf4iIWyTdA1wj6QJgI3D2Lu7fCpqYaHhFjiWr0Wh4RU4FipzPfpdExASweJr+R4ClZT2v\nmZntrMjpEqzPeVZvKfOsvhqdDqq6Jf/+l9WFY2ZmZeg0s18g6XjgdEmLJS3Jvy+WtFN5xtLldfaW\nMq+zr0anmv0lwJ8Bg8CHp7n95Gn6zMwsQW2TfURcC1wr6c8i4v0VxmRd5pq9pcw1+2oUueD4+yWd\nAfw62QXHb4uI8dIjMzOzrpkx2Uu6FHgVcCXZUbRvl3R8RFxcdnDWHV5nX09XXjnO1q29jmJmGzZM\nsHDhol6HMaO5c+Gcc/r3CO8i6+xfDwxHxHYASWPAvYCTvVnCtm6lL07l8cgjcxkcHOl1GDPatKm/\nCxpF1tkH0HqBkYG8z/qEZ/WWMo/PahSZ2X8AuFvSrWRlnJPwBUfMzPpKkWvQfg54DfAl4IvAayLi\n6rIDs+7xOntLmcdnNQqdGyciHiI73bGZmfUhnxunBlwTtZR5fFbDyd7MrAY6JntJcyR9p6pgrByu\niVrKPD6r0THZR8QzwHpJh1QUj5mZlaDIB7TzgG9JuhPYlvdFRJxeXljWTa6JWso8PqtRJNm/b5o+\nH1RlZtZHiqyzb5BdK3ZOvn0n2YXDrU+4Jmop8/isxozJXtJbgGuB/5N3vZTsACszM+sTRZZeXgic\nCDwOEBEbgJeUGZR1l2uiljKPz2oUSfZPRsSTzYakObhmb2bWV4ok+9sk/SnwAkmvJSvp9Pe5PmvG\nNVFLmcdnNYok+xXAj4EJ4PeBm4D3lhmUmZl1V5HLEm6XtBr4Oln5Zn1EuIzTR1wTtZR5fFajyGUJ\nXw+sAh7Iuw6T9PsRcVOpkZmZWdcUKeN8BDg5Ik6KiJOAEeCjpUZlXeWaqKXM47MaRZL94xHx3Zb2\nA+TLMM3MrD+0LeNIOivfvEvSTcA1efuNwF1Fdi7pYOAzZOvyA7g8Iv5a0jzg88AhZEfnnh0Rj+3S\nT2Azck3UUubxWY1OM/tlwGnAvsBmsmvPnkS2Mmffgvt/GvijiDgaeDVwoaSXk63wWRsRC4Fb8DVt\nzcxK1XZmHxGju7vziHgYeDjffkLSt4FB4HSyfxwAq4EGTvilmZhoePZkyfL4rEaR1TiHARcBQy33\nn/UpjiUNAceSLeGcHxGT+U2TwPzZ7MvMzGanyCmOrwM+RXbU7LN536zW2UvaH/gi8I6I2Cppx20R\nEZKm3d/o6ChDQ0MADAwMMDw8zMjICACNRgOg5+2m5oqC5gwlpfaiRSNJxdOuvWXLBFn1MJ3Xt5/b\nGzZMMDiY/T5TeH3btT0+d6/daDQYGxsD2JEvp6OZjo+SdGdEHNfxTp0f/zzgBuCfIuKv8r71wEhE\nPCxpAXBrRBw55XF9cezWqlXjO/6gbPds2jTO8uX+XXaLx2Z39cv4lEREaGp/kaWXH5e0UtJrJC1u\nfhV8UgGfBu5vJvrc9cB5+fZ5ZO8erCRex2wp8/isRpEyztHAucDJPFfGIW/P5ATgd4BvSGpe8ORi\n4FLgGkkXkC+9LBqwmZnNXpFk/0bg0Ih4arY7j4iv0v7dw9LZ7s92jVc6WMo8PqtRpIwzAbyw7EDM\nzKw8RZL9C4H1ktZIGs+/ri87MOse10QtZR6f1ShSxrmk9CjMzKxURc5n36ggDiuRa6KWMo/PahQ5\ngvYJnjuIah/gecATEXFAmYGZmVn3zFizj4j9I2JuRMwFng+cCXyy9Misa1wTtZR5fFajyAe0O0TE\nsxFxHXBqSfGYmVkJipRxzmpp7gUsAX5WWkTWda6JWso8PqtRZDXOMp6r2T9DdsTrGWUFZGZm3Vdk\nNc5oBXFYiXy+cEuZx2c1Ol2WsN36+gCIiPeXEpGZmXVdp5n9NnY+b/1+wAXAiwAn+z7hWZOlzOOz\nGp0uS/ih5rakA4C3A+cDVwMfLj80MzPrlo5LLyX9kqS/AO4jO5hqcUS8JyI2VxKddYXXMVvKPD6r\n0alm/yHgt4DLgWMiYmtlUZmZWVd1mtn/MTAIvBd4SNLWlq/HqwnPusE1UUuZx2c1OtXsZ3V0rZmZ\npcsJvQZcE7WUeXxWw8nezKwGnOxrwDVRS5nHZzWc7M3MasDJvgZcE7WUeXxWw8nezKwGnOxrwDVR\nS5nHZzWc7M3MasDJvgZcE7WUeXxWw8nezKwGnOxrwDVRS5nHZzVKTfaS/l7SpKSJlr55ktZK2iBp\njaSBMmMwM7PyZ/ZXAKdO6VsBrI2IhcAtedtK5JqopczjsxqlJvuIuB14dEr36cDqfHs18IYyYzAz\ns97U7OdHxGS+PQnM70EMteKaqKXM47MaPf2ANiKCnS9qbmZmXdb24iUlmpR0UEQ8LGkB0PZ6tqOj\nowwNDQEwMDDA8PAwIyMjADQaDYCet5uadcfmLCWldmtNNIV42rW3bJkAlgHpvL793N6wYYLBwez3\nmcLr267t8bl77UajwdjYGMCOfDkdZZPr8kgaAsYjYlHe/kvgJxFxmaQVwEBE7PQhraQoO7ZuWLVq\nfMcfVKomJhp98VZ506Zxli9P+3fZT/phbILHZ7dJIiI0tb/spZefA+4AXibpB5LOBy4FXitpA/Ab\nedtK1A9/SFZfHp/VKLWMExFvanPT0jKf18zMfpGPoK0Br2O2lHl8VsPJ3sysBpzsa8A1UUuZx2c1\nnOzNzGrAyb4GXBO1lHl8VsPJ3sysBpzsa8A1UUuZx2c1nOzNzGrAyb4GXBO1lHl8VsPJ3sysBpzs\na8A1UUuZx2c1nOzNzGrAyb4GXBO1lHl8VsPJ3sysBpzsa8A1UUuZx2c1nOzNzGrAyb4GXBO1lHl8\nVsPJ3sysBpzsa8A1UUuZx2c1nOzNzGrAyb4GXBO1lHl8VsPJ3sysBpzsa8A1UUuZx2c1nOzNzGrA\nyb4GXBO1lHl8VsPJ3sysBpzsa8A1UUuZx2c1nOzNzGqgZ8le0qmS1kv6N0nv6VUcdeCaqKXM47Ma\nPUn2kvYGPgGcChwFvEnSy3sRSx088MC9vQ7BrC2Pz2r0amZ/HPDdiNgYEU8DVwNn9CiWPd62bY/1\nOgSztjw+q9GrZD8I/KCl/cO8z8zMStCrZB89et5a2rx5Y69DMGvL47Maiqg+70p6NbAyIk7N2xcD\nz0bEZS338T8EM7NdEBGa2terZD8H+A7wm8BDwJ3AmyLi25UHY2ZWA3N68aQR8YyktwE3A3sDn3ai\nNzMrT09m9mZmVq2ezOytPPnxCmfw3OqmHwLX+52TWb35dAl7kPxI5M/lza/nX3sBn8s/BDdLkqTz\nex3Dns5lnD2IpH8DjsoPVGvt3we4PyKO6E1kZp1J+kFEHNzrOPZkLuPsWbaTlW82Tun/5fw2s56R\nNNHh5pdUFkhNOdnvWf4Q+Iqk7/LcEcoHA/8VeFvPojLLvITsfFiPTnPbHRXHUjtO9nuQiPiypJeR\nnXtokOxI5U3AXRHxTE+DM4Mbgf0j4p6pN0i6rQfx1Ipr9mZmNeDVOGZmNeBkb2ZWA072ZmY14GSf\nMEnPSvpQS/tdki6Z4TFnTHfVL0l/Iume/Gt7y3bXVulIGmour5P0Skkf69a+rXckfSIfK9+S9B8t\nY+fMLj7HiKTxfHuZL1Xaff6ANmGSfk62mua4iPiJpHeSrWb48w6PGQPGI+KLHe6zNSLmTukTQOzG\ngJA0lD/3ol3dh6VL0iHADVNfX0lzdne1l6QR4J0RsWx39mPteWaftqeBy4E/mnpDPov+Z0n3SfqK\npIMlHQ8sAz6Yz7wO67TzfB/fkbQamAAOlvRuSXfm+13Zcr9vS7pc0jcl3Sxp3/y2Jfl97wXe2rLv\n1pnaSkl/L+lWSd+TdFHL/d6XX3j+dklX5f/QLE07zpGev763S/pH4JuS9pL0wZax85aW+zUkXZuP\noc+27OPUvG8d8Fst/aOSPp5vj0n6mKSv5WPnrLx/L0mfzB+/RtKNzdtsek726fskcI6kA6b0fxy4\nIiJ+BbgS+OuIuAO4HnhXRBwbEQ8U2P8RwN9ExCuAI4EjIuI44FhgiaRfa7nfJ/L7PQY0/7CuAC6M\niOEZnmchcArZMQCXSNpb0quAM4FjgNcBr8RXMesnxwJvj4gjgd8DHsvHznHAm/N3egDDwDuAo4DD\nJB2fTxYuB06LiCXAQbR/7Q+KiBOA04BL874zgUMi4uXAucBrOjzecLJPXkRsBT4DvH3KTa8Grsq3\nPwuc2HLbTlep6eDBiLgz3z4FOEXSPcA64GVkSR7g+xHxjXx7HTAk6UDgwIj4at7/D+1+DODGiHg6\nIn4CbCb74z4BuC4inoqIJ4DxWcZuvXVnRDyYb58C/G4+dv4/MI9s7ER+v4fyEuG9wKFkE4vvR8T3\n8sd/lulf+wCuA8jP3Do/7z8RuCbvnwRu7fLPtsfxEbT94a+Au8lm0a3aJcbZzHC2TWl/ICIu/4Un\nyWZoT7Z0bQeeP82+OiXqp6Y8fg5ZnK2PcaLvL1PHztsiYm1rR16Lnzp2mq/9L9y1w/O0jp3m/aaO\nHZuBZ/Z9ICIeJZvFXMBzfyR3AL+db58D/Eu+vRWYWvIp6mbgf0raD0DSoKQXd4jrp8Bjkk5oiWM6\n7WZsXwOWSfovkvYHXo/fiverm4G3KrvkKJIWSnpBm/sGsJ7s3WHzc6U3zfL5vgacpcx8YGQXYq4V\nJ/u0tSa+DwMvamlfBJwv6T6yJPuOvP9q4N2S1nX4gDam285nZVcB/0/SN8j+wew/zWNa2+cDf5O/\nfW+375jm8UTEXWSfMXwDuInsQ+KftonZ0jDt2AE+BdwP3J0vv/1bnpvBT/faPwm8Bbgx/4B2kvbj\nZbrtL5JdmOd+svLh3XjsdOSll9ZTkvaLiG35LPA24M0RcW+v47L0tYydXyK7UM/xEbG513GlyjV7\n67XLJR0F7AuMOdHbLNwgaQDYB3i/E31nntmbmdWAa/ZmZjXgZG9mVgNO9mZmNeBkb2ZWA072ZmY1\n4GRvZlYD/wkfVPj+uYq/PwAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x10859a710>"
]
}
],
"prompt_number": 27
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import statsmodels.api as sm\n",
"from sklearn import linear_model, datasets\n",
"from sklearn.cross_validation import train_test_split"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 28
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_advertiser.head()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Rank</th>\n",
" <th>Trend</th>\n",
" <th>Advertiser</th>\n",
" <th>Industry</th>\n",
" <th>Activity</th>\n",
" <th>Percentage In-Play</th>\n",
" <th>Creatives</th>\n",
" <th>Publishers</th>\n",
" <th>Tags</th>\n",
" <th>Count</th>\n",
" <th>trend_clean</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" <td> Merrill Lynch</td>\n",
" <td> Financial Services</td>\n",
" <td> 100.00</td>\n",
" <td> 28.67</td>\n",
" <td> 92</td>\n",
" <td> 1298</td>\n",
" <td> 29</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 2</td>\n",
" <td> 0</td>\n",
" <td> Merrill Edge</td>\n",
" <td> Financial Services</td>\n",
" <td> 79.15</td>\n",
" <td> 23.51</td>\n",
" <td> 86</td>\n",
" <td> 1253</td>\n",
" <td> 28</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 3</td>\n",
" <td> 5</td>\n",
" <td> Equifax</td>\n",
" <td> Financial Services</td>\n",
" <td> 18.78</td>\n",
" <td> 35.86</td>\n",
" <td> 39</td>\n",
" <td> 869</td>\n",
" <td> 26</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 4</td>\n",
" <td> 5</td>\n",
" <td> Moneygram</td>\n",
" <td> Financial Services</td>\n",
" <td> 14.73</td>\n",
" <td> 0.67</td>\n",
" <td> 49</td>\n",
" <td> 1408</td>\n",
" <td> 31</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 5</td>\n",
" <td>-2</td>\n",
" <td> Usaa</td>\n",
" <td> Financial Services</td>\n",
" <td> 11.38</td>\n",
" <td> 72.79</td>\n",
" <td> 45</td>\n",
" <td> 144</td>\n",
" <td> 13</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 29,
"text": [
" Rank Trend Advertiser Industry Activity \\\n",
"0 1 0 Merrill Lynch Financial Services 100.00 \n",
"1 2 0 Merrill Edge Financial Services 79.15 \n",
"2 3 5 Equifax Financial Services 18.78 \n",
"3 4 5 Moneygram Financial Services 14.73 \n",
"4 5 -2 Usaa Financial Services 11.38 \n",
"\n",
" Percentage In-Play Creatives Publishers Tags Count trend_clean \n",
"0 28.67 92 1298 29 1 0 \n",
"1 23.51 86 1253 28 1 0 \n",
"2 35.86 39 869 26 1 1 \n",
"3 0.67 49 1408 31 1 1 \n",
"4 72.79 45 144 13 1 0 "
]
}
],
"prompt_number": 29
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_advertiser.describe()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Rank</th>\n",
" <th>Trend</th>\n",
" <th>Activity</th>\n",
" <th>Percentage In-Play</th>\n",
" <th>Creatives</th>\n",
" <th>Publishers</th>\n",
" <th>Tags</th>\n",
" <th>Count</th>\n",
" <th>trend_clean</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td> 82.000000</td>\n",
" <td> 82.000000</td>\n",
" <td> 82.000000</td>\n",
" <td> 82.000000</td>\n",
" <td> 82.000000</td>\n",
" <td> 82.000000</td>\n",
" <td> 82.000000</td>\n",
" <td> 82</td>\n",
" <td> 82.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td> 12.756098</td>\n",
" <td> -0.036585</td>\n",
" <td> 16.204512</td>\n",
" <td> 44.011951</td>\n",
" <td> 87.804878</td>\n",
" <td> 1044.878049</td>\n",
" <td> 21.195122</td>\n",
" <td> 1</td>\n",
" <td> 0.329268</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td> 8.257523</td>\n",
" <td> 3.084990</td>\n",
" <td> 26.345483</td>\n",
" <td> 29.323490</td>\n",
" <td> 113.337629</td>\n",
" <td> 1279.607100</td>\n",
" <td> 10.383319</td>\n",
" <td> 0</td>\n",
" <td> 0.472840</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td> 1.000000</td>\n",
" <td> -6.000000</td>\n",
" <td> 0.020000</td>\n",
" <td> 0.000000</td>\n",
" <td> 1.000000</td>\n",
" <td> 10.000000</td>\n",
" <td> 1.000000</td>\n",
" <td> 1</td>\n",
" <td> 0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td> 6.000000</td>\n",
" <td> -2.000000</td>\n",
" <td> 1.987500</td>\n",
" <td> 19.345000</td>\n",
" <td> 24.000000</td>\n",
" <td> 144.750000</td>\n",
" <td> 12.250000</td>\n",
" <td> 1</td>\n",
" <td> 0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td> 12.000000</td>\n",
" <td> 0.000000</td>\n",
" <td> 4.895000</td>\n",
" <td> 41.475000</td>\n",
" <td> 57.000000</td>\n",
" <td> 604.000000</td>\n",
" <td> 21.000000</td>\n",
" <td> 1</td>\n",
" <td> 0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td> 18.750000</td>\n",
" <td> 1.000000</td>\n",
" <td> 15.600000</td>\n",
" <td> 71.685000</td>\n",
" <td> 94.250000</td>\n",
" <td> 1570.500000</td>\n",
" <td> 28.750000</td>\n",
" <td> 1</td>\n",
" <td> 1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td> 31.000000</td>\n",
" <td> 11.000000</td>\n",
" <td> 100.000000</td>\n",
" <td> 100.000000</td>\n",
" <td> 757.000000</td>\n",
" <td> 6314.000000</td>\n",
" <td> 43.000000</td>\n",
" <td> 1</td>\n",
" <td> 1.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 30,
"text": [
" Rank Trend Activity Percentage In-Play Creatives \\\n",
"count 82.000000 82.000000 82.000000 82.000000 82.000000 \n",
"mean 12.756098 -0.036585 16.204512 44.011951 87.804878 \n",
"std 8.257523 3.084990 26.345483 29.323490 113.337629 \n",
"min 1.000000 -6.000000 0.020000 0.000000 1.000000 \n",
"25% 6.000000 -2.000000 1.987500 19.345000 24.000000 \n",
"50% 12.000000 0.000000 4.895000 41.475000 57.000000 \n",
"75% 18.750000 1.000000 15.600000 71.685000 94.250000 \n",
"max 31.000000 11.000000 100.000000 100.000000 757.000000 \n",
"\n",
" Publishers Tags Count trend_clean \n",
"count 82.000000 82.000000 82 82.000000 \n",
"mean 1044.878049 21.195122 1 0.329268 \n",
"std 1279.607100 10.383319 0 0.472840 \n",
"min 10.000000 1.000000 1 0.000000 \n",
"25% 144.750000 12.250000 1 0.000000 \n",
"50% 604.000000 21.000000 1 0.000000 \n",
"75% 1570.500000 28.750000 1 1.000000 \n",
"max 6314.000000 43.000000 1 1.000000 "
]
}
],
"prompt_number": 30
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"X_Variables = ['Percentage In-Play','Creatives','Publishers','Tags']\n",
"X = df_advertiser[X_Variables]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 31
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"X = X.values"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 353
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"y = df_advertiser['trend_clean'].values"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 354
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"clf = linear_model.LogisticRegression()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 355
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"model = clf.fit(X,y)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 356
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"model.score(X,y)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 357,
"text": [
"0.68292682926829273"
]
}
],
"prompt_number": 357
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"pd.DataFrame(zip(X_Variables,model.coef_.T))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> Percentage In-Play</td>\n",
" <td> [-0.00410534253935]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> Creatives</td>\n",
" <td> [-0.00272258724099]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> Publishers</td>\n",
" <td> [0.000488549466095]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> Tags</td>\n",
" <td> [-0.0143146064198]</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 358,
"text": [
" 0 1\n",
"0 Percentage In-Play [-0.00410534253935]\n",
"1 Creatives [-0.00272258724099]\n",
"2 Publishers [0.000488549466095]\n",
"3 Tags [-0.0143146064198]"
]
}
],
"prompt_number": 358
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With on percentage increase in activity the chance of the trend "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from sklearn.naive_bayes import GaussianNB\n"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 361
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"X_Variables = ['Percentage In-Play','Creatives','Publishers','Tags']\n",
"X = df_advertiser[X_Variables]\n",
"\n",
"X = X.values\n",
"y = df_advertiser['trend_clean'].values"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 33
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from sklearn.cross_validation import train_test_split\n",
"\n",
"X_train, X_test, Y_train, Y_test = train_test_split(X,y,test_size=0.25)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 34
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"clf = GaussianNB()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 367
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"clf.fit(X_train,Y_train)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 368,
"text": [
"GaussianNB()"
]
}
],
"prompt_number": 368
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from sklearn import metrics\n",
"def measure_performance(X,y,clf, show_accuracy=True, show_classification_report=True, show_confusion_matrix=True):\n",
" y_pred=clf.predict(X) \n",
" if show_accuracy:\n",
" print \"Accuracy:{0:.3f}\".format(metrics.accuracy_score(y,y_pred)),\"\\n\"\n",
"\n",
" if show_classification_report:\n",
" print \"Classification report\"\n",
" print metrics.classification_report(y,y_pred),\"\\n\"\n",
" \n",
" if show_confusion_matrix:\n",
" print \"Confusion matrix\"\n",
" print metrics.confusion_matrix(y,y_pred),\"\\n\"\n",
" \n",
"measure_performance(X_train,Y_train,clf, show_classification_report=True, show_confusion_matrix=True)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Accuracy:0.672 \n",
"\n",
"Classification report\n",
" precision recall f1-score support\n",
"\n",
" 0 0.70 0.90 0.79 41\n",
" 1 0.50 0.20 0.29 20\n",
"\n",
"avg / total 0.63 0.67 0.62 61\n",
"\n",
"\n",
"Confusion matrix\n",
"[[37 4]\n",
" [16 4]] \n",
"\n"
]
}
],
"prompt_number": 371
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from IPython.display import Image\n",
"Image(filename='/Users/olehdubno/Desktop/Moat/trendingvsnontrending.png')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAABnCAIAAAA17VeNAAAYWGlDQ1BJQ0MgUHJvZmlsZQAAWAmt\nWXVUVF3XP3eSgRm6u7s7pLukG4VhqKGlQRAFRAEVLFRAkRKRUDFARAQkRBEEEREMUFFRVAwUpL4z\nGM+z3vW+/32z1j33d/fZZ99d98QeAPiI5JiYCBQzAJFR8bHOlibCnl7ewvhngAAEAT3gBRxkSlyM\nsaOjHfifv+9jAKF1PlCgyfqfbP+9gyUwKI4CAOIIuwMC4yiREF8GAMNIiYmNBwDbDeliSfExNPwW\nYvZYqCDEKzQcsoFxUHvAHvALi2/wuDqbAoDTBoCOSCbHhgDAaAbpwomUECiHMRD2sUYFUqPgsGSI\nDSihZEjjbYE88pGR0TT8CmLpgH/JCfkXJpMD/sokk0P+4l+2wJHwxWbUuJgIcsrGw/9nExmRAP21\n8ROBLTE01soZ3tmh30rDo21pmAjxhaiAzQ4Qs0LcRoUW/caDoQlWbhDT+KcocabQl4AT4m+BZDNb\niPkBQNEnhLsZ/8aS5FiINvhRJtR4a9ff2D022vm3fFRYVMRmWn5AOai00CDrP/hQUJy5C6RDHVBh\nwVQLa4hhrFBnU0NdPSCGeqJaEqnumyFmhLg7LtyFpgNNzkhqqCmNvsETm+BM01kc0t8Gx1rQbIQ8\naGJkHEQb8tGiFPLGu7ghXT0+1NUK0uFYtF1gkJk5xPC9aM+gKLff+qBDY+JNaHJo/KkxERv5DfVE\nHwqKsKTRRSGuikt0+TO2Nz7WlUaHfkOPhZFtaPkKdUa/i4l3pPmEps8isAOmwAwIgwR4BYBoEAao\ng3PNc/DpV48FIINYEAKCgMJvyp8RHhs9UbB1AangA4iCPHF/x5ls9AaBREhf/Uv9NVYBBG/0Jm6M\nCAev4RsiMbwYA4wexg62RvBSxWhjdP6ME2b6oyfOHGeGs8JZ4GT+UAAFah0Br1hA/S80W9gXBK2L\nhW3UHxv+kYd9jR3GvsA+xE5hHwN38GpDym9L/aiZsX80+CvZHkxBab+8EgQ9FgVm//BgJKHWGhgT\njD7UH+qO4cTwAgWMOrTEGGMIbdOA1D/eo2md8Fe3f3z5x+9/+GhaC//Lxt90RllGjd9aBPyxCkby\njyf+U8o/PVQQCLls/5MTvRd9Cd2H7kT3o9vQzUAYfRPdgh5A36Dh3zpbbHgn5O/bnDc8Gg5toP7h\nUa5TnlVe+fP011YypNA0oMUA5n98UHI8zD9gGh2TEksNCY0XNoazcJCwdRRFUV5YVVlFHQDanE7j\nAeCr88ZcjXAO/UOjjgGgeRHOAeP/0EJgTre+AIBg9w9Noh6mfBQAtwmUhNjEX/IwtBsWrhRM8Mvg\ngWuGGJCGNqkCTaAHjIA5sAEOwBV4ga3Q66EgEmqdBNLALpAD8kEhOAqKQRmoBGdBA2gCzaANdIJe\ncBfcBw/BJMyNGfAezIPvYBlBEDxCQtgQHkQIkUDkEFVEGzFAzBE7xBnxQvyRECQKSUDSkCwkHzmE\nFCPlSC1yEbmGdCL9yDDyGJlGZpEvyE8UGkVEsaMEUJIoJZQ2yhhli3JFbUGFoLahUlHZqAOo46gK\nVD3qKqoTdRf1EDWFeo9aQAM0A5oTLYJWQGujTdEOaG90MDoWvQOdhy5CV6Ab0a0w1g/QU+g59BIG\nh2HDCGMUYH5aYdwwFMw2zA7MPkwx5izmKqYb8wAzjZnHrGFJWH6sHFYXa431xIZgk7A52CLsGewV\nbA/8dmaw33E4HCdOCqcFv00vXBhuO24f7iTuPK4DN4x7iVvA4/E8eDm8Pt4BT8bH43PwJ/D1+Jv4\nEfwMfpGOgU6ITpXOgs6bLoouk66I7hxdO90I3Ru6ZQIzQYKgS3AgBBJSCAWEKkIrYYgwQ1imZ6GX\notend6UPo99Ff5y+kb6H/gn9VwYGBlEGHQYnBirDTobjDBcYbjNMMywRWYmyRFOiLzGBeIBYQ+wg\nPiZ+JZFIkiQjkjcpnnSAVEu6RXpGWmRkY1RktGYMZMxgLGG8yjjC+JGJwCTBZMy0lSmVqYjpEtMQ\n0xwzgVmS2ZSZzLyDuYT5GvMj5gUWNhYVFgeWSJZ9LOdY+lnesuJZJVnNWQNZs1krWW+xvmRDs4mx\nmbJR2LLYqth62GbYcexS7NbsYez57A3sg+zzHKwc6hzuHMkcJRw3OKY40ZySnNacEZwFnE2cY5w/\nuQS4jLmCuHK5GrlGuH5w83EbcQdx53Gf537I/ZNHmMecJ5znIE8zz1NeDK8srxNvEu8p3h7eOT52\nPj0+Cl8eXxPfBD+KX5bfmX87fyX/AP+CgKCApUCMwAmBWwJzgpyCRoJhgkcE2wVnhdiEDISoQkeE\nbgq9E+YQNhaOED4u3C08L8IvYiWSIFIuMiiyLCol6iaaKXpe9KkYvZi2WLDYEbEusXlxIXF78TTx\nOvEJCYKEtkSoxDGJPokfklKSHpJ7JJsl30pxS1lLpUrVST2RJkkbSm+TrpAelcHJaMuEy5yUuS+L\nktWQDZUtkR2SQ8lpylHlTsoNy2PldeSj5CvkHykQFYwVEhXqFKYVORXtFDMVmxU/KokreSsdVOpT\nWlPWUI5QrlKeVGFVsVHJVGlV+aIqq0pRLVEdVSOpWahlqLWofVaXUw9SP6U+rsGmYa+xR6NLY1VT\nSzNWs1FzVktcy1+rVOuRNru2o/Y+7ds6WB0TnQydNp0lXU3deN0m3U96Cnrheuf03m6S2hS0qWrT\nS31RfbJ+uf6UgbCBv8FpgylDEUOyYYXhCyMxo0CjM0ZvjGWMw4zrjT+aKJvEmlwx+WGqa5pu2mGG\nNrM0yzMbNGc1dzMvNn9mIWoRYlFnMW+pYbndssMKa2VrddDqkbWANcW61nreRssm3abblmjrYlts\n+8JO1i7WrtUeZW9jf9j+yWaJzVGbmx2Ag7XDYYenjlKO2xyvO+GcHJ1KnF47qzinOfe5sLn4uZxz\n+e5q4lrgOukm7Zbg1uXO5O7rXuv+w8PM45DHlKeSZ7rnXS9eL6pXizfe2937jPeCj7nPUZ8ZXw3f\nHN+xLVJbkrf0b+XdGrH1hh+TH9nvkj/W38P/nP8K2YFcQV4IsA4oDZinmFKOUd4HGgUeCZwN0g86\nFPQmWD/4UPDbEP2QwyGzoYahRaFzVFNqMfVzmFVYWdiPcIfwmvD1CI+I85F0kf6R16JYo8KjuqMF\no5Ojh2PkYnJiprbpbju6bT7WNvZMHBK3Ja4lnh1ungcSpBN2J0wnGiSWJC4muSddSmZJjkoeSJFN\nyU15k2qRWr0ds52yvStNJG1X2nS6cXr5DmRHwI6uDLGM7IyZnZY7z+6i3xW+616mcuahzG9ZHlmt\n2QLZO7Nf7rbcXZfDmBOb82iP3p6yvZi91L2DuWq5J3LX8gLz7uQr5xflr+yj7LuzX2X/8f3rB4IP\nDBZoFpwqxBVGFY4dNDx49hDLodRDLw/bH756RPhI3pFvR/2O9hepF5Udoz+WcGzquN3xlhPiJwpP\nrBSHFj8sMSk5X8pfmlv642TgyZFTRqcaywTK8st+nqaeHi+3LL9aIVlRVImrTKx8XeVe1VetXV17\nhvdM/pnVmqiaqbPOZ7trtWprz/GfK6hD1SXUzdb71t9vMGtoaVRoLD/PeT7/AriQcOHdRf+LY022\nTV2XtC81Xpa4XHqF7UreVeRqytX55tDmqRavluFrNte6WvVar1xXvF7TJtJWcoPjRkE7fXt2+/rN\n1JsLHTEdc50hnS+7/Lomb3neGu126h7sse253WvRe6vPuO/mbf3bbf26/dfuaN9pvqt59+qAxsCV\nexr3rgxqDl4d0hpqua9zv3V403D7iOFI5wOzB72j1qN3H25+ODzmNjb+yPfR1Hjg+NvHEY8/TyRO\nLE/ufIJ9kveU+WnRM/5nFc9lnp+f0py6MW02PfDC5cXkS8rL96/iXq3MZL8mvS56I/Sm9q3q27ZZ\ni9n773zezbyPeb88l/OB5UPpR+mPlz8ZfRqY95yf+Rz7ef3Lvq88X2u+qX/rWnBcePY98vvyj7xF\nnsWzS9pLfT89fr5ZTlrBrxxflVltXbNde7Ieub4eQ44lb+wF0LBFBQcD8KUGAJIXAGz3AaBn/HXm\n2uCAW2QE8kDsjigi71Hd6DiMBOYdthznhxfBT9JVEMLoVelXGIaIZaR4xs1MMsw45hcsPaxn2HLZ\nozncOc25PLgjeXJ4T/O18o8IzAkRhMVFjEX9xdLFSySuSU5I/ZThkzWQC5DPUqhVHFL6qsKtaqhG\nUc/XuKg5rPVRh6Qrq2exKUB/h0Gx4WWjQeM3Jmtm3OaKFmaWHlbh1mk2B2xP2TXa39g84DDh+Nrp\nmwviSnTjcuf3EPIU85LylvdR9dXdYrrV1s/Nn0KODthB2R9YFnQxuCdkInQ+jC5cOEIn0iUqOjov\npnpbZ+yzuOUE7kSNJNfkbSmFqee3D6V92sGcobbTbVdyZmlWZ/brHOIetb3euZl5tfkP9q0ckCxw\nKEw5WHXo3uFPR5mKVI65HU8+UVrcWfLmJOmURpnv6azycxXDlT+q+c8Y1wSd3VN79lxf3av69Ubu\n88oXLC/6NsVeyr186sqFq23Nt1p6r91qvX69oa34xq52yk2jDq6Od53XunbdsuwmdN/pyek17l3u\nu3w7vF+0f+LOwbt2A8SB4XtFg95DgkMv7lcNB49Ij8w+ODca9lD24fuxukfh4/LjHx6fn9g2qT65\n+KTt6a5nFs9Jz0eniqe3vhB9Mfvyyqs9M36v9d+IvWWexb5Dvaef4/ug9dHn05751s/fvqp/S15o\n/4FfdFoq/fl6RXE1Ya11fX0j/mLIBZQXmgXdhPHB0mMbcJ5wV3OejkzgJtylz2YwIWKJt0i7Ga2Z\nGJnGmStYIli12PBsT9kHOHo5O7hucLfwXOK9wFfPXyNQJVgpVClcIVIuWiFWJV4jUSvZIHVR+rJM\nq2ynXI/8HYURxXGlp8rPVJ6qPlGbUH+k8VDzgdaQ9h2dHt1OveubLus3GFQZFhsVGGeZJJmGmW0x\n32xhZKliJWzNbANs5m2f2PXY128+7LDdMcDJ2lnZhccVcZ11G3G/7lHtWeCV6h3k4+C7aYvUVjY/\nxO+j/yS5P6CZUh14OCg7eFdIZmgWNSssMzwrIjMyKyorOjMmc1tmbGZcZvyuhJ2JO5MykjNSdqSm\nb09LS0vfviM1I2VnMsyOgqzq7Lbdoznv96JzefNU8632+e9POrCvoKqw9eD9Q68PrxxlKZI6pn/c\n6URwcVrJwdKqk62nhspenv5RQawUqdKstjmztSYWZkjJuca6zvrRhjeNPy8QLwo2KV0yvux8hXI1\nrjm75ci1ajiDdbc9uPGy/d3N+x0NnXldIbfMuoW7V3rGey/1HbhN7Te9I3Dn+92hgZp7GYPuQwr3\nMfcnhi+O5DzwHVV5iH04OXbxUd449bHthOqk0BO2p0zP2J6LTOlN+784/HJ0Rvr1vrdgNve96Ny9\nj7nzTl+kvzEsLP74tPRu+cPq1434y4FuxBYZR/mgPqDD0YuYTCw3tgKngbsLd7SrdCUEA8IU/R4G\nVYbnxHzSJtIc40kmZ2YG5h6WA6x+bCrsGPZRjmrOZC57biHuBZ47vOV8yfwOAtKCiOCE0CXhApEw\nUQsxMbE1uI9qkSySipd2lJGWWZEdlquWT1GwVxRR/KzUqXxQxV9VUXVJrQvODy6a3JqTWmXaZB1R\nnWndMr2tm/g2PdI/bOBgSDIcMSo2ppjIm3w1vW6WbW5nwW4xaVkJ5wtV6yWbDts9dg72nHA/UeFA\ndVR0/ObU6pzhYu5K7zrodtDd1YPLY8LzlFeAt7T3R5+rvju32Gzl3PoK7gOyyR4B8hQUZSLwclBh\ncGSIbagclYH6Iex++OWIosikKM9o3Ri+mNVtz2M74yrjcxKoifZJKsmcycspL1LvbG9KK0nfvSMm\nw3en9S7NTLEs1mwk+/Pu1zkze2b3fsz9kvc9/+e+tQOoAlwh4SDpEPNh9iNcR3mLBI+JHBc/IVUs\nW6JQqnJS/ZRWmd5pg3LjCttKStWu6rIz7TUTZxfPcdap1zs1RDbmna+50H1xqmnlMtcVtasOzWEt\nu6+Vt7ZdH2v73E68Kdlh1Lmla/utY92NPb29T/u+9TPdUbrrNrD7XvsQ7r7fcN8D29EXY6XjSROp\nT848J0zXvzr2Zvh9wqeCb0ZL9bT4/6q90dYEnCYA1YZwQYDrhksFAJVtAEhow/WjGgBHEgCuOgDl\nmgqQZy0A8Trxd/1AAAbQwZoOD5AAarDi4g7CQSY8S14Bw+ATwoSoIK5IKjwD3kEWUHwoE1QY6jCq\nHfUOzY22RCeha9FPMMwYC0w6PJPNw3NYKDx7zeAkcKG4OtwnvAY+Hd9Lx0znS1dL94NgRSglfKG3\npq+gX2XwZmghchNTic9IZqR6Rk7GXYyfmPyYRpgtmG+waLJcZFVkbWRTYrvErsPexWHLMc4ZwrnI\nVcgty93DE8CLwCw14ZvhzxNQFhgTzBCSFnogvENETuSx6F4xHbF34iclnCTxku1SidLK0nMytbIh\nclJy7+QbFOIUdZRQSgPKx1UCVdXU0Gqj6mc0UjUdtSS11rQf6TTpHtAL32SjL2tANPho+MCoxfi0\nSa5pvJm/ub2FqaWBlY61uo2KrbKdsr3KZlUHTUc9J2NnaxcXVz+3SPd0j0LPaq8270c+C1s4t+r6\nUfwPkNsDvgRKB1GCT4c8pwqGUcIbIkGUT/TNbQqx1fGyCdeTvFJwqbfSCndE7PTN9MkOycneW5/3\ndD93gfvBksMjRxePCxc7lOac6i6nq3Sqrqj5cc6lvuk8x8W0Sy+vOrRcvy5z40QHfVda90Lfjv71\ngW2DI8NiD8gPCx7VP742eflpxfOd064vBV89f1381mF2/X39B89PmPnGL57fMAsXf5CX2H/2r2St\nGW/MHwisOTDAioMwUALGMPqRYA+sInSCFwgW1gacYR2gFnmEwqFU4Nk+H9WKmkMLoV3R+ehu9BpG\nF5OEacYsYvWwGdgeHAnnjquAUdfH78dP0anT5dJNE/QIJwhL9D70HQxSDAUMP4mhxHGSDamdUZPx\nPJM8Ux2zAnMTiy5LN6sT6zRbHDsdezmHHox2Mjxh3uZO5JHgGefdz2fOt8Z/XSBVUE9wTahbeJ+I\nu6iY6GexW+JFEuGSplICUj+lH8tclz0llyTvoCCriFd8q9Sv3KhyRDVdjaruoWGpqaOlqC2pI6zL\nr8e7iU9fyEDCUMFIy9jMxNU02CzVvMCi0PKI1XHrUzY1thft2u0HNj91+OyEdeZ30XJ1cotxL/Ro\n8hzzWvWR8nXakrH1vN80mSPAlrI78GbQcoheaBr1Zjgmwi7yaNR0jPK2XbEP4qXhijSZrJVSlLqY\n5pt+K0N+5/FMXFZS9vsc8p7Hua55w/sc948WeBVOHaIe0S+SPM5WjC5ZOvml7FP5l8qlM5izHOdk\n680aAy/sabpw+XkzyzWr69k3ejoYuly7T/U+7+e8a34vdCh9OPtBxsPQR6aPSRP9TxKesT+vmBZ/\nUfIKPxP8uv0tadbl3dH3gx8wHzU/Bczv+3zhy+jXrwus3xV+WC6Sl7b/PLRcu3JzdWzt3Ub8UfDr\nZwUi8Nu3gRW4TFABq0ZzCAdijMQgFcgYrPEYohJQDai3aEl0EPoseg6jhknD3MZyYoOx13CMuCDc\nTTwfPhXuOQ3oqggkwnbCR3oK/RMGT4ZHRB/iC1IkaYWxkEmGqZeZysLCcoM1mk2SbZq9giOEU5Vz\nlauLO4/HjVeCd5FvkL9WYI8gVchBWFtEUpRLjCiOk0BLYqXopdllRGTV5GzlqQq5ig1Ko8orqpJq\nTuo7NOo0H2vT6WjpBukd3dSjv2AoaeRpnG/SYfrdXN4i1PKc1QcbNdt0u/7N3A5hju3O7C6Rrn3u\n4h6ZntPepj7VWwhbo/3GyAYBtYGcQVnBX0ODqH3hIhHpkZPRm2LKY/Fx0fGTidZJrSkKqZVpfOlF\nGWw7D2dyZBXvFs2p36uV25vvvu/dgZ2FPAebDhsfuV6kcazphHLxpVLNk21lpqfvVXhXzlan1pDO\nVp7TqxtriDvPeuFSk8eltStnmh1bVlsb2ra2s97s78y8tan7W2/97Yg7mgPIvcGhk8PUB2qjC2ON\n41smMJOlTyWfVU1xTSe9GHjFPeP4OutN9dubs3ffDb2/PXfjQ/nHnE+e89Lz3z5f/BL1VeLr/W/b\nF8QXbnx3/z7/Y9ciYfHgEu9SyU/Wn3nLyHLK8syK/cqVVYHV3auza8ZrxWtf1+3Xz9DiHxespkpb\nPQBCNIHlx2fr618lAcAfAmD14Pr6csX6+molPGw8AaAj4tf/OTRm2v9EpX001NvdvJN2//fv/wCm\nY83QBQu0OAAAAZ1pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0i\nYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDUuNC4wIj4KICAgPHJkZjpSREYgeG1s\nbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAg\nICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0i\naHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1l\nbnNpb24+NTMxPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGlt\nZW5zaW9uPjEwMzwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9u\nPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgrPFJUyAAA4pklEQVR4Ae19fVCb15nvqztSLDkV\nCXYgXkgqE5IsOEaKoRloHXsjkck1TWtpW1yyWHhNM5G8vh4+5k7jxY3ZRqQmODsL8qS+IE8qGgST\nBLpjeW+K2waYC9kUJgXXr9pAHTuGdWCzYg2t1Fqi0gz3Oef90KtPEMh8nvOHdD6f5zm/877nec/X\nc0Tnz5+niCMIEAQ4BH73u99xXvK/jhF44okn1rH0a150MUj4D//wD2teTiIgQWCFELhy5cqePXtW\niBlhQxBYVwjwb8f/WFdiE2EJAgQBggBBYPURIJpj9duASEAQIAgQBNYXAkRzrK/2ItISBAgCBIHV\nR4BojtVvAyIBQWDDIOB1T09NTXtXoT5exNi9NM7e6YkJKLwKUq9blkRzrNumI4ITBOJFwO+euMG5\nu9JXun+iTU1PT7WMzIJo/llH67lzLV0jS+vO46qc22FBjJ+2xOz+vVM3HAPIDTluTAWkcl8t2bkz\n/VkrEpq4xSGA9lYRRxAgCGwGBBxvlSmP2YNqqtR3Wv+lODclKHIZgS1JgcKem33llZUUZXjW15IZ\nu6fxzo59+rlkx2OZKdJA+fh8W1D2DPwbqeD0SNdLeYeCK6+29tuO7kujJJJ0XDa2jJGobt44MubY\nvG1Par75EJCjKiv1pgZTjUGP/LTtUN6zlyb8yJ9oJ7kvTY245SYt1CW7P2nLViq/Zb26XBFckQnM\njrSksmpDWWUymxtMWiXk7Cs/0UXGGZEhWyh2oSZdqDxJJwgQBNYXAtrjL5825oDMZ16vrn4mr4mm\nf2ynD1bkCmrh97r9YrlU2Dv4vV6Pj5IFR3JFIL8Hp0m4GPQvzSzunZ8XxrB+v9/r94ulAfoSCRor\nZNwXVJwriIlLZILsXApMiGGp5HKpDFMIJAT5Jt7IO4Yi1KbRn53OwqOaipe/N9L1hunf02RBOYUB\noA0KVSgmn8rUVyYVCxGC1GjxfMGN4yFjjo3TlqQmBIFFITDnY7Ml575QjL69KTzH42gtE4mMvUOX\nykQSWZJMUtbKrBlMjXQZNSqJTJYEkSLVqdaBwAoBRTm6zmpQfpRmPHuuRzgf5HUYRSIRRwcxct9o\nqdaJJEAMsovKTnVMeN0dRo1MiXp2+7FylUYjEqk6xjBn/1RXHRDAxGUSle7UwISA86zjbJmGkUqk\nqT7f2YPoC+bKUBC7qd6365FH2W1j1QaOluYWn77YWBw+O+a+MXDWqEN8kZOINGVdDn5k4h1oPaVi\n6wsi1Y3MMsO1aPGY1Yb8Aesj88QRBAgCHAIjIyOcd6P9081ohkprHuYr1m9CmoOJYVIDvZy62TU/\nPzNoZmPU+iqDlvHzFMa7a7j8SqyC2JB5eAax8AyjAupmHIDwuInLrdbCPBZyavOAFQkV5Jpp4Ow0\ns1kofVUVy5jSDkIKcuORGWuRzCGObkallVV2X0gCH/QMY1yYsi4zWxOlVo/ntJBo2mFMd9xexQiq\n1RuYGpgGUeWixfMcNoyHfzvImIN5EsgvQWDTILCFnRSadXT9Uy0N1ZY/sFVY+Rr7qMfnmrR9R0ZN\nXzBUQpLe3O/rbWtsuegctkLQXtnoQF//U2+fRF/zalO3Z/7qVZ+zvYrr7CEWO7SukkQxczpTl1tq\nUaS2e9zTe7HXN3O92aB+7IEHjrbNzwwj/aQ1D0IPC/27MUc+PWCt7IM4ff+kr62x8eK802qAHt3+\n5k/HIJYbRqjt111Xr847h9tZxpHWOf7gRLEZWRkhU0sQGclJdr9osvaA7rp6se3iVdewAWWyf/jJ\nLPzd/s+b8GvqcV5sa4EajNPDR3ahKkaLh6SN6ojm2KgtS+pFEIiMgP1YpdFoLNOptikPoc6ZMr1W\nmsVn1Tb0nzmYJRXL09KSxbNjl5FmURv+7quU1+t2e5N3qRtQJz05OeOn3F8M49RXTxxAcz7ilNLG\nd3EqT0zo8dM/fx/CeuvrBxQ4e3KmsaW3BbMWs6sUSKUx/ftnv7oMfnXDia+mUW5g7E9RlxRDDH1t\nCqaHvvjtME599WAm6rhTckvf7W8ATyQ3e6UP15Kfo4uUSRAn1VScPqrJQXTByZUlNVgrMdp2DsV1\nnbOOTMF8mliRk6uQY3mjxaPsG9MRzbEx25XUiiAQHYE+i8Vis6NeX19jHfecVgiyFhU9yYfcNz/B\nnW7f/lS0NIHWMmQ7T6KoPvqW2z3+MVrUUJc8mcyXkKYm8f4Qj2fiJuL4dB7aAbuQc//mI8zmZIFE\nJEnCiyg7C9GIhX7/127KTfcizrpnA6JK778vCk35bjXu+rmRVpRsgmjv1KWWOp1GBWs0sNpRWI8x\nwOm7nv8uDHxo+8m89CRV2anLY2ggAi5aPJO6IX8XN4DbkFUnlSIIbEoEYHLpp9/bS6HNUBF2Ss35\n4Js+1NWYzfd7A6vTc9RD31YlU5/gL+2oqiKUyMLh8M5dX2N+aoeXZz03l7q3JJnyz7kWJsblEKdg\nbWb/0OGGWTAuNvr/9Lmvp+OJMgoWMzIe3v7f79fbkMpDTpp5cNhJv9V49hjE2eqLbPXmwZmK/ORo\n8UypDflLNMeGbFZSKYJAVASSUlOTpXIqfFNRWAnZDgX6xKaqjBUVirBU6uHd8DHfZ+/+1G3MZbtk\nL15TCM+KYrbgPCMOJxWlA7eP/N5L5WC5ZIpdSspOVx0yVhyMwHnXATXV19f78acVubkMM/8f/hiZ\nK0VtV+TBQgVlO/zT73/rKLMnl8vqdXul8iAgvGPvc+srF/aloaQbj9+yldu4EjAnl2M80/ZizQ9s\ntS+VN/VVvjNQkX8QUqPF8wU3mIfMVm2wBiXVIQgshAAeKiyUCaWLUx/ToP+mV1qG+JGId3bC4cBH\nB5PTHkOp9saOEfRPzXadKsFzWTgU+iMvKEKLzZbDZ4emMTHvVEe1xtiBVrwpZp/w4GdoN67f76fE\n2bmIc5P2DJsZZfJOjDkm8C7YtEcQZ/uxFmzlhIKl/m/vP4myRHJpB47U4Pjy7Be6RtAyCTj3lKOl\nWiXT/gTv/8VR+Md3Bw9nlDlZWG14J3p/EFAb3pHLl/AKByWWZz7/TTQJBpoVBIsSjylu1B+yK3fD\nbJgjFUkIAvy+w4RQW1NEwnflCsVjUtkNtVzC9U68twi6P9iVW1OlZ3fTNjAbbYfNWqZjVGq5bbY4\nzO/K1UOQ3ynrGmRzQxy34VVvHQVWvkm0boEcXpNoH/XMe0Y5xpTeUFVl0OPFCorZBTsfIBXMWcvv\nAOYqgP9ddDtDHv8qAzuI1Va021a4K3emn2EE2wLgnD1fCtdoxozDahCI26Bs6LwOW5ejxAfJsDEC\n/NtBEc2xMVqU1CJRCPDvRqIIrh06ND46oW0OnOcQysace2hmTi4EEnx0Z/CGKaXa1D7MnY2Y6TTx\n6gA273baG5CywAcyuPMcvOaYn3dd70Z7azmnrWoedTGUfIPNfDet7LzuAf4+53ADqy/YAmq9adDJ\ncp6hOwOMlYbOns4gLRWQn/V5xvtNBlYpYHJKg6n9+gymxpw74eQc72kOyKiuajYjwcwIFt9we00g\nCQxyNXTjYx7R4sOEWP8R/NshAs1BbpPlnmTyTxCg+PsyNyQWYPdDHLD6sfgq+t2zsDWWkkrRsnpI\nMbC5AYlieXIypgyzTeJQsxxBJdyzs4iUPDmEEtBxe/xiWVA8igTb6WLMOHRZ1j87C7NX4uTkZJSy\nIGOUxzvr9ojFsihmVHg5vbPTYIBFmpyMdt0Gg8ZCwVWXLxItns+wETz82xHaFBuhcqQOBAGCQBQE\nlqQ2gBbSC9E2Joml8hRYcudcbLUBuaKRAjrJoVoJVAZEBohzTJh/0BkCK78LMoZCSBmE8QgmikPS\nZIHV3mDQokERLT4C9Q0QRVbIN0AjkioQBAgCBIEVRYBojhWFmzAjCBAECAIbAAGiOTZAI5IqEAQI\nAgSBFUWArHOsKNyE2bpAAJYB14WcREiCwMojwLwdRHOsPPKE41pHYM+ePWtdRCJfTAT4LUAxc5HE\nuBHggSWzVXFjRwoQBAgCBIFNjgDRHJv8ASDVJwgQBAgCcSNANEfckJECBAGCAEFgkyNANMcmfwBI\n9QkCERDwuqenpqYDdtUjZCFRS0FgwwBLVsiX0vykzCZFwO+emHCCfYx0BbakyqHgd09dn3QlpT+a\nxtwQx8Uv4d/vnp6IaqlcvC1dsagT0EtgHFTE/RNt6rE+MNY0U5Gb7J912Nr65tKe/vvi3MUcvw6i\nlNiAf3Zs+Lfjs3++555707KezEqLdrY8Ilf/9MSEi7GUG5Yulm1TpCWHRSc8Ym0B65+doK99sfXh\nXXEiiWEhFg/XvxUyUoNEIsDbdAsnSltZI3tqU78wddiMDW43RLYkKMzJ+GfGR+nRcWwsLzRxuEFo\nUi+052ItCYYWSnjYxVSUMXnrwpeEg32/65yZw4TzWwxB12in0GAhQKNF959HdhEa0TUYC1nGaG5k\nYgmMXTvA+mi7mQFE2YCuf1+k44ElY47Ql5OECQJREZhjP3L7avd3HfEVK9jXR7IF3ZCasdgPcnfb\nwexKWjnoupof9tG8/SvHDYax7dtlQPAWvo0OrJsXPIyCntuUIom5DjuqgHcjQXJfGnTZt/W5SavY\nW7hHjmfjW9PVVdbje52/PH/S0mevLTI9NXnmQNqiai3bcbymaoySYShv1TfZwKR7VU0BDno8GV9e\neWRXDdhZR125stbOwpYhXUrVV/FZWFRzk0wEgbWJwKFX3vO0lcZUFn6v10NREqk0NNeWDLhpL0MS\n6YVVaIwtGrbGY/g2upKX643MRXlhQAADsBQrDbJ9C7ZlPZREFhwpLIkzRDYVyycFSSbNLO6dnxeS\n4P1MDeVhFYQMSDYxmApMTA9z4+ct0NNTStN4L741vViXtT1PW0/XN/+i5sDRMP3LCyjwiBXGM41s\n2O+41WSzaY/Unzka2jY4x6oDi/CDdozYTH4w3bssaEcu6JHa0DZ06v7zUHmTAKM4vGSFPA6wSFaC\nACCgxLcPwe2kFuZGugigTF86W60SSWSyJJlMJlJp6jpGmAl271iHSpR0DH3u2cvzVSqVSGXsCLmW\njqfnw5f3zflA/Qic11EmEhlbey+dKwMGMpmk1YEJ+Ke66owiYJoETCUq3amBCW6FGxcpax0Y6qpD\nUkEGiai6NXDNH1B3dJ3VcEnGs+d6uA9SxNjrALqislZGTkcr4j/gGKrTqZgaijTVA+xVeyj71FBH\nGa68TCIRqVQacCpRdRe++w+lL8G5h+wWKFbT8CJ3taz46y+eRoTsPZ9ytYyDroe5g3AuCNnVBhZw\nBmRjNZN/qqOuTCRBzc5DK1KdGosTgYyihvZu2nfxZV2BKg7QQrKSdY5FTvCRbJsEAX4mN7y+zK15\nButgtwlPuSsbnDhT8F17zmZ2NQR0jFbNTa5rzWg22UVbQ15ASouvpQtnNj8f8ZI+9gI7ARW8+OHE\nSy0oVl9VxfHXDjJrKcydd4IijNfUw4g/P97NXLcK0YHr8iDAX+2HCKrZ6/YYqRgKgl8TQ8tzvZON\nVOu5e/9QRFUnuvtP4DzdJr1aG+7g9qbw1Qt+eUCwNuSh0VVOFFdHAWnwxmhElFF4CSBfMAylFQY2\nvGVR/SiKayYPfz2j3qDnHitosRq4QVHoPNftenUEaNVqffd4UFYX3Qz0tebFrs8BFx5YciegEHPi\nJwgE3o1wLFgN0Tw67+pnXt2a7knIJtQczn4Tft/VnTRz46pnsBl3cZS6n4mYn2lGekc7yAbD+bAx\n0TQHqxiUJnrG43JOOj0+Z38DZqrvn2RWsZ1WfPcec1crdElsEb0Zdx1sKqVvxx3JpAlXRs102T5n\nexXWiwLNgSrAXZnHaw5zzzgIOjPM6kIr7sCY+2WBFCNHfwPiHOkWQhcGAUsd8qPvDOregIdvtArl\n4QHE+LiYSmlD7zDEiXwHh0NhP1E0x+oCu0AzsRfoqtne39mDG0k7HAoWfJ2YQxDlg+34skUejuVo\nDjJbxaNKPASBxSEwd4eS77PgK7jri96YgKWMQDn/cHcXhLTmfy7OScbR0nzja/gO0r4r12ZxjHhL\nEvqXLHUJAE/ra/s/OJ0Ddx6lpKVIxZ/96jIQVDec+Goaha7Q86eoS4ohhr7GziKhIsqa8bYKBZrX\nT3nhxHH4oyZhKp2i3F8M0/CnfvXEAZQoTiltfDf4/liIDXU13eMVGjR1lJz7bWaM5bqDiEm2IFYl\numeYyu3+yi5UEk+7IU/AyV/8mccVyXku6ELXHjx3bqKCSfcKEZNvzwt8eAfoLse36sDGaiZmWUxb\n8gxuQiolpwBX1cdMvAmqLc85HhlZl+c7maHQCsrF5yWaIz68SG6CAINAvqEWDyWazsAMvnwrB4tn\n4hPUDRc9/RgXA//bFNtRaMtWYc8nSF+CV6t7MnAbnvs3H/UBjb6TBRKRJAkvY+wsrIUY+v1fBxZR\nMhTbOEZ8bwMCucc/Rosa6pInGU2H8khTsW7jskf4V6TyxKgtgnTJFgTF+TffmfJScPrizdfqUeIW\ngW7lMsPKPszXy4MdxERY25fdl4FL+fxcYfh338YKTxCTEO9qA0tFaSZQyg9CBe3n3xmagvXzsUvN\nGFl5pH0WcI9iGLIoJmgrxTLRStyjvExBSHGCwPpCQJr7g06D7ZDFUvfDTPR9H+yCuko/+83Nd9hM\n3qA8wcUXDkX4jKf0Neandni93ILp3Fzq3pKAOohGk1mIX0hVhJSeo4S9eCDxwewnIEBbytMt5Vys\nvrY0h/Pz/+7WsqRyGx8UeAydnpbioG9jcaoKJpLs9qGb7vywO21DQBUQWpp3lYGNKrT0oScQCHR5\nQXoA2ebq8MOZXkerTMlnCaLXed1TnKBhB9EcQciSAEFg8QhkFp+qoSz1tO0kGmawTo6nPD4cnjTm\nZHFxnj/eRt7g3tb+2aQ3NzGvsUyxSwl9StUhY8VBNIMUl5M/vFsN4xV796duYy4WHnZTRT3GvgBp\nt72+ErIYGswP/eHm57eph3L3lpYWZ7Jkgwp/aauaUt4Om3Cit2+9JygfDtyDKXxMT1K5LKqzn3yA\nhkrKvIcjEQ+nsKSYtQMs5Xa8VwkVVleZddtu/u5zavtDe7WlxfmZEeoluQehGrTXAeWiaTzyjVBg\nKVFEcywFNVKGIIARUFT3N9TvPylAQ56vNVA2i638h+XPXdAgGyX+kdZXa5Fq0asfYwcAzGft6ISb\nypT64UTGct9CcXauBnqGJu2ZF5w/yk9hyHknxj6lHsxWJC9EPTkNZtb6KHtjx0ibMZeiZrtOlZxE\ns19LcP45Fyq1VfrA3md3SyT33nv/VmpmmpIHZtY4ovLilt55LrDQvzy/iEXV8Lx1H1TQPfaGAcGu\nPvzc4s4BLsQhcvraAZaimKEhRT3w+N7duwHZe7feR027qZQwxSnNKr06Xxq5QomLJescicOSUNp8\nCKTse4nfI4T7TCrzGyfw+oetMF2mMxp1GkleOTqLYGj/fg77kssUGeijsLbwWQ2cocg7y6ybLwc8\nxTeMBlTeUpAqKTNWVxvLNCLZzmzl29cCyxxR6YuzjHi133YsT6XTaUTbDtXHpzcE8zvJX9MhPk2V\nhwsLC/fvL8hTKh/dmSrSnZuIPLkVVaiQhMxvGhlU96dKdGVlqqTseqSMtfUv5YfkTGxwdYEV1kW+\n62kU7Gs6XISgLQBosx9NTRKd7Z0QZluM3+1oVYngpI3qaf0xyG+vzEMHi0SarhvcPOciqBDNsQiQ\nSBaCAIMAXguWB633Jr9o7Yb5Z3Dqx/FsgDTH6hw0aZFusFssdtQJq8320ZZSfvJKfODUm7ijp/sg\nteARZAAjlgsdNETQBtKsHzmHG/Qw7QQDnqYmiw0Iw8mI5x5hlVVIEYkExyexXHMrrJ0mVAnajuTV\nmzvtDaij3sJt/woujkJbKF4qCTNBh2OmP+pFNLU17cPDg/39/XYr3qVlr3y7H9Z1l+HkuRfGe5jd\nwnabDbSGUlvVM/5O/sLLOJGZojowql6QHlxNnLCiwFIhAgibafbqh1ggbXv/IIK2x95gQM19svDt\n+JGdAwBp5NjKY99tNrDIP3ISkN/dTDwEAUAg9lEAnyey2T9fWLQPzlo4nTMzrrAUBmafawac4Ghb\nItAHpjOYaRQxY/FgBeZK+sKrFKs0TmPPWLCnApns3VhJapvpBUsvJgOun3PGFXaKIbhw7EYMzruo\n0CoDOz/PHJSp6WYPbyKhZ9BCDyj6iCdaFlWr+DPxwPIfDotUNCQbQWBTIwCWmCLWP3ytArZGpkjZ\nT/5IRcTy5KV+MEcix8QBUzjjET09VkqIwOLwKsUqzaQxG51qG1ufOqJWJlGesX/vKEJzdZTub2Ax\nJQFuGfVbFvfVBpYVvr65cX/qEeWOJM/tsY7T2P6KtmjXEht8eYAsqzQpTBAgCBAEeATkqmMmtb22\nr768CJ82YBP05n59FmwWIG7pCOzSHlNX2vvs9UX2IGh7zn9nVZCN/AG19PqRkgQBgsDmRUB64HTv\nzBHHlau//4+ZPwEMX9qRuVsZ7xVMmxe+GDWXKg70+mYcv7ry+1v/8ae/UNQ9X8rM2v1kbtZqjDeQ\nmERzxGgskkQQIAjEjUCyIkejyIm7GCmwIALi5Jx9mjWCrAhWyAsKGAsoCwpOMhAECAIEAYIAQQCP\nOfbs2UOQSAgCV65cIWAmBMlVJEIacRXBTxRr0oiJQjKEDg8sOc8RggwJEgQIAgQBgsACCBDNsQBA\nJJkgQBAgCBAEQhAgmiMEEBIkCBAECAIEgQUQIJpjAYBIcrwIeN3TU1PTcVjAiZcByU8QIAisNgJk\nV+5KtYDfPTHh9Itl6QpkQJV3fvfU9UlXUvqjafLltoXfPT0R1Tq2eFu6IlnImJcgwR73T7Spx/rQ\nFdYVucn+WYetrW8u7em/Lw6/RyDBjBcgB9cMDf92fPbP99xzb1rWpjlh4J+9MXpzatr5Z+re9Mys\nHAVvs9Y7dWPSEwGyFXtOIvDetFGzEzc+d92RbN3xaCZr6HgdQEHsVsVvuyVqCd6oS3gO2sqYxaPU\npn5h6rAZmS1TNiz2EvmZ8VF6dDyitaPhBmRlL5prpiMWEsqSEL+LqShoDiDnGjZjeQzXoxhvSgjL\nBYm4RjsRygKnZe7cjlQyRiNGyr524653M5eTB6qtrGpn70anmwOxwb6GBa9HX7s1Dki2jhrRN86Y\nn4JmUA+uzDsawCluHw/scr9zg586EoqOwBx72LOvdn/XEV+xgkVesiUdymQsdjTgbjuYXUkrB11X\n88MOj27/ynGDYWz7dmR69db79WBQVK2vKngYBT23KUXSsq6gi16xWCmS+9Kgy76tz01axQfNPXI8\n+xA2WVtlPb7X+cvzJy199toi01OTZw6kxZJ+fafNvn8S3WChrTLpVKnXLp6vt9N00+E3/uczUGvp\nzq+Z9PrPt/KX4G7deqepyYYqLF2Fx2R9A7086d22V9hvSrhofR1hv4ov9PIAX8+lD73ynqetNKay\n8Hu9MJcgkUpDc23JAPvIGZEuH6YUGmOLhsVl7PFbtnJbycv1xpxQCkwOYABXCgXf+ez3uj2UJNJF\n0CxVnCHydcZ8UtDDL80s7p2fj9hWTA3lYRWEzEg2MZgWTMzDeePnLahLVJrGe08rwFOsy9qep62n\n65t/UXPgaJj+jSjseoyU5Z9u799TtC8T21U8+q37NalwX9PgtS8o0JfynNNtbcJa+cdUTbZyUDT5\n3PVTwlTiv0sITPc2lWOFfZfo3z2yZIX87mEbgbJSjWdNbIctI7MRklHU9KWz1SqRRCZLkslkIpWm\nrmOEuRTHO9ahEiUdQ0Nbe3k+uotFZewIMejP02QuEJvzBU9lex1lIpGxtffSuTJgIJNJWh2YgH+q\nq84oAqZJwFSi0p0amOBWuHGRstaBoa46JBVkkIiqW4cYkRh2jq6zcEERk2Q8e66HH3xDstcBdEVl\nrYycjlbEf8AxVKdTMTUUaaoHpgLEpoY6ynDlZRIJXD2jAacSVXeN8fWK3+MesiNjrTUNLyK1gZz4\n6y9iI6P2nk+5WjIJG+tXml9cyqoNVLGUrzDPXuRKet/7IagNmEr93+Fj2cglSOzyEfCPvVJYCx81\n1v6equVTW1kKifmsW1mZ1zG3giP1Deqaotq+yvILf3f1ZX69kqvSdIsuFesGSqnWbr9t76P7ag/n\nDf/34MWKfJ/vL9xFLOhWFlQkAyyfxeWQEWxLeSHqSrHDt7lNn3suvRLN5lD6qip3U5PdXr/f/smg\n6yLuRFARW/l+4YdRU3nBti87T2uQ+BOXTykPMcY74eJj2oJnSBAt1vn+CzyTc6xyQPws+5U8f3TH\n2f70bc7500DLe6MrveAwKqfW65Nom53GQlEqFCV03st1L50ddnP3EvFJLnneyxdOHwgZZP0Fa60d\nqYHRhTj9r/VQKcrtg8qF5OaJbSzP9FBLYS2CU/c0DFpDnX/i/x7G47KqI18NTSPhu4bAyPl/hDdB\nWdN4dF9a2V3jcrcIkxXyuBeJohfgl4/Cs9DN0FlR2ubReVc/s5Bd0z0J2dh4M1ohd/abcDOrO2l2\nIXMQl4KutJ+JmJ/Bd5dqF1zFZMgyy9QBYTzD7JSq0kTPwMVDk06Pz9nfgJnq+yeZVWyn1YAE1FtH\nUUG+iN48jm7TYVMpfTu+W2fShCujZhacfc525to2Cu2tYooz1WZW/hipgLi5ZxxSZ4atmDVlHUXE\nmLtrgBQjR38DElbbHL53wMVf4MoUD/zqO7FUiDPrfKP4a44HEEezFxBpI16JE6MROaLr5d/T3VBl\nMBj0+IJCQEnZ0BNxp0KPCQ+F2TZdL7WLJec6aMTJbvzqaNGrzb5lkR/IWPVc8TQeWDJbFeh2VsI3\nd4eS77Pga5/ri96YgKWMAFf/cHcXhLTmfy7OwXPTlDTf+FoNer76rlxjZrfEW5JQAe6WT+SPy+EP\nb23/B6dz4AKglLQUqfizX10GCuqGE19No9xut9efoi4phhj6GjuLhIooa8bbKhTo8zzlhRPH4Y+a\nhCURinJ/MYwGP+pXT+AvfXFKaeO7+PpQlCWaq+ker9AoIDU599vNWJW57iBiki2IVYnuGWYgvPsr\nuxAFwSXXKIic/MWfeVyRnOeCLnQI4blzExVJulc4upZvz8NvLUrZyM53rb3JYrHA6I2pJe347XXm\nORLWenbgNTwcMVcXhaInzEb8iUTA23GyCFrF0P76PnjXfRQzIkYD/HXiiOZYhYbKN9SiL3Gq6QzM\n4Mv5/S2eiU/QG1709GMCmbYptqPQlq3Cnk+QvgSvVvdkYJrM/ZuP0CRG38kCiUiShJcxdqK5V4p+\n/9fM4gTikKHYhv6Q4x9uEMg9/jFa1FCXPMloOpQuTcW6DXmjOEUqTwyusw44yRYExfk335nyUnD6\n4s3X8CRY0KXfbGZY2YdVGnmwg5jgBX+cWXYfMzvj8wcYUe7bWOEJYjamV274EF9Z6xwftOPd37bK\n7GfOTgdX1vGeBT0BSlNxbqAVg7OQUIIRmB2yoOlBZcNrzO30EvYG8og7XxLMO0HkEtcfJUigTUFG\nmvuDToPtkMVS98NM9H0f7ATDENhnxH5z8x02kzcoT3DxhUMRPuMpfY35qR1eL7dkPDeXurdk4Y6E\nWYhfSFWESDRHCXvxQOKD2U9AgLaUp1vKuVh9bWkO5+f/3a1lSZF3pBg6PS3FQR/O4lQVDGvs9qGb\n7vxk5sOOpxPQgoGojeWTyuUYjeT8gxU/HaS2FVRS9EefuakUHgn/2JvHoA+jquqOpG2suq/h2nh7\n3qxE4tEnX9J9BINn6nYfUt6UPU+m0tbUvXPmYNAzjJLWnCOaY3WaJLP4VA1lqadtJ9Ewg3Vy/D5/\nODxpzMni4jx/vI28wb2t/bNJb25mQp4umWKXkrLTVYeMFQcVHNPF/ssf3g0T5H327k/dxly2M/JG\nPca+AFW3vR69ToYG80N/uPn5beqh3L2lpcWZfB8nKP6lrWpKeTtswonevvUeQS7Wew+m8DE9SeWy\nqM5+8gEaKinzHo5EPJzCxohJfuRxQIym5MKvjomfvY23Kxi++1zcrb8xYFmVWvyF42q3oydR4Gj7\nLXSX4tp362a2CpnWmJhyR/5ajY2zF5WcDky9xM69UqmKanZpmmcoz9caIGAr/2EvzNcg5x9pfbUW\nqRa9mttlz4wXRidQdfxLQQPRFThxdq4Ggk3aM0PTPDnvxJhjYpYPCrKHeJPT8MyavbFjBKfMdp0q\ngUMDS3L+ORcqt1X6wN5nv6nXv/D81/6amgmZWWEIy4tbeuevhrv53sbwjzV5fhGL6gBTQffYG4aT\nQEh9+LmN/JXtHasznuod47Y8+6c7zjBfKW7B2trUu6fRlKDa/N0ox34YwMlvYhGQlrb5PAE3D9tU\n4AsM2qHH6Zm3xj7plVhJlk5tcZrDPT3mcDjGJhbRlyxdlNglaWvJzp3p/2c4fIEvUM47O+UYGujt\nHRgacUzNchMv7quo5LPWWCUDNFbOl7LvJX6PEO4zqcxvnNAj/rbCdJnOaNRpJHnl6IvQ0P79HPbr\nWKbIQJ/atYXPauAMRd7Z5VdK8Q0j6lkpS0GqpMxYXW0s04hkO7OVb19bhK4VZxnxar/tWJ5Kp9OI\nth2qj09vCCbOkr+mQ3I0VR4uLCzcv78gT6l8dGeqSHdumY9d5jeNDKr7UyW6sjJVUnY9Usba+pfy\nEb+N6nx/7LPUF2anS1SaMqi1JPVwE/4GsdbxFsRmh7qwMlG+/HcbGoq12MSwVMc7Siy/Nx0JmXQ/\nHIxdJ9NAi9IcvfWp2UqlMnvnW8zBscW0hHcWlM2NxJlMZax0RDeNMN11Sifblq4s2A/dDvQ66dtk\nmupW9MUlkaBWydiyyi2C14LlQeu9yS9au7UYTPXj29G/NMfqHDThPZR2i8WOOmG12T7awiyjoRzi\nA6fexB09jWZGCx5BpkViudBKR9AG0qwfOYcb9Oijx2ZparLYgLBab3ruEVZZhRSRSHB8Ess1t8La\naUKVoO1IXr25096AOuot3Pav4OIotCXwckiYCTocM/1RL6KprWkfHh7s7++3W/EuLXvl2/1TKGHJ\nTp57YbyH2S1st4FNFkqpreoZfyd/4WWcJbNcAwXlu161mtRofqrPhmsNrdrQSVuP5vDC3fwNQlxZ\nVfdsYMcEn0g8K4kAM4PIvnEryXjpvBY+z+Gh8ScbYqGs6VnkBmLG1J2yYXCR+RfMFvmAAltshtnc\niSTUVpmbzSYD0yFTyHybZxjJr21eAWNi/GbniNXxeSJupp/3hUX74KyF0zkz4wpLYQj78I6ZBFcI\nmM5gplHEjFgnNpIVmCvpC69SrNI4jT1jYXIKcnZjJaltpgVxS/fi+jlnXKFHPkIoxm7EkMxrPwj7\nl5lmjfgsRXsm1369Yku4wRoxdmVXMpUHNvSbFOmHYDf9cbeNi6HrrY5aTYQpUb/f6/cLrSBJJOgb\nO+M+4WocR2WBf2xRKdSkUqwyU5ffYM5dm+zXTx/MxFkrvvdPI28cNz10X9QKMnaTIm3kRHaT4HxB\neFK0+FjCCdLAEpMgFPCG22cSw1kLaYwPELE8OfEfzMAUzngExIrHFyKwOLxKC1Njdo/VNrY+dUSt\nTKI8Y//eUYRXb3V/gxdTFqawQI5l1G8Byms5GW2vYkZ2kaSM9kxGykviCAIBBBacrfL+PxtaTjT3\nDDIbwi9+HLxo6b7RUq0TSZAZJAkYKDrVMeF1dxg1MuUxKGU/Vg62h0QiVceYG5tdghwBU0tsDGd8\nyX1j4KxRh6wnIScRacq6HIuZxp966yRa5YPxEKc2UPWkabmnL14szQrvCmcHOs7qNKzdJCRzXRfP\nxjs1cIozqQSGk+q6HIgWGMaIEs+kkt8EICBXHcMnmevLi7J3pqfvfLTwMDpWojf367MSsossATIS\nEgQBggCLwAKzVTPMor8e5gtGGUsYQQYexk0ckGot3h2AJuYHrPz0FpcKl0O4mCsB1M2sHQ24vCEo\nxmVGS7/glFreWgIVOI4fdbaKPbiv7ByPOBxHJ/uFs1WuYcbYBjIMpUXTwMixJi584zVMWKkFiw3Y\n24CkjRYfNkrkh3JhKSRiUQjMjNM99k4rdp3d/aOTCZ6RW4wQpBEXg9Iaz0Ma8S41EA/sAmOOiZ5/\nRcu0VYeyKerRA7gztZ3/mPtEn7rcgj4LKW33uKf3Yq9v5nqzQf3YAw8cbQOTRGaUYEbrHNCjG7m9\nQRAZPmWDYyS7XzRZe+D6oasX2y5edQ3jKW77h59wzBCjSM79B7wxSfnIg+GEI+SXbFeaTFba6bra\ne/Fi79VhK+Jjf/dDxMZz+xP4VZqcVy+2tF30zYwP0yVozBItHpKISygCyYoczcHio9gVH9iXlRY+\nZEwoP0KMIEAQWBICsXvb2cvnm4CsuWwfyqcohAmryr4+W8+NfcWwnOCnf/4+ROutrx/AJo3EyZnG\nFrw/BtQDXudgzDLF5sGJLdVUYNvXTFiuLKlRW2CL50ILJe5bv0W6DU7vwzz5ImY1pIoDpwV8lM/9\nrZKy0EnMzis81U53NXc9X1WcK09WcOYYosVzsgv+r1y5IggR77pEgDTiumy2YKFJIwbjkbAQA2ys\nXt0/NXAe98ppWz1TEy5qqyRNBSeGKcv5D14vhvtiPBM30Q7xp/PSEyOUd+rST9768btdYFt88QTl\nO/AxZrAYtpCO4WlOjVx6s+XH71s4O3B8glz13RqlvZ6uPZRXS6lrml/5nlGDVqKjxfMFBZ49e/YI\nQsS7/hCAF4M04vprtmCJSSMG45GwEA9srNmq0X/rZLrwQ9mwYrkzPTX9EBqBgPI4P7DI01lBxxdw\nWe4cAA4If6bPfT1de6wW1IZWb6iqqdGzaxDCPJH82+7HJG30p8EnByLlhbjpgbPpcCMcqA1YzKiq\nqqkSrslID54Zou3NmHVf/bHCbboWPFkWLT4KDxJNECAIEAQ2NAIxNMfUxfM2qDvcY2w2NzDObGaO\nqdE/vjwKSdgqNjXicEaDyD7ye+4kN5fFxV3yA7Ndd/7IxVLesffx5UJwS4TnYltL45kzP6gW9ul8\nxjCPlLWYXX7230J5Mft7g0q4f2lBW8Vgx44PFjMaG880fj+YjTTnoLHtqm+834pW/O3H7GOMQooW\nH0SdBAgCBAGCwGZAIKrm8I79AltMMrz+xumKipcZV1Fx2nwaLymfvzhFyQuwRSDL4bOsySPvVEe1\nxtgxhoDDSwPUINjlRPaV/DDls/NJLfj7Kt/DF6m6xy6VF6BOnHG+O8w6d05WGlqs8E70/iCyNVSu\nQOBfcaQOX95jO/z1ui7WspXf7bjcAhtvLaMhAxG/exKVfHx3Fp6n8w6c+yFSj5i5H6axLjOn5MWK\nfc8fwIMe1x1/tPiACMRHECAIEAQ2EwJRNcdHnW8DDsqav2W6WB4Txd+UoI9xuvYXY+6sb34XKQNs\n8khXplPJ0g839d3BdiBlO/4KpdAnU+E8h0Ty3piXkj/yNdwXH8vbBiaOkrK1dpQDjLUgo9vyjD2Y\nLOQ31p0yynYWog59cU5xsLYd78Tqqz2UniRBN3RLkpRFx2CqDZv8EFJJfvIA4lNbmGo8VQfHTvZX\nYj54wsvzxQfaImWSSAPWm3SqVGzSp+p5ZXK0eCHdDen3uqenphJnQGZDYkQqRRDYnAhEOc/hYux5\nNDN3ggbtDXa14/kdvRXZhHBd78Z3j7LgaauaR1mTGb7BZtydoxRl53Vk8sE32S/IbOjs6USUtFZm\n0/54TzPWLJiUuqrZjIqbuQs/aSxQMxcMkggFXP3t2EoPLg0/sIrR3n8dHfFgDnzw1kd847B1mMtF\nga2SKuCqRrZJfM7hGu7eTZRBaei+jkSLFo/YBjt+s3Nw9BJCPuf49WhufJI/ErMEyosvwl7aytwL\n65uhrWZzc+fwArY7Fk8+zpxok/Tg4Aqc8EhcI8ZZw7uWPTZ0M+Ojg/093d09/YOwWT3Koai7Jttd\nIry+GnFm/DpN06PXnWsffR5YKormgAYF40NRKxJi7gbMKIHFo3CDQMgUElhfCupswOYSso7EkA7j\n4YFEoMSmcnaQFv94sQwXKsiYMHIx2YKFYM03BQuN4MBlQioTIhgPa0h83EHXYECJ8lqO96hZXRs3\n2fgKuKx4RMloDsYQGdjtxdo4PkLLzu2j7ew50QRaQosmVcIaMRqDFY2PCZ1rFN/1zj9Y4KlajfZN\nPCLrqBF94+zkC3zADjIf0YnHI2EUeWDxbL/wyQn4YxkfCjF3A2aUIh7ZwqaQAhSxD2wuBW4kC+Mh\nTU4JHMoI4RJCKGIQ2SaKmBAcGWTCKFiIaOabosUHE05QSLbjeE3VGCVDpnA9t+qbYEpNXVVTgIMe\nT8aXF70DOUHywMGc+9JgpHZbn5sU45FJGDcBoVlHXbmylnu5MqJbSxaUIV6MwALQTZ19OhtPyapN\nzcef+ivq2tVfvtWHHjHiVhABt+0V/IGGWCat/Hu95JqucDewZDk3WUGxwnimka2z33GryWbTHqk/\nczSiUsQ7yITWJqGc3+v2UJJwm408jDiDTB7JBiOfFPQYSzOLe+fn+fLBHr5IcDSEGFOY8Amw1Adt\n5IIeqQ1tQ6fuPw+VM7vCw7iQiEgIxIZuuvctrDYMgzMtjMH5AweLhYdxI5EkcQlGYLq3abE7gRLM\nebnkoq6QL5cwKZ8oBDzMNrU5j5Cg11EmEhlbey+dK8MWIiWtzKYw/1RXnRFZjUxKAquRKt2pgQlu\nrzIuUtY6MNRVB1sIUAaJqLp1CLYn8M7RdRb2MzBJxrPnergvfZTB6wC6orJWdrPagtT8Ux11Zawp\nTDAeCZYvYa+E6hRslYjLZRQ1tHfTvosv6wpUcRUkmWNC5/2lFVkOqun+pw1+T8lafg78Y68UQiso\nrf09eHvoWpY1VLalfgqG0iHhu4YA9+kf3FRInVjKC7EZcsQaX643fe65dHwshtJXVbmbmuz2+v32\nTwZdF/PRZCIqYivfb0PZWddUXrDty87TGnSzz8TlU8pDyOowPMpKiracDOyZxpG+/4K/Sf44Tmxq\n3q7/lX4YC6c36GmLjaaxNQJlASYV+PHeuPTSS03uJLy5LRBNuVzyl60XwKpNcs6B0hyU4PYJ7g8U\n5CTeaAjEgs4//jF6DvTa/G2zE2Of377jk2zd8dDOtEXN9UZjSOLjQ2Dk/D/CK6KsaTy6L60svqKr\nn5uMOVa/DZYmAfvtrzTRM3AP1OS3HpNND1i505S+tsbGi/NOK9rKZn/zp/iEDbLthZ3ePI72LDCp\nVK31l3gYMPU2NlavNnV74I5vn7OduUVPIBzSPkkBg5WxqLmv2pDaUIMpzLaWtqvOHrybTTs8dCbE\nYrrvzritr88e5sA62oxwNCQQg3gTgIDnzk1ExVawTbYNrg7Oy8tTZsM1msbWoQQQJyQWg8DU5fJK\nNA/75vc0lPcO+zYtpuDayEM0x9poh/ilwFsStP0fnM6B+5hS0lKk4s9+dRnIqBtOfDWNcrvdXn+K\nuqQYYuhr6FJdcKiIsma8rQIbqEx54cRxFDsJSyKgVb4YRqZm1K+eOIBWU8QppY3v4ttcIRDZxaIm\nwQMlbckzmBOVksOMNXzMxJuAnjznOFxaF8l5vpMZcVlHUJh4l4yABD8MqLjSYDK3t1uZ/eiW8oJW\n1mjCkkmTgotBwNtxsgheOEP76/uS0XQAfp3Z89OLKb/qeYKnQFZdHCJAXAhodU8GbpB2/+YjNCPU\nd7JAEjzPRL//a/cZbLoRkjMU2zgWfDcOD4F7/GO0qKEueRKeY9ZJU0PnkLgU/j8KNdiK9SDksZ9/\nZ+ibR/NTxy4141kwOaNQ+NLYA3vWZGIqZAUdjA6ExAQXIqHEIKDucfbiqUqKKn1+hy4VPoLf/sWn\nR7NyE0OeUImCwOyQ5TDMFiobXivNQlkk7HxApBckConVjiaaY7VbYFn8I03962vMT+3wevEUFBCf\nm0vdWxJQB9HYMasIC6qKaMVD4qUPPQFbDe10eUF6OZekb67ODRtFeB2tMiWfhcuK/+H0aDEZdgRB\nkriAj+mq0u9nvnUR4ZT8PCU02WMPbE0cG0IpIgLenjcrUQJ98iXdRzDgpm734WVAe55Mpa2pe+fM\nwbAXJSKd1YwkmmM10U8ob5liF3rzqw4ZKw4q4qUsfxgbq7d3f+o25rK9idfpipcMm9/teA9N4aqr\nzLptN3/3ObX9ob3a0uJ85or4YJqSe2ApBi3JBzua3h4cQUIJRUC+fRdodso2Nnkhl1PPf0azltSn\n/30noZwIsQgI/IWLgwU+zsv80/ZbfwqOWaMhojnWaMPEL5Y4O1cDnzFN2jMvOH+Un8K0rHdi7FPq\nwWxF8kINnZz2GLp7xd7YMdJmhMmK2a5TJSfxh1D8ksC8LTsYeuDxvbt3S+69996t91HTbipwBJQj\nKs0qvTpfyoXI/4ohkF4A+0CbqMNn/7WopRSGpO6xjup6Gtjr8jNWTIjNykha2ub71gV+B4hU7B54\nLnV/HwWThz/TrJPtbWSFfOM8vYpvGLGlMEtBqqQMrDYayzQiGWycefvaIjZuiLOMZphgomzH8lRg\nkFK07RBcyLhUJ9/1NCra13S4qLCwcH9BAezceTQ1SXS2dyJekm5Hq0oEx0FUT+uPQVl7ZR6yaCnS\ndN3gpuPipbhp8seETqz+bjNCwnJ4m0pnNOqSsg8jvaFtLiPnO1biCYGju7yjxPJ70xHTpPul0sDm\nxZUQY+k8iOZYOnYrVhJ1/GETRxG0gTTrR87hBr0astssTU0WG/T9ar3puUfY6aeQIhIJjufWNnIr\nrJ0mpDxoux0K6s2d9gY9BLdI2PFKSPGQoJDa7NUPoSD0Q+39g8OD/f099gZsZfJk4dtTOCGenzno\n0cAeHI06NuSw7zbjJ78xEYgFnTzHONqNrYHRdosFzZnoa9onu4ww/iBuxRFgDm2x7+mKc18Sw+gW\nDxNmJGvzEOLNga1ulVnjjGCdMarJyqgCQllkc5IrGcPqZVQS8/PDePhS0+0M5Jlh5nP1UY0dB7Ku\nsm+NNOJKoeBB1kojmStdKQHuCp9N1oh3BcOIRHlgF5r+XpI2IoVWF4HlGGeEsinSwLdPsDXI+KpV\n39y4P/WIckeS5/ZYx+nTqLC2aFeAdnzUSO67g4A0eZ1MrN+d6hOqS0SAaI4lAkeKxUBgl/aYutLe\nZ68vsjPmTJi8+p7z31n72w1j1IskEQQIAgwCRHOQJyHxCEgVB3p9M45fXfn9rf/4E+xAvOdLmVm7\nn8zNIuONxGNNKBIEVgMBojlWA/XNwFOcnLNPk7MZakrqSBDYfAiIYIW8oICxKrT5ak9qTBAgCBAE\nCALxI4DGHHv27Im/ICkRAYErV64QMCPgsq6iSCOuq+aKLCxpxMi4LDuWB5ac51g2loQAQYAgQBDY\nZAj8fzmBtLfospGTAAAAAElFTkSuQmCC\n",
"prompt_number": 419,
"text": [
"<IPython.core.display.Image at 0x11a46fc10>"
]
}
],
"prompt_number": 419
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Confusion Matrix allows for more detailed analysis than mere proportion of correct guesses.\n",
"\n",
"For instance 16 advertisers from Yes trending were incorrecly predicted as No trending. \n",
"\n",
"Based on the entries in the confusion matrix, the total number of correct predictions made by the model is (37 + 4) and the total number of incorrect predictions is (16 + 4).\n",
"\n",
"The confusion matrix provides the information needed to determine how well a classification model performs. The perforamnce metric, accuracy, summarizes this information with a single number .672\n",
"\n",
"Accuracy takes the total number of correct predictions and divides it by the total number of all predictions made. "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_advertiser"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Rank</th>\n",
" <th>Trend</th>\n",
" <th>Advertiser</th>\n",
" <th>Industry</th>\n",
" <th>Activity</th>\n",
" <th>Percentage In-Play</th>\n",
" <th>Creatives</th>\n",
" <th>Publishers</th>\n",
" <th>Tags</th>\n",
" <th>Count</th>\n",
" <th>trend_clean</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0 </th>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" <td> Merrill Lynch</td>\n",
" <td> Financial Services</td>\n",
" <td> 100.00</td>\n",
" <td> 28.67</td>\n",
" <td> 92</td>\n",
" <td> 1298</td>\n",
" <td> 29</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1 </th>\n",
" <td> 2</td>\n",
" <td> 0</td>\n",
" <td> Merrill Edge</td>\n",
" <td> Financial Services</td>\n",
" <td> 79.15</td>\n",
" <td> 23.51</td>\n",
" <td> 86</td>\n",
" <td> 1253</td>\n",
" <td> 28</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2 </th>\n",
" <td> 3</td>\n",
" <td> 5</td>\n",
" <td> Equifax</td>\n",
" <td> Financial Services</td>\n",
" <td> 18.78</td>\n",
" <td> 35.86</td>\n",
" <td> 39</td>\n",
" <td> 869</td>\n",
" <td> 26</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3 </th>\n",
" <td> 4</td>\n",
" <td> 5</td>\n",
" <td> Moneygram</td>\n",
" <td> Financial Services</td>\n",
" <td> 14.73</td>\n",
" <td> 0.67</td>\n",
" <td> 49</td>\n",
" <td> 1408</td>\n",
" <td> 31</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4 </th>\n",
" <td> 5</td>\n",
" <td> -2</td>\n",
" <td> Usaa</td>\n",
" <td> Financial Services</td>\n",
" <td> 11.38</td>\n",
" <td> 72.79</td>\n",
" <td> 45</td>\n",
" <td> 144</td>\n",
" <td> 13</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5 </th>\n",
" <td> 6</td>\n",
" <td> -1</td>\n",
" <td> Pimco</td>\n",
" <td> Financial Services</td>\n",
" <td> 10.37</td>\n",
" <td> 39.02</td>\n",
" <td> 27</td>\n",
" <td> 465</td>\n",
" <td> 18</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6 </th>\n",
" <td> 7</td>\n",
" <td> 3</td>\n",
" <td> Vulcan Inc.</td>\n",
" <td> Financial Services</td>\n",
" <td> 9.90</td>\n",
" <td> 71.67</td>\n",
" <td> 66</td>\n",
" <td> 269</td>\n",
" <td> 14</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7 </th>\n",
" <td> 8</td>\n",
" <td> -4</td>\n",
" <td> Zurich</td>\n",
" <td> Financial Services</td>\n",
" <td> 9.15</td>\n",
" <td> 99.11</td>\n",
" <td> 34</td>\n",
" <td> 27</td>\n",
" <td> 5</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8 </th>\n",
" <td> 9</td>\n",
" <td> -3</td>\n",
" <td> Advance America</td>\n",
" <td> Financial Services</td>\n",
" <td> 8.81</td>\n",
" <td> 2.93</td>\n",
" <td> 49</td>\n",
" <td> 688</td>\n",
" <td> 37</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9 </th>\n",
" <td> 10</td>\n",
" <td> 3</td>\n",
" <td> Ul</td>\n",
" <td> Financial Services</td>\n",
" <td> 2.55</td>\n",
" <td> 84.09</td>\n",
" <td> 38</td>\n",
" <td> 81</td>\n",
" <td> 9</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td> 11</td>\n",
" <td> -4</td>\n",
" <td> Barclays</td>\n",
" <td> Financial Services</td>\n",
" <td> 2.22</td>\n",
" <td> 45.51</td>\n",
" <td> 18</td>\n",
" <td> 17</td>\n",
" <td> 6</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td> 12</td>\n",
" <td> -1</td>\n",
" <td> GE Capital</td>\n",
" <td> Financial Services</td>\n",
" <td> 2.16</td>\n",
" <td> 92.88</td>\n",
" <td> 14</td>\n",
" <td> 24</td>\n",
" <td> 7</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td> 13</td>\n",
" <td> -1</td>\n",
" <td> Credit Suisse</td>\n",
" <td> Financial Services</td>\n",
" <td> 2.06</td>\n",
" <td> 45.59</td>\n",
" <td> 19</td>\n",
" <td> 51</td>\n",
" <td> 18</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td> 14</td>\n",
" <td> 0</td>\n",
" <td> Veterans United Home Loans</td>\n",
" <td> Financial Services</td>\n",
" <td> 1.98</td>\n",
" <td> 8.72</td>\n",
" <td> 6</td>\n",
" <td> 235</td>\n",
" <td> 22</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td> 15</td>\n",
" <td> -1</td>\n",
" <td> Mass Mutual Financial Group</td>\n",
" <td> Financial Services</td>\n",
" <td> 0.83</td>\n",
" <td> 62.11</td>\n",
" <td> 23</td>\n",
" <td> 10</td>\n",
" <td> 4</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td> 16</td>\n",
" <td> -1</td>\n",
" <td> Bloomberg</td>\n",
" <td> Financial Services</td>\n",
" <td> 0.62</td>\n",
" <td> 41.23</td>\n",
" <td> 57</td>\n",
" <td> 36</td>\n",
" <td> 8</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td> 17</td>\n",
" <td> 0</td>\n",
" <td> Ameriprise Financial</td>\n",
" <td> Financial Services</td>\n",
" <td> 0.26</td>\n",
" <td> 84.84</td>\n",
" <td> 14</td>\n",
" <td> 25</td>\n",
" <td> 14</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td> 18</td>\n",
" <td> -2</td>\n",
" <td> CFP</td>\n",
" <td> Financial Services</td>\n",
" <td> 0.05</td>\n",
" <td> 0.00</td>\n",
" <td> 8</td>\n",
" <td> 32</td>\n",
" <td> 39</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" <td> TD Ameritrade</td>\n",
" <td> Personal Investing</td>\n",
" <td> 100.00</td>\n",
" <td> 18.71</td>\n",
" <td> 135</td>\n",
" <td> 1844</td>\n",
" <td> 24</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td> 2</td>\n",
" <td> 0</td>\n",
" <td> T. Rowe Price</td>\n",
" <td> Personal Investing</td>\n",
" <td> 31.69</td>\n",
" <td> 29.43</td>\n",
" <td> 51</td>\n",
" <td> 855</td>\n",
" <td> 26</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td> 3</td>\n",
" <td> 0</td>\n",
" <td> Fisher Investments</td>\n",
" <td> Personal Investing</td>\n",
" <td> 21.14</td>\n",
" <td> 24.75</td>\n",
" <td> 95</td>\n",
" <td> 734</td>\n",
" <td> 14</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td> 4</td>\n",
" <td> 0</td>\n",
" <td> Spdr</td>\n",
" <td> Personal Investing</td>\n",
" <td> 10.26</td>\n",
" <td> 82.54</td>\n",
" <td> 75</td>\n",
" <td> 46</td>\n",
" <td> 15</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td> 5</td>\n",
" <td> 0</td>\n",
" <td> Virginia 529</td>\n",
" <td> Personal Investing</td>\n",
" <td> 5.51</td>\n",
" <td> 2.90</td>\n",
" <td> 14</td>\n",
" <td> 561</td>\n",
" <td> 20</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td> 6</td>\n",
" <td> 1</td>\n",
" <td> Tradestation</td>\n",
" <td> Personal Investing</td>\n",
" <td> 2.50</td>\n",
" <td> 72.37</td>\n",
" <td> 47</td>\n",
" <td> 78</td>\n",
" <td> 12</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td> 7</td>\n",
" <td> 2</td>\n",
" <td> Raymond James</td>\n",
" <td> Personal Investing</td>\n",
" <td> 0.17</td>\n",
" <td> 100.00</td>\n",
" <td> 15</td>\n",
" <td> 11</td>\n",
" <td> 3</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" <td> Allstate</td>\n",
" <td> Insurance Company</td>\n",
" <td> 100.00</td>\n",
" <td> 22.69</td>\n",
" <td> 281</td>\n",
" <td> 4058</td>\n",
" <td> 33</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td> 2</td>\n",
" <td> 1</td>\n",
" <td> Geico</td>\n",
" <td> Insurance Company</td>\n",
" <td> 77.07</td>\n",
" <td> 15.94</td>\n",
" <td> 137</td>\n",
" <td> 2201</td>\n",
" <td> 17</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td> 3</td>\n",
" <td> -2</td>\n",
" <td> Progressive</td>\n",
" <td> Insurance Company</td>\n",
" <td> 50.81</td>\n",
" <td> 11.95</td>\n",
" <td> 83</td>\n",
" <td> 4042</td>\n",
" <td> 26</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td> 4</td>\n",
" <td> 0</td>\n",
" <td> State Farm</td>\n",
" <td> Insurance Company</td>\n",
" <td> 45.71</td>\n",
" <td> 40.10</td>\n",
" <td> 421</td>\n",
" <td> 3916</td>\n",
" <td> 39</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td> 5</td>\n",
" <td> 9</td>\n",
" <td> Metlife</td>\n",
" <td> Insurance Company</td>\n",
" <td> 39.26</td>\n",
" <td> 8.96</td>\n",
" <td> 79</td>\n",
" <td> 2383</td>\n",
" <td> 34</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52</th>\n",
" <td> 2</td>\n",
" <td> -1</td>\n",
" <td> Google</td>\n",
" <td> Software</td>\n",
" <td> 97.37</td>\n",
" <td> 13.92</td>\n",
" <td> 341</td>\n",
" <td> 5666</td>\n",
" <td> 18</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>53</th>\n",
" <td> 3</td>\n",
" <td> 0</td>\n",
" <td> IBM</td>\n",
" <td> Software</td>\n",
" <td> 43.27</td>\n",
" <td> 47.57</td>\n",
" <td> 379</td>\n",
" <td> 2004</td>\n",
" <td> 24</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>54</th>\n",
" <td> 4</td>\n",
" <td> 4</td>\n",
" <td> Microsoft Software</td>\n",
" <td> Software</td>\n",
" <td> 21.03</td>\n",
" <td> 7.65</td>\n",
" <td> 127</td>\n",
" <td> 3860</td>\n",
" <td> 39</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55</th>\n",
" <td> 5</td>\n",
" <td> 2</td>\n",
" <td> Norton</td>\n",
" <td> Software</td>\n",
" <td> 15.96</td>\n",
" <td> 24.02</td>\n",
" <td> 51</td>\n",
" <td> 2771</td>\n",
" <td> 32</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>56</th>\n",
" <td> 6</td>\n",
" <td> 3</td>\n",
" <td> Cisco</td>\n",
" <td> Software</td>\n",
" <td> 13.42</td>\n",
" <td> 51.48</td>\n",
" <td> 97</td>\n",
" <td> 1147</td>\n",
" <td> 19</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>57</th>\n",
" <td> 7</td>\n",
" <td> -3</td>\n",
" <td> Xfinity</td>\n",
" <td> Software</td>\n",
" <td> 11.24</td>\n",
" <td> 41.17</td>\n",
" <td> 247</td>\n",
" <td> 1895</td>\n",
" <td> 34</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>58</th>\n",
" <td> 8</td>\n",
" <td> -3</td>\n",
" <td> Google Software</td>\n",
" <td> Software</td>\n",
" <td> 10.25</td>\n",
" <td> 56.41</td>\n",
" <td> 159</td>\n",
" <td> 1351</td>\n",
" <td> 12</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>59</th>\n",
" <td> 9</td>\n",
" <td> 1</td>\n",
" <td> LifeLock</td>\n",
" <td> Software</td>\n",
" <td> 7.26</td>\n",
" <td> 10.26</td>\n",
" <td> 61</td>\n",
" <td> 2052</td>\n",
" <td> 34</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60</th>\n",
" <td> 10</td>\n",
" <td> 2</td>\n",
" <td> Google Play</td>\n",
" <td> Software</td>\n",
" <td> 7.20</td>\n",
" <td> 81.15</td>\n",
" <td> 76</td>\n",
" <td> 428</td>\n",
" <td> 10</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>61</th>\n",
" <td> 11</td>\n",
" <td> 3</td>\n",
" <td> Citrix</td>\n",
" <td> Software</td>\n",
" <td> 5.54</td>\n",
" <td> 47.06</td>\n",
" <td> 199</td>\n",
" <td> 2256</td>\n",
" <td> 26</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>62</th>\n",
" <td> 12</td>\n",
" <td> -6</td>\n",
" <td> E-verify</td>\n",
" <td> Software</td>\n",
" <td> 5.09</td>\n",
" <td> 30.76</td>\n",
" <td> 63</td>\n",
" <td> 1224</td>\n",
" <td> 28</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>63</th>\n",
" <td> 13</td>\n",
" <td> -2</td>\n",
" <td> Adobe</td>\n",
" <td> Software</td>\n",
" <td> 4.29</td>\n",
" <td> 23.10</td>\n",
" <td> 96</td>\n",
" <td> 2004</td>\n",
" <td> 36</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>64</th>\n",
" <td> 14</td>\n",
" <td> 2</td>\n",
" <td> Emc2</td>\n",
" <td> Software</td>\n",
" <td> 3.07</td>\n",
" <td> 73.16</td>\n",
" <td> 205</td>\n",
" <td> 962</td>\n",
" <td> 15</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65</th>\n",
" <td> 15</td>\n",
" <td> 0</td>\n",
" <td> iLivid</td>\n",
" <td> Software</td>\n",
" <td> 2.99</td>\n",
" <td> 50.13</td>\n",
" <td> 117</td>\n",
" <td> 174</td>\n",
" <td> 21</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>66</th>\n",
" <td> 16</td>\n",
" <td> 2</td>\n",
" <td> Cisco Webex</td>\n",
" <td> Software</td>\n",
" <td> 2.38</td>\n",
" <td> 0.00</td>\n",
" <td> 10</td>\n",
" <td> 666</td>\n",
" <td> 27</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67</th>\n",
" <td> 17</td>\n",
" <td> 11</td>\n",
" <td> Windows</td>\n",
" <td> Software</td>\n",
" <td> 2.13</td>\n",
" <td> 78.59</td>\n",
" <td> 21</td>\n",
" <td> 223</td>\n",
" <td> 14</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>68</th>\n",
" <td> 18</td>\n",
" <td> -5</td>\n",
" <td> Zendesk</td>\n",
" <td> Software</td>\n",
" <td> 2.13</td>\n",
" <td> 19.69</td>\n",
" <td> 70</td>\n",
" <td> 1591</td>\n",
" <td> 21</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>69</th>\n",
" <td> 19</td>\n",
" <td> 3</td>\n",
" <td> Carbonite</td>\n",
" <td> Software</td>\n",
" <td> 2.09</td>\n",
" <td> 82.34</td>\n",
" <td> 72</td>\n",
" <td> 708</td>\n",
" <td> 19</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>70</th>\n",
" <td> 20</td>\n",
" <td> 0</td>\n",
" <td> Skype</td>\n",
" <td> Software</td>\n",
" <td> 1.66</td>\n",
" <td> 55.32</td>\n",
" <td> 28</td>\n",
" <td> 30</td>\n",
" <td> 11</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>71</th>\n",
" <td> 21</td>\n",
" <td> -4</td>\n",
" <td> Manage Engine</td>\n",
" <td> Software</td>\n",
" <td> 0.86</td>\n",
" <td> 31.78</td>\n",
" <td> 64</td>\n",
" <td> 122</td>\n",
" <td> 9</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>72</th>\n",
" <td> 22</td>\n",
" <td> 1</td>\n",
" <td> Join.me</td>\n",
" <td> Software</td>\n",
" <td> 0.38</td>\n",
" <td> 3.59</td>\n",
" <td> 8</td>\n",
" <td> 316</td>\n",
" <td> 21</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>73</th>\n",
" <td> 23</td>\n",
" <td> -4</td>\n",
" <td> Ca Technologies</td>\n",
" <td> Software</td>\n",
" <td> 0.30</td>\n",
" <td> 92.89</td>\n",
" <td> 58</td>\n",
" <td> 147</td>\n",
" <td> 9</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74</th>\n",
" <td> 24</td>\n",
" <td> -3</td>\n",
" <td> Redhat</td>\n",
" <td> Software</td>\n",
" <td> 0.27</td>\n",
" <td> 99.44</td>\n",
" <td> 30</td>\n",
" <td> 30</td>\n",
" <td> 2</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75</th>\n",
" <td> 25</td>\n",
" <td> -5</td>\n",
" <td> Apple</td>\n",
" <td> Software</td>\n",
" <td> 0.25</td>\n",
" <td> 73.76</td>\n",
" <td> 15</td>\n",
" <td> 112</td>\n",
" <td> 17</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>76</th>\n",
" <td> 26</td>\n",
" <td> 0</td>\n",
" <td> Safecount.net</td>\n",
" <td> Software</td>\n",
" <td> 0.21</td>\n",
" <td> 0.00</td>\n",
" <td> 11</td>\n",
" <td> 225</td>\n",
" <td> 37</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>77</th>\n",
" <td> 27</td>\n",
" <td> 0</td>\n",
" <td> Rescue</td>\n",
" <td> Software</td>\n",
" <td> 0.19</td>\n",
" <td> 72.86</td>\n",
" <td> 1</td>\n",
" <td> 165</td>\n",
" <td> 13</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>78</th>\n",
" <td> 28</td>\n",
" <td> 0</td>\n",
" <td> Log Me In Rescue</td>\n",
" <td> Software</td>\n",
" <td> 0.18</td>\n",
" <td> 75.00</td>\n",
" <td> 5</td>\n",
" <td> 162</td>\n",
" <td> 11</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>79</th>\n",
" <td> 29</td>\n",
" <td> 0</td>\n",
" <td> Visual Studio</td>\n",
" <td> Software</td>\n",
" <td> 0.06</td>\n",
" <td> 99.77</td>\n",
" <td> 4</td>\n",
" <td> 14</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>80</th>\n",
" <td> 30</td>\n",
" <td> -5</td>\n",
" <td> Sage</td>\n",
" <td> Software</td>\n",
" <td> 0.04</td>\n",
" <td> 63.49</td>\n",
" <td> 42</td>\n",
" <td> 44</td>\n",
" <td> 10</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>81</th>\n",
" <td> 31</td>\n",
" <td> -4</td>\n",
" <td> Film Fanatic</td>\n",
" <td> Software</td>\n",
" <td> 0.02</td>\n",
" <td> 8.43</td>\n",
" <td> 11</td>\n",
" <td> 24</td>\n",
" <td> 12</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>82 rows \u00d7 11 columns</p>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 448,
"text": [
" Rank Trend Advertiser Industry Activity \\\n",
"0 1 0 Merrill Lynch Financial Services 100.00 \n",
"1 2 0 Merrill Edge Financial Services 79.15 \n",
"2 3 5 Equifax Financial Services 18.78 \n",
"3 4 5 Moneygram Financial Services 14.73 \n",
"4 5 -2 Usaa Financial Services 11.38 \n",
"5 6 -1 Pimco Financial Services 10.37 \n",
"6 7 3 Vulcan Inc. Financial Services 9.90 \n",
"7 8 -4 Zurich Financial Services 9.15 \n",
"8 9 -3 Advance America Financial Services 8.81 \n",
"9 10 3 Ul Financial Services 2.55 \n",
"10 11 -4 Barclays Financial Services 2.22 \n",
"11 12 -1 GE Capital Financial Services 2.16 \n",
"12 13 -1 Credit Suisse Financial Services 2.06 \n",
"13 14 0 Veterans United Home Loans Financial Services 1.98 \n",
"14 15 -1 Mass Mutual Financial Group Financial Services 0.83 \n",
"15 16 -1 Bloomberg Financial Services 0.62 \n",
"16 17 0 Ameriprise Financial Financial Services 0.26 \n",
"17 18 -2 CFP Financial Services 0.05 \n",
"18 1 0 TD Ameritrade Personal Investing 100.00 \n",
"19 2 0 T. Rowe Price Personal Investing 31.69 \n",
"20 3 0 Fisher Investments Personal Investing 21.14 \n",
"21 4 0 Spdr Personal Investing 10.26 \n",
"22 5 0 Virginia 529 Personal Investing 5.51 \n",
"23 6 1 Tradestation Personal Investing 2.50 \n",
"24 7 2 Raymond James Personal Investing 0.17 \n",
"25 1 1 Allstate Insurance Company 100.00 \n",
"26 2 1 Geico Insurance Company 77.07 \n",
"27 3 -2 Progressive Insurance Company 50.81 \n",
"28 4 0 State Farm Insurance Company 45.71 \n",
"29 5 9 Metlife Insurance Company 39.26 \n",
".. ... ... ... ... ... \n",
"52 2 -1 Google Software 97.37 \n",
"53 3 0 IBM Software 43.27 \n",
"54 4 4 Microsoft Software Software 21.03 \n",
"55 5 2 Norton Software 15.96 \n",
"56 6 3 Cisco Software 13.42 \n",
"57 7 -3 Xfinity Software 11.24 \n",
"58 8 -3 Google Software Software 10.25 \n",
"59 9 1 LifeLock Software 7.26 \n",
"60 10 2 Google Play Software 7.20 \n",
"61 11 3 Citrix Software 5.54 \n",
"62 12 -6 E-verify Software 5.09 \n",
"63 13 -2 Adobe Software 4.29 \n",
"64 14 2 Emc2 Software 3.07 \n",
"65 15 0 iLivid Software 2.99 \n",
"66 16 2 Cisco Webex Software 2.38 \n",
"67 17 11 Windows Software 2.13 \n",
"68 18 -5 Zendesk Software 2.13 \n",
"69 19 3 Carbonite Software 2.09 \n",
"70 20 0 Skype Software 1.66 \n",
"71 21 -4 Manage Engine Software 0.86 \n",
"72 22 1 Join.me Software 0.38 \n",
"73 23 -4 Ca Technologies Software 0.30 \n",
"74 24 -3 Redhat Software 0.27 \n",
"75 25 -5 Apple Software 0.25 \n",
"76 26 0 Safecount.net Software 0.21 \n",
"77 27 0 Rescue Software 0.19 \n",
"78 28 0 Log Me In Rescue Software 0.18 \n",
"79 29 0 Visual Studio Software 0.06 \n",
"80 30 -5 Sage Software 0.04 \n",
"81 31 -4 Film Fanatic Software 0.02 \n",
"\n",
" Percentage In-Play Creatives Publishers Tags Count trend_clean \n",
"0 28.67 92 1298 29 1 0 \n",
"1 23.51 86 1253 28 1 0 \n",
"2 35.86 39 869 26 1 1 \n",
"3 0.67 49 1408 31 1 1 \n",
"4 72.79 45 144 13 1 0 \n",
"5 39.02 27 465 18 1 0 \n",
"6 71.67 66 269 14 1 1 \n",
"7 99.11 34 27 5 1 0 \n",
"8 2.93 49 688 37 1 0 \n",
"9 84.09 38 81 9 1 1 \n",
"10 45.51 18 17 6 1 0 \n",
"11 92.88 14 24 7 1 0 \n",
"12 45.59 19 51 18 1 0 \n",
"13 8.72 6 235 22 1 0 \n",
"14 62.11 23 10 4 1 0 \n",
"15 41.23 57 36 8 1 0 \n",
"16 84.84 14 25 14 1 0 \n",
"17 0.00 8 32 39 1 0 \n",
"18 18.71 135 1844 24 1 0 \n",
"19 29.43 51 855 26 1 0 \n",
"20 24.75 95 734 14 1 0 \n",
"21 82.54 75 46 15 1 0 \n",
"22 2.90 14 561 20 1 0 \n",
"23 72.37 47 78 12 1 1 \n",
"24 100.00 15 11 3 1 1 \n",
"25 22.69 281 4058 33 1 1 \n",
"26 15.94 137 2201 17 1 1 \n",
"27 11.95 83 4042 26 1 0 \n",
"28 40.10 421 3916 39 1 0 \n",
"29 8.96 79 2383 34 1 1 \n",
".. ... ... ... ... ... ... \n",
"52 13.92 341 5666 18 1 0 \n",
"53 47.57 379 2004 24 1 0 \n",
"54 7.65 127 3860 39 1 1 \n",
"55 24.02 51 2771 32 1 1 \n",
"56 51.48 97 1147 19 1 1 \n",
"57 41.17 247 1895 34 1 0 \n",
"58 56.41 159 1351 12 1 0 \n",
"59 10.26 61 2052 34 1 1 \n",
"60 81.15 76 428 10 1 1 \n",
"61 47.06 199 2256 26 1 1 \n",
"62 30.76 63 1224 28 1 0 \n",
"63 23.10 96 2004 36 1 0 \n",
"64 73.16 205 962 15 1 1 \n",
"65 50.13 117 174 21 1 0 \n",
"66 0.00 10 666 27 1 1 \n",
"67 78.59 21 223 14 1 1 \n",
"68 19.69 70 1591 21 1 0 \n",
"69 82.34 72 708 19 1 1 \n",
"70 55.32 28 30 11 1 0 \n",
"71 31.78 64 122 9 1 0 \n",
"72 3.59 8 316 21 1 1 \n",
"73 92.89 58 147 9 1 0 \n",
"74 99.44 30 30 2 1 0 \n",
"75 73.76 15 112 17 1 0 \n",
"76 0.00 11 225 37 1 0 \n",
"77 72.86 1 165 13 1 0 \n",
"78 75.00 5 162 11 1 0 \n",
"79 99.77 4 14 1 1 0 \n",
"80 63.49 42 44 10 1 0 \n",
"81 8.43 11 24 12 1 0 \n",
"\n",
"[82 rows x 11 columns]"
]
}
],
"prompt_number": 448
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"software['Advertiser'].value_counts()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 464,
"text": [
"iLivid 1\n",
"Norton 1\n",
"IBM 1\n",
"Google Software 1\n",
"Windows 1\n",
"Visual Studio 1\n",
"LifeLock 1\n",
"Microsoft 1\n",
"Adobe 1\n",
"Log Me In Rescue 1\n",
"Manage Engine 1\n",
"E-verify 1\n",
"Zendesk 1\n",
"Join.me 1\n",
"Cisco Webex 1\n",
"Rescue 1\n",
"Xfinity 1\n",
"Ca Technologies 1\n",
"Google Play 1\n",
"Google 1\n",
"Cisco 1\n",
"Apple 1\n",
"Redhat 1\n",
"Sage 1\n",
"Skype 1\n",
"Film Fanatic 1\n",
"Carbonite 1\n",
"Citrix 1\n",
"Emc2 1\n",
"Safecount.net 1\n",
"Microsoft Software 1\n",
"dtype: int64"
]
}
],
"prompt_number": 464
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"X_Variables = ['Percentage In-Play','Creatives','Publishers','Tags']\n",
"X = df_advertiser[X_Variables]\n",
"\n",
"X = X.values\n",
"y = df_advertiser['trend_clean'].values"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 36
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from sklearn.cross_validation import train_test_split\n",
"\n",
"X_train, X_test, Y_train, Y_test = train_test_split(X,y,test_size=0.25)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 37
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from sklearn.linear_model import LinearRegression\n",
"\n",
"reg = LinearRegression()\n",
"\n",
"reg.fit(X_train,Y_train)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 38,
"text": [
"LinearRegression(copy_X=True, fit_intercept=True, normalize=False)"
]
}
],
"prompt_number": 38
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"reg.score(X_test,Y_test)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 43,
"text": [
"-0.13369450300659103"
]
}
],
"prompt_number": 43
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment