Skip to content

Instantly share code, notes, and snippets.

@odubno
Last active August 29, 2015 14:10
Show Gist options
  • Save odubno/1ec89c03fc2dd571cf7b to your computer and use it in GitHub Desktop.
Save odubno/1ec89c03fc2dd571cf7b to your computer and use it in GitHub Desktop.
Oleh_Dubno_Final_Loans
{
"metadata": {
"name": "",
"signature": "sha256:36d208b7f88b9d0788a99e3facba837f717d8b54e80a10a86066657551b5ca06"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Loan Data (2007-2011) From Lending Club"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"####We will be going over two things:\n",
"\n",
"\u2022 Logistic regression, to determine which features of the data set contribute towards someone paying off their loan or defaulting on their loan in United States.\n",
"\n",
"\u2022 Using cartodb to map the features of the data set and see which states stand out among the rest in terms of paying back their loans off."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"####Here's the data set:\n",
"https://www.lendingclub.com/info/download-data.action"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Cleaning the Data"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import pandas as pd\n",
"import numpy as np\n",
"from datetime import datetime\n",
"from matplotlib import pyplot as plt\n",
"\n",
"%matplotlib inline"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1022
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"url = '/Users/olehdubno/Desktop/python_tests/LoanStats3b2.csv'\n",
"loan = pd.read_csv(url, low_memory = False)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1023
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Creating a separate set of features we will be cleaning and working with."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_2 = loan[['funded_amnt','emp_length','annual_inc','loan_status','home_ownership','addr_state','tax_liens','grade']]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1024
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_2.head()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>funded_amnt</th>\n",
" <th>emp_length</th>\n",
" <th>annual_inc</th>\n",
" <th>loan_status</th>\n",
" <th>home_ownership</th>\n",
" <th>addr_state</th>\n",
" <th>tax_liens</th>\n",
" <th>grade</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 24000</td>\n",
" <td> 10+ years</td>\n",
" <td> 100000</td>\n",
" <td> Current</td>\n",
" <td> MORTGAGE</td>\n",
" <td> MI</td>\n",
" <td> 0</td>\n",
" <td> B</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 11100</td>\n",
" <td> 10+ years</td>\n",
" <td> 90000</td>\n",
" <td> Current</td>\n",
" <td> MORTGAGE</td>\n",
" <td> NY</td>\n",
" <td> 0</td>\n",
" <td> C</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 12000</td>\n",
" <td> 3 years</td>\n",
" <td> 96500</td>\n",
" <td> Current</td>\n",
" <td> MORTGAGE</td>\n",
" <td> TX</td>\n",
" <td> 0</td>\n",
" <td> A</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 15000</td>\n",
" <td> 10+ years</td>\n",
" <td> 98000</td>\n",
" <td> Fully Paid</td>\n",
" <td> RENT</td>\n",
" <td> NY</td>\n",
" <td> 0</td>\n",
" <td> C</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 27600</td>\n",
" <td> 6 years</td>\n",
" <td> 73000</td>\n",
" <td> Current</td>\n",
" <td> MORTGAGE</td>\n",
" <td> CO</td>\n",
" <td> 0</td>\n",
" <td> D</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1025,
"text": [
" funded_amnt emp_length annual_inc loan_status home_ownership addr_state \\\n",
"0 24000 10+ years 100000 Current MORTGAGE MI \n",
"1 11100 10+ years 90000 Current MORTGAGE NY \n",
"2 12000 3 years 96500 Current MORTGAGE TX \n",
"3 15000 10+ years 98000 Fully Paid RENT NY \n",
"4 27600 6 years 73000 Current MORTGAGE CO \n",
"\n",
" tax_liens grade \n",
"0 0 B \n",
"1 0 C \n",
"2 0 A \n",
"3 0 C \n",
"4 0 D "
]
}
],
"prompt_number": 1025
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cleaning:\n",
"\n",
"\u2022Convert \"loan_status\" to booleans\n",
"\n",
"\u2022Clean up \"emp_length\"\n",
"\n",
"\u2022Convert \"grade\" to integer values\n",
"\n",
"\u2022Drop N/A values from fields\n",
"\n",
"\u2022Account for outliers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Dropping N/A values (It's only 4 rows and not very significant)"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_2.dropna().info()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 188123 entries, 0 to 188122\n",
"Data columns (total 8 columns):\n",
"funded_amnt 188123 non-null float64\n",
"emp_length 188123 non-null object\n",
"annual_inc 188123 non-null float64\n",
"loan_status 188123 non-null object\n",
"home_ownership 188123 non-null object\n",
"addr_state 188123 non-null object\n",
"tax_liens 188123 non-null float64\n",
"grade 188123 non-null object\n",
"dtypes: float64(3), object(5)"
]
}
],
"prompt_number": 1026
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Data Overview"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Lets plot Annual Income against Funded Amount."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plt.figure(figsize=(10,5))\n",
"plt.scatter(loan_2['annual_inc'], loan_2['funded_amnt'])\n",
"plt.title(\"Plotting Annual Income against Funded Amount\")\n",
"plt.ylabel('Funded Amount')\n",
"plt.xlabel('Annual Income')\n",
"plt.show()\n",
"\n",
"loan_2.annual_inc.hist(figsize=(10,5))\n",
"plt.ylabel('Number of Loans')\n",
"plt.xlabel('Annual Income')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAFRCAYAAAACbtdwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt4ldWV+PHvCsmBYLiFKIgoIlCtigo4tY52SC8hdmbE\nKq3aWqXW8VLbRiUoWuhIFUu1glVbZaRW8K5Tx/7QsUR6wQ5OlUHR0lrrFawiIIIKEkhC1u+PtV/O\ne05OyAmck+v6PM958p793va5QFb23mtvUVWcc84551z3VtDeFXDOOeecc+3Pg0LnnHPOOedBoXPO\nOeec86DQOeecc87hQaFzzjnnnMODQuecc845hweFzmVFRJaKyHk5vN7tIjIjV9frDERkpojc0971\n6GxE5AkRObu965ELInKwiDSKSKt/9+zNuc657Pg/LucCEVktIttEZIuIrBORu0Rkn7Bbw6OlazT5\nxSUi3xCR/4kfp6rfUtVZuX0FKfUoEZGtIvJEvu6xB5p9/0SkXET+3paV6SxU9Z9Vda+C6UzfwQzH\nLBWR2vD9jx7H7c1920N4HZtEJNHedckkm8/CufbiQaFzSQr8q6r2AcYCxwJ72ponOavVnpkEvAWU\ni8igdq5LpL3fE7d7CnxbVfvEHs+2d6VaQ0QOBj4FbAAmtmtlnOuEPCh0LgNVXQssBo5I3ydmRmhZ\nXC8iC0Wkb9j9h/DzAxH5SEQ+DcwDjg8tL5vCNRaIyLVhu1xE3haRKeF6a0XkG7H7DRSRx0TkQxFZ\nLiKzsmhpmAz8HHga+Hpa/VeLSLWIvCgiH4jIgyLSM8u6pHSjp7d6iMjNIvJWqOsKETmxhXpmFO5z\njYgsC+9jjYgMjO0/UUT+V0Q2h/tNDuX9RORuEdkQXud0EZFYXZ8WkbnhvNdE5B9F5NxwjfUick7s\nHj1F5EYRWRNajm8XkV7N1HeEiPxORDaKyHsicq+I9IvtHysiK8NreVhEHop9/gNE5PFQ503hsz4g\n03seXsMyEflxOPYNETkp7fN4PdznDRH5mogcRobvYCs/i9195o0icqGIvBLe15/G9hWE9/A9EXkd\n+Je0a/cTkTvD9+xtEblWQit7S+c24xzgN8A92L+B+L0WiMhtYt3xW0Tkf0RkcPjObhaRv4rIMbHj\nPxle+2YR+bOInLy374mIfBK4nT38LJzLNw8KnUsVBRAHAl8EVmY45lzsF045cAhQAkS/CD8TfvZT\n1b6q+gxwIfDH0PJSGvand0cPAvoCQ4DzgJ/FgoqfAVvCMZOxX3y764odBvwT8HB4nJN2iAJfASqB\n4cBRwDeyrEtL3ejLgaOBAcD9wH/KnnfjfTXUaz8gAUyFXa/vCeBmoAw4BnghnHMr0Ce8rvHYaz83\nds1PAS8CpcAD2PszFhiBBc8/FZHe4dgfASPD6xkJHAD8+27qex2wP/BJ4EBgZqhvAngU+AX2vjwA\nfInk+yjAncBB4VFL8vsETd/zTwEvAwOBG8K5iA11uBk4SVX7AscDL6jqy2T+DmaSqTU3m6ET/4K1\nrB8FnC4ilaH8grDvmLD/y2nXWgDUYe//GGAC8G9ZnpvJOcBD2OdaKSL7pe3/CjAd+97UAc8A/4d9\nH34JzAUQkSLgMewPw32B7wL3iciocJ09ek9U9a/ARWT3WTjX5jwodC5JgF+JyGbgf4ClwA8zHHcW\nMEdVV6vqx8BVwJmhhSPTL9Xmuk3j5fXANaq6U1V/DWwFDhWRHsBpwNWquj38Ulm4m2sCnA0sV9W3\ngf8CDo+3gAS3qOo6Vd2M/fKL789Yl93cbxdVvU9VN6tqo6rOBXpme276pYC7VPU1Vd2O/ZKP6vg1\nYImqPhTquElVXwzv1RnAVar6saquAeaE9yPypqouVFv0/WEs8L1GVetVdQkWKIwMrYvnA1NU9QNV\n3QrMBs5s5nW/rqq/DdfZCNyEBaUAnwZ6qOqtob6PYsFzdO4mVX00fL5bse/c+CY3SVqjqneG13A3\nsH8s+GkERotIsaquV9WXQnk2XfcC3BJatjaLyIoszon8SFU/UtW/A7/HAmmA04GbVPWd8F37Ick/\nvAZhf3hdpqq1qvoe8BOS73Gz52asvLVKHwAsUtVXgZew70pEgf9S1ZWqugML1D9W1Xtj34cx4dhP\nA/uo6o9UtUFVfw88nna91r4n0ffXh1G4DsuDQueSFDhFVQeo6sGq+p3wyyPd/sCa2PO3gEKshW1P\nva+qjbHn27AWyH3DteNJGG+3cK1zgP8EUNX3seB2ctox62LbteFeLdWlRSIyVUReEuuW3gz0w1pl\n9kRzdTwQeCPD8WVAEU0/mwNiz9enXZMQjKTfZ1+gN/BcFCQBv6aZ1yIig8S64d8WkQ+x7suou3sI\n8E7aKX8nGRz1FpH/EOvu/hB4CugXAtNMdr0vqrotbJaEP1DOwFqi1oYu6dYE5Ap8N3z/B6jqsa04\nN/5Zxb8v+5P63X0rtj0M+7zejb3H87D3vqVzM5kMPKmqW8Lz/6Tp935DbHt72vP4d2xI2r3BvldD\nWqhDXPp7sk9zBzrXUXhQ6FzrrQUOjj0/CGjAAo5MXUrNdTO1mM0MvBeufWCs7MBmjkVE/hHr6pwh\nIu+KyLtYN+LXJDdTeXxM6i+3wbF7fwa4HPiKqvZX1QHAh+S+ZeQtrLsx3UaslfPgWNlBtBxEZ7IR\nCxIOjwVJ/UO3bCY/BHYCR6pqP6x1Mnq/3yU1MI3qFX3+1cAngE+Fc8dj71mr3zdVfVJVJ2Cfy8vA\n/GhXa68V0+xnnoV3sdcaiW//HdgBDIy9x/1UdXQW56YQkWKsZfFzse99NXC0iBzVivpG1gIHpgXm\nw0gG93vznuzNZ+FcXnlQ6FzrPQBcJjb9TAkWEDwYWtfew7rw4kHLOmBoGKcUyeqXvqruxLqAZ4pI\ncUgaOJvmf7FMBp7ExrUdHR5HAsXAP2f/Epv1AnBaqMtIbMxhVJc+WAC7UUQSIvLv2NjEPdXc+3M/\n8AUR+YqIFIol4hwd3quHgevEpuQZBlwG3NvaG4fPcj7wExHZF0BEDhCRCc2cUoIFCh+JJYlcHtv3\nR2CniHwn1PcU4B/Szq0FPhSRUuDq1tY31G8/ETkljC2sD/XZGXavp+l3MONlMpRl+sxbukZ0nYeB\nqvDeDQCujA5S1Xex7+pcEekTEktGiMg/tXRuBl/Cvnvx7/0nsWEg0Zja1gTZz2Kte1eISJGIlAP/\nCjwY9u/Ne5LtZ+Fcm/Og0LnW+wXWPfgHrBtzGzYQPerOuw54OnSJfQr4HfAXYJ2IRN1V6QPVd9d6\n8B2sG3YdNp7wAWzsWwqxzNivALeq6obYY3Wob3rCSfze2dblpnDv9cBdpAZci8PjFWA1FujEu/xa\nGpyfvi+9Tgqgqm9hAW418D6WDBS1Bn0XC4bewAKC+0I9m7v/7uozDXgNeCZ06y7BWvQy+QGWsPIh\nNkbzkVh967BxoecBm7ExqY+T/Ax/ggXtG4H/xbqpd9e63NxrKMCC4Hew9+UzwLfCvt/S9DvY3PXT\nZfrMd/d9iddxPlCDJfesIPa+BOdgSUQvAZuwLt/BWZ4bdw7wC1V9O/a9X48l7HwtjDfN9D3P+F6G\nz+xkbMzje+E6Z6vqKzl4T7L9LJxrc2Lja9vgRvaPcgXwtqqeHP4ifghrkl8NnK6qH4RjrwK+if2V\nW6WqT4bycVi2Wi/gCVW9JJT3xAZcj8X+MzwjDDJ3rssRkeuB/VT13BYPdh2SiDwL3KaqC9u7Ls45\nF2nLlsJLsL8Goyj0SiyD8BPYX05XAojI4dhg6cOBk4DbYuM6bgfOU9VRwChJzs91HjY4fhT2F9z1\nbfB6nGsTInKoiBwl5lPYH0yPtne9XPZE5J/E5sQrFJtT8UisVdU55zqMNgkKRWQo1t3zc5LjKiZi\nXWGEn18K26cAD4SpHVZj3TfHicj+QB9VjaZyuDt2TvxajwCfz9NLca499MG+11uxMU03quqi9q2S\na6VDsXFom7Eu3i+H7k3nnOswCtvoPjdhA6/jg84Hxf5TXE9yOo8h2ISikbexzL16UrMI3yGZ0XcA\nYfoAVW0QW02hVFV9tnjX6anqCmBUiwe6DktV55PMBHbOuQ4p7y2FIvKvwAZVXUkz2V9h4lBP03fO\nOeecaydt0VL4j8BEEflnLEGkr4jcA6wXkcGqui50DUdZWO+QOg/bUKyF8J2wnV4enXMQNmFrIbbE\nWEoroYh40Omcc865TkNV23QFnLy3FKrq91T1QFUdji1f9DtVPRtYRHK2+cnAr8L2ImzJsISIDMe6\nzZar6jpsDrDjQuLJ2cD/i50TXevLWOJKprp0u8fVV1/d7nXw1+2v21+3v25/3f66/XW37tEe2mpM\nYVz0Sn8EPCwi5xGmpAFQ1ZdE5GEsU7kBuFiT787F2JQ0xdiUNFH23p3APSLyKjYlTcb1SZ1zzjnn\nXGZtGhSq6lPYup6ode9+oZnjfoitEpFe/hwwOkP5DkJQ6ZxzzjnnWs9XNOniysvL27sK7cJfd/fi\nr7t78dfdvXTX190e2mxFk/YmItpdXqtzzjnnOjcRQbtaoolzzjnnnOv4PCh0zjnnnHMeFDrnnHPO\nOQ8KnXPOOeccHhQ655xzzjk8KHTOOeecc3hQ6Jxzzjnn8KDQOeecc87hQaFzzjnnnMODQuecc845\nhweFzjnnnHMODwqdc8455xweFDrnnHPOOTwodM4555xzeFDonHPOOefwoNA555xzzuFBoXPOOeec\nw4NC55xzzjmHB4XOOeeccw4PCp1zzjnnHG0QFIpILxF5VkReEJGXRGR2KJ8pIm+LyMrw+GLsnKtE\n5FUReVlEJsTKx4nIqrDv5lh5TxF5KJQ/IyLD8v26nHPOOee6krwHhaq6Hfisqh4DHAV8VkROBBSY\nq6pjwuPXACJyOHAGcDhwEnCbiEi43O3Aeao6ChglIieF8vOA90P5TcD1+X5dzjnnnHNdSWFb3ERV\nt4XNBNAD2ByeS4bDTwEeUNV6YLWIvAYcJyJrgD6qujwcdzfwJWAxMBG4OpQ/Avw096+ic0skEtTX\nNwJ9Q8lWoBEoBoqABixOjxSFY3oCHwP9sI9rRzh2H2Ab0Av722JHuF4B9hEXArXhZwLYDtQDJQAU\nFtYyevQnWbnyLQD23z/Bhg117NwJiUQDdXWNQIIxYw6irGw4AEOG9OGxx5YBcPLJJ7J27RY2blwP\nFFJWNpDq6gsAmDPnDgCqqy+gsrKyxfempqZm1znjx4/lqaeeb7Kd7bXay3XXXcfcuXcBMGXKuUyf\nPr2da+Rc7sX/rXb0f5POdUqqmvcHFim8AGwBbghlVwOrgReBO4H+ofxW4KzYuT8HJgHjgCWx8s8A\nj4XtVcCQ2L7XgNK0Omh3VVRUpNBDoa/CgvDoq1CkUBYrK1OoVugffvZV6KnQW2FS7JjeCiekXS8q\nL0m7R3XYLslw/55huzrDtfqGe/Zt5pi+oQ7J+icS+2oi0X/X8+LiQbp48eLdvjeLFy/W4uJBzdQ5\nuZ3NtdrLrFmzmrw3s2bNau9qOZdT6f9WO/K/SedyIcQtbRKnRY+2vZk1Nz0DlAP7YU1PAswC7lQP\nCvMCSsNjgYKGRxR8pZedlvazTOHTCiNix3xaYb8M5346PNKvp6E8/fihYfu0Zq41Ilae6Zjm6pB8\nXlFx2m7fm4qKTNc9LeN2S9dqL6WlI5q8htLSEe1dLedyKtO/1Y76b9K5XGiPoLBNuo8jqvqhiPw3\ncKyqLo3KReTnwGPh6TvAgbHThgJvh/KhGcqjcw4C1opIIdBPVTel33/mzJm7tsvLyykvL9+7F+Sc\nc845lwNLly5l6dKl7VuJfEedQBnJruFi4A/A54HBsWMuA+4P24djXc0JYDjwOiBh37PAcVjr4hPA\nSaH8YuD2sH0m8GCGeuxlzN559ejRQ737ODPvPnauc/DuY9fd0A4thVGwlTciMhpYiI0rLADuUdUf\ni8jdwDFYdsObwIWquj6c8z3gm1hGwyWqWhPKxwELsODyCVWtCuU9gXuAMcD7wJmqujqtHprv19pR\nTZgwiSVLfo0lj0SNw1vwRBPjiSbOdQ6eaOK6ExFBVTMl5Obvnt0lUPKgcClwLhZ/gzXCPgR8CrgA\nWAdciiV/l2XYdy3wM2AdIlNQnQtAInE5ixbd4/85O+eccznkQWEedeegcOTIkbz++uvYdDS3hNIq\noAI4GZgGfB3L6dmOtQ5Gx00F6oDzsQbfWuAi4MawfyFjxtzF888vzf8Lcc4557qJ9ggK2zTRxLWP\n11/fDAzC5vSeHNuzKPb8MqzLuAgL+OLH3RXKRlNQMIXGxtEp11+z5m2cc84517l5UNgt1JE6XjCT\nBBY0XoLN8BM3cNdWY2Mj1noYmcqwYYfmoI7OOeeca08eFHYDffr0ZcuWrwLVsdIqkl3CVcAVpLYa\njm5yXEHBZTQ2fh74LTAPAJHtzJ79/by/Buecc87ll48p7AZGjhzD66+PAH6NLT8N8Cfsb4Ie2CxA\ny0L5QiypZAeWaDIWeJzS0vcYNmwwK1eeDwwG7gDWMmZMD55/fhnOOeecy532GFNY0JY3c+1j/fr1\nwO+A24CZwBAsOGwEDsWmhVwYHlOA9cAmbEnpocBLnHzyicye/X2Ki6dh2cgTKS5+M2ethDU1NUyY\nMIkJEyZRU1OTk2t2xjo455xz7cVbCruBPn2GsHXrduBzwFJgFHACMB/rGp6PjTs8DJtX/D7go3D2\nIUAlMJ9Zs67g2GOPbTJP2N7OHVZTU8Opp06mtvZ6AIqLp/HoowvbdJqbjlAH55xzLuJT0uRR9w4K\ny9i69QNswuloqploGpoV2PyFU7CG4/j0M9uBX2JB4UJKS6/l/fdfS7l2LoIpm0dxIskxjQupqFjE\nk08+sicvd490hDo455xzEZ+SxuXF1q0A/4DNLxifamYe8F7Y1rBvBdH0MzADGzvYfIA3Z84dISC0\n69bWWpm3sDnnnHOdiweF3UBBATQ2ZtrzN6z1cBq2quDTwBvASGwFwlpgOXAw8BGbNil9+pSRSPRn\n2LDBTJr0RZ555v/CMfOBPRtfWF19AcuWTaa21p4XF0+junrhHl1rT3WEOjjnnHPtybuPuwGRaNnp\nePfxpdj4wd9i8w4ODWXnYa2EVaFsNdCb5Aom0UooS8Lz1JVPEokCFi16cI/GFbb3mqYdoQ7OOecc\nePexy5v+gGBjB/8dyz6eCjyPJZf8CKjHVjO5HWsZPBz4M1AKzCK12/nfsSXz0svnMXDgOr72tW8D\nMGXKuUyfPn3X3o4edFVWVna4OjnnnHNtxYPCbiPqP/4Yyzy+FVvBBKz1D2zs4BLgdeBfgb8CJRmu\ntQVrdUz3Hu++u4mo9XDGDLvu9OnTmySkLFs2eVdCyu72Oeecc65tePdxNyDSC2sp7IV1Dy8A5hDP\ntLWkkp7YuMD49l3AX0jtPm4AvhXOi8qnYtnKP025bpSxvLvsXs/8dc4551J597HLk6LwKMXGCx7Z\ninMHYsHaFKy1sR7rYp6MjS2cCbyKdUO/nrMaO+ecc65teVDYDRQWJmho+CzwOBbc7Rd+Ri7Gvgr7\nhu2dWPfxVCz4W4i1Dg7BVjOJVIbnN2JzG15IsisaoIopU64Adp/d65m/zjnnXPvz7uNuoHfvA6it\n/SrwHyRbCVdiXcQ7sfWPoyziKqyrGWwi635YospbWAZzQzjv5tjxjZSWDuT++/+DFStWMHfuXUDr\nEk06ehKKc84515Z8RZM86s5BYVFRfxoaGoBiUscAFgHDSJ3UeiE2jvBcbIqawUB/Cgv/yuOPP5ST\nZe2cc845t3seFOZRdw4KRfpgAeBNpAZ/U4ABWEJJvLwaCyDrsdbBu4B17Z784cGoc8657sITTVye\n7MCCu3RFwJdIHwdo5oSflwBnAPvz3HP11NTUtNvE0j5tjXPOOZc/HhR2cTU1NSTHAk6N7akCTiXZ\nnXwZkMCSSa6k6RrJsGnTRZx6avsEY77GsnPOOZdfmZqPXBdi3a37ArcB9wKLsCBvCDYJNdg0Nftg\nax0393fCEMBa6qIuXOecc851HXkPCkWkl4g8KyIviMhLIjI7lJeKyBIReUVEnhSR/rFzrhKRV0Xk\nZRGZECsfJyKrwr6bY+U9ReShUP6MiAzL9+vqnCqBR7DEkv7AWmwM4VQs4eQWbK3jqaE8Gnf4EnDB\nXt+9pqaGCRMmMWHCpNCCmb3q6gsoLp62q142bc3e18k555xzpk0STUSkt6puE5FCYBkWdUwENqrq\nDSIyDRigqleKyOHA/cA/AAcAvwFGqaqKyHLgO6q6XESeAG5R1cUicjFwpKpeLCJnAKeq6plpdeiW\niSY1NTWcdNIp2DQy0bQz0eojRcChwMvAg9icg9/FJrneAjRQWGhjXBsaLAYvLp7Go4/aHIKtSfpI\nHxMYXac13b+eaOKcc6676PLZxyLSG3gK+AbWZDVeVdeLyGBgqaoeJiJXAY2qen04ZzG2bMYa4Heq\n+slQfiZQrqoXhWOuVtVnQ+D5rqrum3bvbhkUQpR9vBULDIuwLmLFxhn2wOYjjLKNa4G+4cyoO1nC\ncQ2xqxYBm7Fu56JQ1kAikSCRELZubQQaKC0tZdy4cWzcuJ6VKwcDL4T7FZBIbGbnzp6ICGed9UUW\nLFjQpO7pgSDsPhjdk8DRg03nXGfk/3d1be0RFKKqeX9g3dQvYM1PN4SyzbH9Ej0HbgXOiu37OTAJ\nGAcsiZV/BngsbK8ChsT2vQaUptVBuytAoadCb4VShQXhUaZQHcqqFUoU+sb291XoleH4/uFn77Tj\ny8Lz3gqTwnPbJ9IvlEfHNr3X5MmTU+q9ePFiLS4etOuYRKK/JhL77npeXDxIFy9e3Ozx6fsz2ZNz\nnHOuvfn/XV1fiFvaJE6LHm2SfayqjcAxItIPqBGRz6btVxHpns14bWIA1qI3lNSJqsEST+aGn0dm\n2D8jw/E/CT+PynD8vPDzBSyz2fZZXD4vduy8Jufed98VxBsL0zOO6+pSz0nPQN6TDGXPanbOdUb+\nf5fLhzadkkZVPxSR/8Za/daLyGBVXSci+wMbwmHvAAfGThsKvB3Kh2Yoj845CFgbuo/7qeqm9PvP\nnDlz13Z5eTnl5eW5eFnOOeecc3tl6dKlLF26tH0rke+mSKAM6B+2i4E/AJ8HbgCmhfIrgR+F7cOx\nZqYEMBx4neTYx2eB47Du5ieAk0L5xcDtYftM4MEM9dirZtzOjA7QfVxYONC7j51zLkf8/66uj3bo\nPs57oomIjMbmESkIj3tU9cciUgo8jLXwrQZOV9UPwjnfA76JZTZcoqo1oXwcsAALLp9Q1apQ3hO4\nBxgDvA+cqaqr0+qh+X6tHZW91ZvJLtEEoARbBWVbOL65RJMPwnmJUNZ8okl19QWsWLGCuXPvor6+\njv3268+2bVvYsOFjTzRxzrk94P93dW1dPvu4PXXvoFCA3kAv4FzgzbBneNieiK1okr428gxgFlBF\nItGLhoadNDaWYwnkthLKnkwt45xzzrnda4+g0Fc06RZKsJa93sBd2KTVw7HAb/1uzttOtDReXd0N\nNDbOwaaNnLzrEa1wUlNTw9ix5QwcOJKxY09s9eTUzjnnnGtf3lLYDYgMwALDLUC0EMw04OvAr4D3\nsKXuVpGc4LoKqAB+j2Unx1sQ5wF/3PV8zJj5/OUvr1BX9+NQNgWReo45ZiyzZ1/lrYjOOedcK7VH\nS2GbZh+79lKPjQ+8mabTx3wI7ATOBy4ELsfGHu4AlmBDPlMVFLxKY6OtamJLzx0WAsLktVXnsXLl\nuZx66mTvXnbOOec6Ae8+7haKgE9kKH8FW7VEsW7iHsAlwN+B/8Dydm4kvhZycfE0rrnmMioqFlFR\nsYhHH11IWdnADNceQrx72TnnnHMdm7cUdguNwAlYl3GkCmsNbMDWP56LrX18LTA9HDMQqMRaAGdQ\nWtqT+++3Vr/p00nx1FNnU1cXPZsK3JuXV+Kcc865/PAxhV1cTU0NJ510CtYKeBC2BvJHWDCYCD+j\n7R7Y1DUDsC7lBpJdyTuxRJUGbAqbaLse6I3Ix6jug7U6bgXmhxpUUVyc4LDDjuCoow7msceWAXDy\nySeydu0WYPdTKcSnXBg/fixPPfX8bs/xKRqcc851BT4lTR5116Bw7NgTWbnyRWykQDyJ5HwsuWQq\nNt7wW+F5FbZYzBVh32SSAV6m86vInKTSN1znT+HahOukJ7Kc3Oy0NjU1NZx66uSwlNOqlPMznZN6\nvE+X45xzrvPyRBOXc2vWrAMOJhngRRYRzTVoCSdvxp5Xx45dhC0yk2nN5Oj4K7BgLb7/WixDeWE4\nlmaO+WWza3amru05KeX8TOf4WqDOOefcnvNEky5u2LCh2MojzjnnnHPN85bCLm7SpApWrvw/okmo\nTdT9u5Bk9/EJ4XnUfRztm4xNWF3VzPlR93H6/orY/vNj5U2PKS6eRnX1wiZ1r66+gGXLJlNbCzbZ\ndvL8TOekHp/5GOecc85l5mMKu7gJEyaxZMmTWKPw4aH0BSzpZBvWiri7RJNe2Momu080KSjYjmov\nVIVevXZQV9eTxkalsHA7xcUDGTnyEE80cc4557LkiSZ51L2Dwt8D38RWL9kXmIlNNROtb1wLCLAP\nFgBeH86+FHgwbE/Flsfbj5KSDzn++ONbHXR5wOacc85lx4PCPOquQaFNSXMyUEyyyzdKEIlnEV+C\ntfp9K7Z/IZbx+woQLWE3FQscL6S4+N6ss3s9M9g555zLngeFedRdg0IAkVKS3b+1WIBYBqzG1kOG\n5JrGEF/X2FoSZ9F07eMhwEQqKhbx5JOPtFgHa7GcmHKdbM91zjnnuhufksblST02ATWkzhPYmHbc\nVuBdLPADaz30r4hzzjnXHfhv/G5hKzaZ9Pkk5ww8H+sajgLAKVi38MFYS+ArWDD5BVKzhqdiiSYn\npGT3NjdeMCrfuHE9icTlu5bCa01msI9FdM455/LPu4+7uIqKCn7zm//FEkmKSY4XvBTLPu4LHAFc\nha19fAnW1VyPTQPTH1iJJaEkgK2MGHEQhxxy2K4ArbnxgkBKeSJxKUcccTRlZQOzDu58LKJzzrnu\nyLuPXc4Ogg7DAAAgAElEQVT95jcrgaOw1sL0VU0uxVr9lobnC4E+2DyFrwE/IZmlfG0oW8ghh6SO\nBWxuJRHbTpbX1UFZWevGEfoqJc4551zb8BVNuo11WLfwJOC6sF2CzTW4kORE01uBt7Ag7I7Y+VvC\nuavarsp7oKamhgkTJjFhwiRqamrauzrOOedcp+EthV3c/vsnePfd5VgAeBEW1N1AasLJeWF/LTbO\nEOAyYBDJYLECOBmoYvz4K1LusbuVRLJdYaS5cYOtWaUkvat52bLJ3tXsnHPOZcnHFHZxRUWDaGho\nAOZirX+TgNSpYSzJ5BNY9/B7sfJLgZ5AEfD3XeWZppJpKdEkvTz93N2NG8w20cSnvXHOOddV+JhC\nlyc7sO7iRcD6DPsVeBOboqYGG0cINrpgOBYslgMDw/OmKisrMwZrUXkU2M2Zc0eTwK6lcYPNXds5\n55xzuZP3MYUicqCI/F5E/iIifxaRqlA+U0TeFpGV4fHF2DlXicirIvKyiEyIlY8TkVVh382x8p4i\n8lAof0ZEhuX7dXUWDQ0bsDWNL8JaCP8KXEzqOMJtWGvgXODrWEJKFfAxcEC40rnh/PmMHz+2VXWI\nWgKXLJnIkiUTOfXUyXkZ71ddfQHFxdOIXpt1NV+Q8/s455xzXZKq5vUBDAaOCdslwN+ATwJXA1My\nHH848AIWpRyMNVNF3dzLgU+F7SeAk8L2xcBtYfsM4MEM19XuCEoVFihoeCxQ6KcwROFIhdGhbERs\n/+BwTFSeev6YMeNbVYeKitOaXKOi4rRd+xcvXqzFxYPCMQu0uHiQLl68eI9e7+LFi7Wi4jStqDht\nj6/hnHPOtbcQt+Q9Tos/2nxMoYj8CvgpcAKwVVXnpO2/CmhU1evD88XATGAN8DtV/WQoPxMoV9WL\nwjFXq+qzIlIIvKuq+6ZdV9v6tXYEIgNJjieswd7Kv2FZxr2xxuKt2NjBAqwLuRBLOikkOb/h4TSd\ny3AHIiUUFBSSSOyktrYeSDBmzEGUlVk385Ahfbjvvl/T0HAD9vfBHcBaxozpwfPPL9tVz/i4wfHj\nx/LUU88D2U1W7ZNbO+ec62q6/JhCETkYGAM8gwWF3xWRc4AVQLWqfoAtqvtM7LS3sT7M+rAdeYdk\n3+YBhEwIVW0QkQ9FpFRVN+Xv1XQWm7Cu4FVYt2o0eXUV8G/A6LC9A/gOcBfWVTw/lPUCfhzO+Rq2\n6slOYF/gI1RvYudOqK2digWQ32DlyvnAIeGcR7HVU6qwya/t/n/5y+XU1NQ0GTfY2gxizzh2zjnn\ncqPNgkIRKQF+CVyiqltF5HbgmrD7WmAONjeKy6lSrAXwISwgi09evYhkkDgVSzaZG8pvAWYAs9LO\nmYb17NeFY+L75oVr3IJ9pMSOWYEFm8mJrDNNQt3ayap9cmvnnHMuN9okKBSRIuAR4F5V/RWAqm6I\n7f858Fh4+g5wYOz0oVgL4TthO708OucgYG3oPu6XqZVw5syZu7bLy8spLy/fm5fVSexNl3nPDGVF\n4WevVl5r4F7UwznnnOvali5dytKlS9u1DnkPCkVEgDuBl1T1J7Hy/VX13fD0VJJLZSwC7heRuVi3\n8ChguaqqiHwkIsdhCSdnk5yBeRHWVPQM8GXgt5nqEg8Ku4/N2PrGk7HWwEgV1q0bZSDvwKabmYK1\n6E3F5imclnbODqyb+F/C88hUrPXwBJKTXRM7ZnjK8c1NQt2ayar35HjnnHOuI0pvrPrBD37Q5nXI\ne6KJiJwI/AH4E8lmq+8BXwWOITlJ3oWquj6c8z3gm9gabJeoak0oHwcswDIfnlDVaHqbnsA92HjF\n94EzVXV1Wj26aaLJAGwN45YSTRLY1DWNoawBuA2L1e8M5XXYxzUcSzwZCzwIvAv0w5JTelBS8jHH\nH/9ZwBJNHnvMEkpOPvlE1q7dAuw+IaS1iSOeaOKcc66r6ZKJJqq6jMzzIf56N+f8EPhhhvLnsMyI\n9PIdwOl7Uc0uLNP3Kcoojj6WemAElllcgTW01mNL3QnW0rgFCxx3YDE8wP9iiSf1WO/968BCBg2a\nw3PPvQjAkCEnMm7c0QCMGjWKtWufb7HGK1as2HX+ihUrUoK8KAB84403WL9+PYlEb6ZMObdDrFri\nwalzzrlOra3nwGmvB912nsIihb4K1Qplu+YCTJZF2yj0CtuTws/4sb3Ddu/wiF+rNJQdFH6mnzsp\n3CtZ3txchLNmzWpy/qxZs1S16XyGVofqlGPaSy7nWnTOOefoDvMUtpfu231cCgwCNpKafbwQG4r5\nCMn1j3tj2cbXAt+n6frI7wPHh7KL0vbPA17BElGuT9t3LXA06WsuZ1qXeODAkWzalHrv0tJref/9\n1zKubWyvYeKuY9qLr7vsnHMul9qj+zjvy9y5jqA/rc8W3lNFLR/inHPOuQ6nTSevdu1hM5bj00hq\ntnB69vFH2FrHlwBfyHBs/3Dsn0JZPJN5Cja2sIzCwvdpaEg/twJbsbDl7OMpU85lxozU86dMuQJo\nmmlsdZicckx78Sxo55xznV2L3cci8ltV/XxLZR1d9+0+jloIe2ATWddiAeIOkvMQbgbKsKBQsVbF\nWqw7GeBDLDGlB5aBvDOcG/1N0UBJSQ+OP/7zVFdfwIoVK5g79y4gNeM42+Xrrrvuul3nT5lyLtOn\nT9+1r7lEk/gx7cUTTZxzzuVKe3QfNxsUikgxFhX8HiiP7eoLLFbVw/JeuxzqvkFhKTbd41Tiaw/D\nB8B6bGqZNVhL31Ys+LspnD0F+GQ47w9YILgRGz9orWG+pJxzzjmXex1tSpoLsb7EIcBzsfItwE/z\nWSmXS9uxIHAVNhH19aG8CpvdZxXWvXsyNln1N0lduu7ycMwtsfOqgEJOP/1kDwidc865LqLZoFBt\n9ZGfiEiVqt7S3HGuoyvCWvruJDmJdeQukusU/zKUzUs7fydN1zi2NZHvuecyvvrVGg8MnXPOuS6g\nxUQTVb1FRP4RyxQojJXfncd6uZxpxJaIPiitfBXwEhYEbouVv4IllEBy6bp0PYHJNDbCnDl3eFDo\nnHPOdQEtBoUici9wCPAC1mwU8aCwU+gB3Iy1FkatfauA+SS7hC/DAsA7sQSTG4ESLFgspGkmcvtm\n+jrnnHMu97KZkmYccHi3zNLoEgQLAhcBI4Grseln0ruEL8MCwhHYGMRovsEdYXsKBQVCY+MOYCiw\nkETicqqr72mTV+Gcc865/Mpm8uo/A/vnuyIuX2qB27Gu4lew7OGeGY4TYBS2/vFnsXWObwP2BRKU\nlg7gmmsuI5EoBn4EzKC+voEVK1Y0uVJNTQ0TJkxiwoRJ1NTU5ONFOeeccy7HspmncClwDLAcazYC\nW49vYn6rllvdd0qafbAG4QTWMrgw9vPGcFQVNnYwSjK5FGjAEtDvDWXXU1BQTWPjN0KZZTEXFFzG\nE088sGtcYU1NDaeeOpnaWtvv09Y455xzrdeh5incdYBIeaZyVV2ah/rkTfcNCkuBQ7G1iudjw0KH\nAGOBx4E3gLOBp4E/hrMWYtPXRJNZH4KtZJJ53eP4Gr++BrBzzjm39zraPIVA5wv+XLooEI6yjaOJ\nqacBX8e6kkdjQWHccOCv2PzlfYFJ2OTWf8/yvjVEE2Vv3NhjTyvvnHPOuTaSTUvhVpKRRQLLOtiq\nqn3zXLec6r4thb2wDOSeWECYbMGz5JJvYi2IjSTnJI8yjIeGbcEymFdh4xN7E3U9JxKXs2jRPSnd\nxxMnnkldXWGzxzjnnHNu9zpqS2FJtC0iBcBE4NP5rJTLpXosKMzUWtcTayFswOYx/D7wD8D5wPPY\nmshRQHkDNqT0NuLL5R1xxCdSgr3KykqOOOJoVq48lygAravr2PMZ+prFzjnnXHZT0uyiqo3Ar0Rk\nJnBlXmrkcqwf9jGfgy1ZF7kE+DeslRDs44y2n8YmvP4NqcvbDQjbleGxkLKyRU3uWFY2MHfVz7P0\nxJhlyyZ7YoxzzrluKZvu40mxpwXYvIXjVfX4Zk7pkLpv93Epoccfaw3cii1fvQ3YB2tJhGRr4uFY\nMsrLwBHAoLB/OBY0CtAHm9z6rXB+HwoLhZkzL+PYY4/l29++nNdffwvrck52HwO7WuTGjx/LU089\nDzRtnctVy1021/HEGOeccx1Rh+w+Bk4mOaawAVgNnJKvCrlc+xAL9vpgAeFxwJKwrw74Fk2npzkf\nyzCuwkYKjMZWPImPO5yKBY/FwFwaGmDGjCoKCpTGxlux8YdTgEYaG+tZsWIF1113a2iRW8WSJTcQ\ntULGW+dy1XKX7XU2bny/ybmZypxzzrmuLpsxhd9og3q4vEmEx9zwvAqoAH6HBYtvYgFhfHWTRSSD\nxPh2+nEzgFkpZY2N82LPRwPzaGiAuXPvCgHaZCyTObmiSm1tcszhnDl3xI5L3dca2V+nAQtwI1Ox\nKXycc8657qXFFU1E5EAReVRE3guPR0RkaFtUzuVCLywAG4wFeIcDv2XPAp+Slg/pZMrKBmGB46Lw\nmBzKnHPOue4lm+7ju4D7gNPD87NCWUU2NxCRA4G7gf2wbug7VPUWscFuDwHDsC7p01X1g3DOVdhc\nKTuBKlV9MpSPAxZgkc4TqnpJKO8Z7jEWeB84Q1XXZFO/ri9a+3ga0Sok1lp4ADYP4XBSW8qi7uOF\nGbYbwzbhnC2hPHmudR/Hj6kjkShgypSpXHfdNGprCfdMnldcPI3qajunuvoCli2bHI5L3dca2V4n\nedz1uz3OOeec6+qySTR5UVWPbqlsN+cPBgar6gsiUgI8B3wJOBfYqKo3iMg0YICqXikihwP3Y3Oj\nHIClwI5SVRWR5cB3VHW5iDwB3KKqi0XkYuBIVb1YRM4ATlXVM9Pq0U0TTUqwKWXmkjpH4SXY21uA\nxeQ9sPGBlViwtxZYic1JCPARFosXYYFmHZZkUrDrmBEjBvOzn83lqqtm89prb6Jaz6hRhzB79vd3\njRfsaIkmubyfc845lysdNdHkfRE5GwvUBDgT2JjtDVR1HbAubG8Vkb9i0chEYHw4bCGwFJsX5RTg\nAVWtB1aLyGvAcSKyBuijqsvDOXdjweXicK2rQ/kjJLMhHHVk/pgFWIONN9yBBXYfAf8NlGGZxUXh\n2HpsVZN6LGDsGR4FJHOQCunbdwArVqzgr39dxfbtQnFxTwYOLObLXz6Xbdu20thYBCi9egnjx4/N\nS4ZveoCXzT0qKytTJt+eMGHSrvM9QHTOOddtqOpuH8DBwGPAe+Hx/4CDWjpvN9dag6XCbo6VS/Qc\nuBU4K7bv51hmwjhgSaz8M8BjYXsVMCS27zWgNO3e2t3MmjVLAYUChb4KC8JjkEK1wqfD874KJyiU\nhfIBCr0VJsX2Twr7e4dHdK3ScE5fhZ4KRWn36qvQK5wbL+ups2bNalLnxYsXa3HxoF3HFhcP0sWL\nF2f1evfm3Fyc75xzzuVKiFtaHWvtzaPtbmRZCs8BXwrPN6ft36QeFOZUaemIEOCVhcenFU5TWBwC\nn9MUNGzvFytbEI4dEds/IlY+NJRr2jlDQ5C4IG3/0IxlpaUjmtS5ouK0JsdWVJyW1evdm3Nzcb5z\nzjmXK+0RFLbYfSwihwDfDa180fGqqhNbOjd2jSKsW/ceVf1VKF4vIoNVdZ2I7A9sCOXvAAfGTh+K\nLa/xTthOL4/OOQhYKyKFQD9V3ZRej5kzZ+7aLi8vp7y8PNuX0AWUYbHyRVhv/lTg3natkXPOOefM\n0qVLWbp0aftWoqWoEfgTlir6OaA8PMZnG3ViXcN3Azelld8ATAvbVwI/CtuHAy9gg92GA6+TTIh5\nFpt9WYAngJNC+cXA7WH7TODBDPXY66i9s7Hu46Lw6K1QElr6jkzrAs5N97FIr7CvLG1/T+8+ds45\n51qBdmgpzCb7eLmqfmpPg04RORH4Qwguo5tdBSwHHsZa+FaTOiXN97ApaRqAS1S1JpRHU9IUY1PS\nVIXynsA9wBhsSpozVXV1Wj20pdfaFVn2cR32lhVgySIJ4GMsuUSwlU5KsKXvemEzAX0M9A9X2RaO\nrQeOxt7i9djHo0AR++/fj7vumscDDzzAwoX/CRwFQEHBn0kkEtTV1ackmsyYMYXp06dnrPPeZAPv\nbSaxZyI755zrCNoj+ziboPBsYARQg6WpAqCqz+e3arnVHYPCmpoaTjrpFCxT+JZQGs09OBprYC0i\nWqM4dd9UbAqbhcA2iotLqK29gdRpbeYBF1FcPC1lCTkPrJxzzrm901GnpDkCOBv4LDZ7ceSzeamR\nyxkLzIqBn5B5GTsL6jLvWwX8ChgJ/Ina2roMdxgCTG6yhFx8ihfnnHPOdQ7ZBIVfAYaraqaowHV4\nrf0j40XgOqwlMFrzuAr4PLYqyirgaeBvQHWO6uicc8659pZNULgKGIANInOdSHX1BSxZ8hjpS9El\nl657KcO+CiwYPI/UFsR5WBL6HOCmUDYV2Exx8b2+NJxzzjnXyWUTFA4AXhaR/yM5plC1FVPSuPZU\njAWB87DWvVqspe9pLFHki1iXMeG4N7Hu5nlp13kFeBwLCJPBYmnptdx//0LvLnbOOec6uWyCwqsz\nlHWvjI1OysYU3kJqcsg0LDg8AMsoPjlt/5th+2/hOSRbEJ9tco9x4472gNA555zrAlrMPm5ygshn\ngK+q6sX5qVJ+dMfs4759D2DLlh+SGvRdiAWDAB9gKw5GmclTseWof4vF/duxlsaPgH6hrA64LRx/\nCSNGHMQhh4xiyJA+/Nd//Y6PP96G6g5EejB8+HB+9rMf5SRojGc0jx8/lqeeer7Jdj4znT2j2jnn\nXFvqkFPSAIjIWOCrwOlYU9IjqnprnuuWU90xKBTpRep0NBdhcxTGp6fZAvTFAr4dNJ2+pj8WPMbL\ndgI9sGT0n2LDTueTGlzWAedTWLiAxx+/b6+CqJqaGk49dTK1tdfH6hBNnZPcTp8aJ1fS75+v+zjn\nnHORDjUljYgcigWCZwDvAf+JBZHlbVM1t/d6A4OAGdiqgH2AH5OaQDIF+ATJFQNnZdh/S1rZjLRj\nJ2U4Zh7wJg0Nc1Kmq9kTc+bcEQKyTFPnJLfTp8bJlfT75+s+zjnnXHsq2M2+vwJjgUpV/afQMriz\nbarlciPXLaM1WLC3PTxWYQHhizm+j3POOefa2u4STU7DWgr/ICKLCS2FbVIrlyMfYF288e7j9Clo\ntmIrEILF/On7P8a6g1fRdO7C27HxhcPTzou6j0+gsLCa6ur79upVVFdfwLJlNkl28t7RtDrJ7eLi\naXmZGif9/vm6j3POOdeeslnmrgQ4BQsQPwvcDTyqqk/mv3q50z3HFJaSOoVMeqLJh2G7Afv7YBs2\n5rAYa2XcAtwJDAa+DXyfpsvc/TE8n0qPHnej2uiJJs4559xe6rCJJrsOtijjy8CZqvq5vNUqD7pn\nUDgQmEtqIDeVZBCYAH6IrUwiWOteIzAOuAqYSXIZvEnARJoPChdSUbGIJ598JK+vKRMP2JxzznU1\nHT4o7My6Z1AoWGZxPHM4nrXbgHUZfyeUTcXGCl4I/ILkENJbSM8wTiQuB+qpq/sJ0H4ZuZ4Z7Jxz\nrivyoDCPumdQ2A8L9l4C9sESySuAO4C12JjDd4HLgedD2bvAwcCxwEPYlDRvAoWI1FNSMpCRIw9h\n9uyrANq9hW7ChEksWZLagllaei3jxh3trYbOOec6rQ41JY3rCnpgrX0HACWhbDIQzfd3GfAFUtcz\nrsKWuV5J6ryD21G9jS1b4OWXpwFQWVnZIYOuTZv2ZcmSiSxbNtlbDZ1zzrkseVDYpdUDLwNHACuw\n9YvjYwzB5hy8Ka2sGtg3rWwqHXGevqaZyVOBe4HKDlVP55xzrqNrdp5CEdkqIluaeXzUlpV0e6oO\nyzBeiWUZfyLDMR9nKBsFrMPmJYz0y3ntcqGyspJHH7Ukl9LSa7HA1YNA55xzrrWabSlU1RIAEZmF\nDTa7N+w6CxiS/6q5vVeEdRsPwVrQBpPa+leFLWs3LVY2DcssXodlH68Lx0koh4KCy6iufiC/VW+F\nqBs7mXQyGvD5BJ1zzrnWyGaewj+p6lEtlXV03TPRpBQbU1gA/AQLCGuwYO8V4JPAn7G/DXoAh4R9\nlVgAeGm40kdYFrMA20gk+tGjRwHQQGFhb0aOPJDZs7+/227ampoarrpqNmvWvM2wYYOZPfv7QMuJ\nKtlMN9PcHIaeaOKcc66z6pDZxyLyR+BnQNQ0dCbwbVX9xzzXLae6Z1BYjAWE0ZyE0WoklwHfBO7C\nupjBAsElpE5fsyNs9wCOwlY/eQNbxQSS4wwXkkg0sGjRg80GbRMnnk1d3Y93nVdYWEtBQe9dZZmm\nkslmuhmfksY551xX1FGDwuHAzUAUBD4NXKKqq/NbtdzqnkHhAOAwbALqwSSnolkTfkbL1kVdzMOB\nXwFHh+2ngb9gXcxRQJlM5LDzF2GTWs+jomJIxsmrM00bYwkus1LK0ie/znTenhzjnHPOdTYdckoa\nVX0T+63vOp34d6mSZCB3bay8JLY9GpuT8JFw3NPYuMQbSR2LeAeezOGcc851LS0GhSJyKNZfOFhV\njxCRo4CJqjormxuIyC+AfwE2qOroUDYT+DfgvXDY91T112HfVVjf5k6gKlpjWUTGAQuAXsATqnpJ\nKO+Jrcc8FngfOENV12RTt65vM5Z5XBUrq8KCv4XAJdi0NQXACSRXPFkITMFWPMkkamWMuo+nkkg0\nUF09M+PR1dUX8NRTZ1MX9VTv6j6+fFdZpqSQ9Olm9vQY55xzzrUsm+7jP2BLXsxT1TFia6f9WVWP\nyOoGIp/BBqPdHQsKrwa2qOrctGMPB+4H/gGbcfk3wChVVRFZDnxHVZeLyBPALaq6WEQuBo5U1YtF\n5AzgVFU9M0M9umH38T5Y3H8+8AyWSVwMrMZaAHsAtdh4w32wGD2BTV8zAHgLCxqLiY81LCwUioqK\nyWWiSXMJIq1NNPHkEuecc11Bh+w+Bnqr6rMWC0II0OqzvYGq/o+IHJxhV6YXegrwgKrWA6tF5DXg\nOBFZA/RR1eXhuLuBLwGLsa7tq0P5I8BPs61b15fAgr/VwJ+wuQaLgUbgc1hiSW04Zjs2drAHtvxd\nbTiuBNiGJacIMJSGhndpbKyjf/8e1NfDmjXrWLFiBWBB3htvvMyGDVspKipi7NjhPP/8mwBMmXIu\n06dPbxLEASnJIvGVSLJZNaUjraziAapzzrnOKpug8D0RGRk9EZEvYwvk7q3visg52FIb1ar6AZbt\n8EzsmLexFsP6sB15J5QTfv4dQFUbRORDESlV1U05qGMntwXrGv411voX9fhPAf6Atf5dik1XA9Z9\nHAWLFeHn4cAqUpfBS9DYeCObNlUB5wCjmTGjisLCnTQ0nIR9VLcAq/jNb+YTtTLOmFHFq6++ysMP\nL04JAA877LDwvOOtmNIa6ZnQvsyec87ll/8hnlvZBIXfwTILDhORtVgmwll7ed/bgWvC9rXY4rvn\n7eU1XRN9sW7hoVgGcjxZZAoW7B2WVn4F1t38KyyYuyL8jB9zeez5IqLM5IaGGcALseMnNTn3vvuu\noKHhBuIB4Jo18cSXzmvOnDu6RHDrnHOdgf8hnnvZZB+/DnxebIBagapu2dubquqGaFtEfg48Fp6+\nAxwYO3Qo1uz0TthOL4/OOQhYKyKFQL/mWglnzpy5a7u8vJzy8vK9eRmdRHM9/QOAX2A5PXGHYEkk\nRbu5Zm6HOAwbNpja2mmeLOKccy5rXe0P8aVLl7J06dJ2rUOzQaGIVMeeaqzcCtKSRFpDRPZX1agL\n+lSsyQqs2el+EZmLdQuPApaHcYwfichxwHLgbJKZD4uwb8QzwJeB3zZ333hQ2D18iCVrv4RlCkcu\nxRpmHwbmY9nIkLrE3bUkM5Wby16uIrmE3k+xLuodwMXh2OFNzj3rrFN5+OHUAHD2bAsAk10AnfMv\nPc+Eds45t6fSG6t+8IMftHkdms0+DtPGKHAolg28CGsi+lcsUPt6VjcQeQAYD5QB67GkkHLgmHD9\nN4ELVXV9OP57WPNVAzZJdk0oj6akKcampKkK5T2Be4Ax2JQ0Z2aaWLt7Zh8PwMYLDsaCvDVY0HYO\nFgzWA6djcfRQUpe4uyQc2wtLOukdrvohlrDSiM0qNBq4EEtSSWYoJxKFlJQMyCrRpDMGgM3pyq/N\nOec6kq6+olVHXdHkf4B/jrqNRaQPFpR9pg3qlzPdMyjsC9xK6koiUQNwIzYV5BXYfIa/IJlMcim2\n/J0C/0yyoXh4OK4WmBe77oGkrk4ylcLCexg9ehRQSFnZQJ9OxjnnXM515d8hHTUo/BtwtKpuD897\nAS+q6qFtUL+c6Z5BYTRPYXw940aSs/ZMxaab2Yk1AL8DvIpNPzM0/NxB6lrHZdjk1RXAL0N5PCis\nAb5OtCZylITi6xY755xz2euo8xTeDSwXkf/Cuo+/hP22dx1eT6yL+EYskAM4EhsJcEEonwe8Avwe\n+ARwH8ku5Cjuj2ce3wVcibUmRl+DzSTHDs4L142ykpsfANzVBgk755xznVk22cfXichi4DNYP+I3\nVHVl3mvmcmAHNk/hm+F5ETY1DVggFg0LLQj7XsaSTBZiSSdfx9Y/jhsYfgo2W9GR2JzhK4AZWNey\nc8455zqbbFoKwSafWxeOVxE5SFXfyl+1XG40YiuVlGCTUGeaq3A71n08FNgYyj6BBYS/wALLqEUw\nWut4GpYLNJ9E4nXq6tYBQykurmf69Mu45prLqas7h3jGs69b7JxzznVsLQaFIvJdLGN4AxY9REZn\nPsN1HMVYK2BzGkm2+I3GMo4Lse7kV7EE8N6hXLAs5jeJpq0ZM2YMs2dflTKVjKnHWhjLELmMY445\nitmzm44VrKys5NFHF3b6qWicc865riCbRJPXgU+p6vttU6X86J6JJj2wbuEeoaQ3UeJHco7BfwHu\nJTk/4RTg3PA8ShbZAUzAlr2zpJWCgsu45ppqpk+fnnLPCRMmsWTJROIZzxUVi3jyyUfy8Aqdc865\nruNmn+sAACAASURBVKk9Ek1214wUeQv4KN8VcflQHB63Ad/CxvtdimUVn48ljNyLdRXfEc5RrJXv\nXiyAvBEYhq2VXIGNG5xCY+PnuO66W6mpqWmhDqt47rkXmTBhUhbHOuecc669ZNNS+AtskNl/Y5PX\nAejerGjSHrpnS2E0eXU0VcxMrFv4GyRbDBdiGcNgK5+MxgLG+NyGi4CJ4bghYdvK0lsBU6eZWYVN\nkm2tiz7ljHPOOZedjjolzVvhkQgPIbbsnevoHgOuwuYjvDmUTcVa/aLg7GVs/KACI0ldEi++9N2r\nWGC5rtm7xccJPvfci2zadAs+5YxzzjnX8WUzJc3MNqiHy4uPsXGAmTKPZ2LBXRXWrTw/lEfPv4t9\nPb4ZO66C+LjD5rKFKysrqaysDOMLm9aqK89A75xzznVW2WQf/z5Dsarq5/JQH5dTJdjSdYsy7Psb\n1oW8Ewv44gFjNTAKa0H8BdAXOASbmegvlJT05Pjj32wxWzjTlDPjx383ZRWTZcsme5eyc8451wFk\nM6bw2NjTXsAkoEFVL89nxXKte44pLMVa+n6LjQDYD8s2no9lFAs2TLQv1n3cgC1j924oA9iKJatU\nYMvgvQzU0qvXPjQ2FlJfvxXVXvToIajWIdKLfv16APswYEBPoAcbNnwACPvtV8KGDVvZsuUa9jY7\n2VsbnXPOdWUdckyhqq5IK1omIv+Xp/q4nNpMPNHDxgrOA07CupV3YFPW9MXGHG7DEtL3wVoYwVoR\nhxKfjgaq2L59O/DFUD6XnTuj65/Dpk3zgRFs2rQKS1qx6W22bFmIjVncO+lrJntro3POObf3suk+\nLo09LQCOJdmM5Dq0AVhwF+8anocllNyCTS8D1ho4l+Q6yLfQtDs5vWwe1p2cXr4olF0RfkZrIEc/\nB6ccvyermPiayc4551zuZZN9/DzJbOMGYDVwXr4q5DqLrXt4XiXWcjiT0tL3uP9+b+FzzjnnOoJm\ng8JofWNVPbgN6+NyajPW/RuZio0hPCGU7wjlg8K+bdiYwvg5Ufdx+nW2AWMylE8OZaPDz/Nj5fG1\nkN/c44DQ10x2zjnncq/ZRBMRWamqY8L2I6o6qU1rlmPdM9EkWuauJxb/R8klhdi0M2DrFEeJJjuw\njOWPSE006RWOG4nNY34BNjXNlcAHQO9mE0369t03XLtw18+ysoF7nRziiSbOOee6svZINMk2KNy1\n3Vl1z6CwP5Y5fBbwZigdDjyEBX6jsSlpolVKopVNLsLmIqwDGrFl8sBa+u4l2QU87/+3d/9hVlbl\n/sff9/DLEVGY9KiIAamlFinCQTueYioR7SqS7KR+vxpfM8yoQBkUSOuQ5IVWYHpKOZrJWPmrPBSW\nOaI5dPQcJeWH+FsMKEAJJZV0BIa5v3/ca7OfPQyIMDN7Zu/P67r2Nc9ez372ftae0etmrXXfixEj\n+mpfYxERkVbWUfc+lk5rK/AqcBOwlggIbySCvmuB5USJmfMz1/QlpnpnEaN716XnY4hEkWlEQHgh\nXbsuo6bmfOrq6jj55NNb3N94Z+dERESk49hZUPhhM9toZhuBQbnj9HijvW5Q9sQWYqQwlxf0U2AY\ncGl6vonY9eTLwDjgCfIB4jLiz2M2sW9yznOp7TwqKvbmscceY9Soc5g/fxTz549i1KhztgV/udIx\nuXOjR49RYCgiItJBvWPx6lJRntPHueLVPweuSq0XEkHijURB6keJpJHNRJL5j4mAsHl9wzGpbSwx\nYghQS69e396uGPXgwTezaFF92uZuFHtaqFpERKTcdMji1dKZOfAwERBmawlOJEYBF6Tn7ycSStYQ\n9QX3Yvv6gxM5+OD9eemlQQWf0NDw9nafumrV6ta5fREREWk3bb6m0Mx+ambrzGxZpq3KzOab2fNm\ndp9FRkTu3FQze8HMnjWzkzPtQ8xsWTp3Taa9h5ndkdofMbP+bd2nzuNNYs1gc41AF2LEbzNwCLHm\ncBOxS8nQFq5p4uWX/47ZRGLksJbKysn077//tufxmET//gcBkRVcWTl527koHXN+C+8tIiIixdYe\niSY3E/uqZU0B5rv7+4mNeacAmNnRwBnA0ema68wsN3R6PXCeux8BHGFmufc8D3g1tV9Nfp60rF1x\nxRXEesI3iXqBk4CPABcR08Y5ewP3AecC7yN+HQPTNblAbxzQBfercZ9FRcVPGTz4RubOreXHP55F\n9+6NxDrD2XTv3siMGd8CYOTIkcydG1PGI0bM01Z0IiIiHVi7rCk0swHA3e4+KD1/Fhju7uvM7CCg\n3t2PNLOpQJO7X5Vedy+R7roK+IO7H5XazwSq3f2C9Jp/d/dHzawr8JK7H9DCPZTVmsL3vOdwNmxY\nSZSU6UWMDDYSNQu3pFe9QUwlXw90J6ab30rnnKhV2ERkMf8H2bWBcBG9eu3D5z73CR56aBGrVq2j\nsrLHds8nT/4Kl14aiS252oKvvLKO1qpXmFVXV8fUqTNYtWo1/fsfxIwZ31IQKiIinVI5rSk80N3X\npeN1xJYaEPVQHsm8bjUxt7klHeesSe2kn38FcPdGM3vdzKrcfUNb3XxnsGHDaiKY25d8wshEIujL\n1R0cTwzk7k0+eWQ8UdjagI8T6w5bCqaNjRu/QG3tjen5tWzcCLW14wueX3ZZPB86dCijR4+hoeFs\n4I/bPu+hh8a0yghiXV0do0adw+bN30/9n8SoUWcyb97tCgxFRER2QdETTdzdzax8hvDaTTci2Lua\nwoSR2WyfdPKDFtoA/iedu5LC7ewmE9PNK4iAs/l7Fj6fNWs6Q4YsoqHhKmBewec1NMDMmTfsceA2\nc+YNKSDMf+7mzbNb5b1FRETKQbGCwnVmdpC7v2xmBwN/S+1rgEMzr+tHjBCuScfN23PXvBdYm6aP\n99vRKOG0adO2HVdXV1NdXb3nPemwctPB78SJIO4gYqcSiGzkC4AJRHma3sBL6XV9ienjl8nvkrK7\n6oDZPP74eurq6hS8iYhI2aqvr6e+vr6o91CsNYXfI5JDrjKzKUBvd5+SEk1uJSosHwLcDxyeRhMf\nJYarFgK/A65193vNbBwwyN2/mtYanubuZ7ZwD2W1ptCsFzEN3JPC6eO3KZw+Hktsd5erRVhL4VZ2\nuWsGELF7bpo5W7uQzGeM3+75d797SbPp49rMZ8X7VVZO3qNp5ObTxzCJ7t0bNX0sIiKdUofa+7jV\nPsDsNmA4sD+xfvDbwG+AO4kRvpXAF9z9tfT6bxIVlxuBCe5el9qHAHOIlNp73H18au8B/AwYTOzp\ndqa7r2zhPsosKOxJJJV8icgoXkskjbxFjCJaOpcvRB2Zyc3bLgY+BjxIlK+pTO+zmV69evO5z32C\nJ55YzqpVL9O/fz9OP30EN998xzsmmixf/tftil7vaWFrJZqIiEipKMmgsKMov6CwTzr6IYVZwxOJ\neLuSwqLWuVG7v7D9Tia1REz/CrAR+CeqqrozceK5LFiwCIDhw4/bdrwrGcXa7URERGTHFBS2ofIL\nCvcmpo+z2ce5zOLK9LwJ+FHmXCMxgtgVOIqoBpSbRv4mcBbwE+CazDVj03F+W7xdmQrO7YscySd7\nPn0sIiJSShQUtqHyCwpztQl7pZat6fgVInN4EDFquAX4IPAakVByAflgLzuNPJFIQDmRfILJwMzx\nux/1y00nw66NLoqIiJSLcqpTKO2igkjUPgT4AzAjtee2nptFBHsnEnskryeykK8l1hfm9jmeRGyB\n9xSwnMJkkw+QLzP57owcOVKBoIiISAehoLCk/QP4E7H/cXZtIcANxOheX2Lqt4EYIRwDnE1MLU8H\nDiASTJwYSZze7H1+AJxAto5h7HFc2xYdEhERkTaioLBkNRIjhT2BI1s4vxa4MB2PJXY2GUGMDl4E\nfBn4KTFyeCdRl3Didu9SVdXAkCErGD78EhYsmAdATY3WBoqIiHQ2CgpLVi6Z5BBienhy5twEImj8\nCDEqOJtYL5gbPexBBIe5qeGRxFRxY7o2mF3IcccN5fHHl/L440uZOPHcbeVnsrR2UEREpONTokmJ\niuzjLsQ0cFdiNPBhYip5I3AaMJ8YHawH/l86/zQREC5L59YQQWUuu3gZcBOxVnFkas8VwI5C1dnA\n8IorruDb355JU9PVgLKMRUREdoWyj9tQ+QWFvYnaggcQo4VL0pljgQVEQepRxFTxJ4gAsRH4KnAH\nsYvJViKw3Av4LoU1DecBd213XFU1nVdfXQ7ECOGnPvV/aWqaieoRioiI7DplH0srqiACwuXAM+Rr\nC+YyiXOM2IN4JDFiOIgYMVxNJJ8cvguf9WqLrTNn3kBT0xHv/tZFRESk3SkoLFlvA48TiSbXUJgx\nPJ4IBscTU8QPEHsbNwHjiNqFFcBQYHG6ZlKz68cSo4STiOzkScCNTJx4SbP7KFzPWFFxETU1t+1p\n50RERKSVKSgsWQ7sQySLNHc0sZdxFRHcfYbILO4BdCMCyn8AfwZOJaaWtwA1wN5EEPg74NdE4euh\ndOlyC9/5TuF6wpqa83nooTE0NEQyS0XFC1x+eY3WE4qIiHRAFcW+AWkrW9PP3EhdbXpMSG17A6cD\n5xDJI32BK4mAcAQRUG4C7iW/M0o18Hp6378B3yJ2R7mZpqa3GTp0aMEdjBw5krlzaxkxYgUjRvTl\nnnt+0WJ2soiIiBSfEk1KlFl3Yjq4J4WZxw3EaOBXgJ8TJWluJkYCf0nUI7yMyFA+iRglzO6dnJtu\nzhbDrgWmM2LEMUogERERaQVKNJFWtE/62ZPIJu5BrPvrRwSBPyCSSmann+eSr1P4FnAwkbF8LYXr\nES+j5QHmTS20iYiISGehoLCkOREEXkAEdnXANGKP47r0mueBW4kRwrXEaOAgYvp5fQvv+RZmm3HP\nJp5MwmwTNTXnt0UnREREpB0oKCxZfyemiRcTgd4yYpr3B+n82cSI4KlEQJjLSN4MPEbUJuxNdk/j\nOG7gi1/8P9x222/YvHk2AGZvM336FCWQiIiIdGJaU1iizKqALwE/IfYx/jWRGJJdB3ghEQg2EtPN\nazPtP0yvG0dMPQM0MGbMGcyZM0db14mIiLQhrSmUVrSVmCI+ipgOXtHCayqILOR+xDRyzpEUriOc\nDnyLwYNvZs6cOUBkFisQFBERKR0aKSxRZr2I6eNPAH8ADiTKyMxKr4ip4Cg140Rdwq3AvkQJmr7A\n94mp5QuBfnTpso7vfGcCl156KVdccQWzZt0MwMSJ5zJ06NBtI4fDhx/HggWLAI0iioiI7A7tfdyG\nyi8o3IdYH1hJvqTM18gPDm8kpoxz58alc7nnk4iahZ4e16X28Zx00jDuv39hwbVdu1bS2DiTWLt4\n47ZzlZWTmTu3VoGhiIjIu6DpY2lFFcSo30wKp4InEwFhFZF0kjs3m3yWMpm2F7Z7j/vvr6GwVM1s\nGhtz155ecK6hIfZAVlAoIiLSsWlHk5LVlfyuJlm5eoJv7uL7dGmhrXxGXEVERMpFUUcKzWwl8AYR\nvWxx92EWabN3AP2BlcAX3P219PqpRErtVmC8u9+X2ocAc4g6Kve4+4T27UlH9A+gOzENnDMJOIgo\nNfMsheVmnmj2fBJRsmYwzcvSVFXtzYYNk5pdm/vKBxa8vrJyMjU1tXvUExEREWl7RV1TaGYrgCHu\nviHT9j3gFXf/nplNBvq4+xQzO5qosvzPwCHA/cAR7u5mthD4ursvNLN7gGvd/d5mn1Vmawr7EFnE\nJ5LPPB5IbHcHsBp4hVhzWAF8mggkHyDK1GwiYu+exNrC7lRUVHD55RNZsGAR8+cPTO+7DniG2BHl\nYSoqXuCccz7N2rUbASWaiIiI7I5yXVPYvMOjgOHpuBaoB6YAnwVuc/ctwEozWw4cb2argF7uvjBd\ncwtwGlAQFJYfIwLC64D9iKSTOmI6+E2gDzCACOr+ATwK/CWdPxn4LREQGrEvcgVNTd256667mDFj\nBg89NIaGhquIdYezyK0hbGqqZe3aea2yB3K2FqIymkVERNpWsdcUOnC/mT1mZmNT24Huvi4dryNq\nqUDUSFmduXY1MWLYvH1Nai9zbxEFqLsBVxKBWyUwlgj2Xie+tn2J4tQvputOBn6f2mYRSSaVxMz8\nLBYvfpGpU6dy6aXfoKKihsKvvvXU1dUxevQY5s8fxfz5A7nssu+l41GMHj2Gurq6d34TERER2WXF\nHik80d1fMrMDgPlm9mz2ZJoaLp8531bVjShMfTWFGcXziOzgScDhxNTwd4CJwPuBJcCH2T4TuWbb\n88WLJ7L//otoappJBIWFaw6HD79kj+9+5swb0kikMppFRETaQ1GDQnd/Kf1cb2ZzgWHAOjM7yN1f\nNrODiYrLECOAh2Yu70dEJGvScbZ9TUufN23atG3H1dXVVFdXt05HOqRuu/i6jbv4uh0NKi8iRh/n\npedjWbBgEZdeuotvKyIiItTX11NfX1/UeyhaoomZ7Q10cfeNZtYTuI8YsjoJeNXdrzKzKUDvZokm\nw8gnmhyeRhMfJYarFgK/Q4kmmO1F7Gnck8KC1GOI4tJvpnN9iT2PG4hA8lRi+jhbyHo8sVXeWGA8\ngwcfxowZMxg9egwNDQMpHFWsZcSIPV9TmJs+jtFCFcQWEZHyUlY7mpjZQGBuetoV+IW7z0glae4E\n3sv2JWm+SZSkaQQmuHtdas+VpKkkStJk5zNzn1dmQeG+xChgBZFo4kSyyYeJBJSfEFPH3YhM4x5E\ntnE3IkA8MJ3fCjSl9zEGD+7PokWR8FFXV8fUqdNZuvRpmpquBlo3YFOiiYiIlKuyCgrbW/kFhb3S\nURMR8EHE0z9Ix7XECODYdLyFSNp+jqhhuJXYBm9/YAtdu27gt7+9ZVswpoBNRESk7SgobEPlFxTu\naPr458BIIhC8kBgV/DQwP70m99qJ6fpc0DiGysqfM3duFKLOT+0Wfzo3G6AqKBURkVKgoLANlV9Q\n2IuYCs5mH9eS3+N4MnA2Met+JDEymFsbWAdMI/J4+pNPJBlFVdV0+vfvx+LF59La6wh3R+Haw+IH\nqCIiIq2hXItXS5voRowSNvc8MJ0IEF8m/gSWkk/griOCvavS8wnA3duu3rDhAF577cm2ueXdUFi6\nRuVqREREdpeCwpLlwPE0ryEY08XnEgHhJGLN4Fbgr+n80URAmK1ReCHwSWJ0sZampvlUVFxEU1Oc\n1f7GIiIinZ+CwpLVCDwIjAAuI0rQ9EjPbyP2LR6Tfo4i1hBupOUdSo4EFgAfSM8HccwxR7P//lGb\nsKameNO1NTXnpy334rkCVBERkd2joLBkNRKjgg8Qv+YuRMWe54A3gIFEWZo7iFHDRmIHlDOIEcGc\ni4is5RXAKuBMooTNsA6R1DFy5Ejmzq3NJJpoPaGIiMjuUKJJiTKrIILAivToTr4czXiiVE0T8FWi\nMPQmIjDclwgCHybWH36c7TOTJwBf3paN3JGCMGUii4hIKVD2cRsqv6Cwivx0LzTfdQSmAjOIpJPT\niCAwl228lRgZrEjPlxMBZfb6yEYuVtZxS5SJLCIipaIYQeGONrSVkreJ2D6uH/mA8I107gLAiODw\ntaLc3e4ozESO4DA3aigiIiI7pzWFJes14AniV9xEZBrnXExkIN+UzmULVi8FxhHTyoPSdW9RmMU8\nEThXSR0iIiIlREFhyepJBHz7AuuJQeFJxMjgz4jkEoA+wEHELicQxa3/TGQp59t69VpDt27T6dOn\nF/vuexT777+iwyV1KBNZRERk92lNYYky24eYAu5K1Cy8Jp3J1Rx8ADiPmDpeQb6Y9ez0usK2ESP6\ndpi1gzujRBMRESkFSjRpQ+UXFPYiRgePZvskkwuJNYXjyNcpnA08ndp/Qz5AXE737o3Mm3e7AiwR\nEZF2okQTaUXdiLWCfVs4dyRwGLHv8fmpbT2xx/GB5KeNl1NRsUUBoYiISBnQmsKStTX9PB84K9M+\nGTibmDY+mBgRjO3r4vgO8qOJm7n88m8qIBQRESkDmj4uUWZ7EdvaXQvcTawhPBI4kdjJZAux1rAH\nsbZwEJFhvAnYC3ibMWPOZM6cOe1+7yIiIuVOawrbUPkFhblEkw+llsXEDicOvE1MH68hHwTm6hJC\nZCiv5bDD+rJ8+VPtedsiIiKC1hRKq+oK/Aj43/T4TyLY60KMDq4GjgI+BfyQ2P2kK7GucB1wHi++\n+BJ1dXXtf+siIiLS7hQUlqyWfrUNwCwiI7kLMZW8lNjZBOCfiDWFlcDvgA9oRxAREZEyoUSTkrWF\nwl1MJlG4F3IjcDOxs8mNxDRyTyJohFhf+EFiullERERKnYLCktVA7GiSK0a9GTiByCrektpuJcrP\nDAKmAFeSr2cIFRU11NT8op3uV0RERIpJ08cla18iKFxNJJT0J8rQOFHMug/5eoSQDxTzjjnmQypH\nIyIiUiZKZqTQzE4hMia6AD9x96uKfEtF9ncio/gNoiwNxJTwCPLTxbl9gScRI4vjt11dWTmZGTO0\nb7CIiEi5KImSNGbWBXgOOIkYFvsTcJa7P5N5TVmVpIFIZ4/AsHdqeYvIPN5MlKXZlxgsbqR7926c\nddYo1q7dCGjfYBERkWIqRkmaUhkpHAYsd/eVAGZ2O/BZ4JmdXVTqyi0IFhERkd1XKmsKDwH+mnm+\nOrWJiIiIyC4olaBQQ2IiIiIie6BUpo/XAIdmnh9KjBYWmDZt2rbj6upqqqur2/q+RERERN5RfX09\n9fX1Rb2HUkk06UokmnwSWAssRIkmIiIi0kkp0WQ3uXujmX0dqCNK0tyUDQhFREREZOdKYqRwV2ik\nUERERDqLYowUlkqiiYiIiIjsAQWFIiIiIqKgUEREREQUFIqIiIgICgpFREREBAWFIiIiIoKCQhER\nERFBQaGIiIiIoKBQRERERFBQKCIiIiIoKBQRERERFBSKiIiICAoKRURERAQFhSIiIiKCgkIRERER\nQUGhiIiIiKCgUERERERQUCgiIiIiKCgUERERERQUioiIiAgKCkVEREQEBYUiIiIiQpGCQjObZmar\nzWxxepyaOTfVzF4ws2fN7ORM+xAzW5bOXZNp72Fmd6T2R8ysf3v3R0RERKSzK9ZIoQOz3H1wevwe\nwMyOBs4AjgZOAa4zM0vXXA+c5+5HAEeY2Smp/Tzg1dR+NXBVe3ako6uvry/2LRSF+l1e1O/yon6X\nl3LtdzEUc/rYWmj7LHCbu29x95XAcuB4MzsY6OXuC9PrbgFOS8ejgNp0fBfwyba75c6nXP9jUr/L\ni/pdXtTv8lKu/S6GYgaF3zCzpWZ2k5n1Tm19gdWZ16wGDmmhfU1qJ/38K4C7NwKvm1lVm965iIiI\nSIlps6DQzOanNYDNH6OIqeCBwLHAS8DMtroPEREREXln5u7FvQGzAcDd7j7IzKYAuPuV6dy9wL8D\nq4AH3f2o1H4W8DF3/2p6zTR3f8TMugIvufsBLXxOcTsqIiIi8i64e0tL7dpM1/b8sBwzO9jdX0pP\nRwPL0vE84FYzm0VMCx8BLHR3N7M3zOx4YCFwDnBt5poxwCPA54EHWvrM9v5iRURERDqTogSFwFVm\ndiyRhbwC+AqAuz9tZncCTwONwDjPD2WOA+YAlcA97n5var8J+JmZvQC8CpzZbr0QERERKRFFnz4W\nERERkeLr8DuamNm/mdlTZrbVzI5rdq7VCl2b2Rgzez49vphpH2hmj6Zrbjezbplz16b2pWY2uO2+\nhd1jZqek7+YFM5tc7PvZETP7qZmtM7NlmbaqlKz0vJndl8lQL/rvvRX7faiZPZj+vp80s/Hl0Hcz\n2yu9/xIze9rMZpRDv9NndLEo2H93ufQ5fc5KM3si9X1hufTdzHqb2a/M7Jn0t358qffbzD5g+Y0p\nFpvZ62Y2vtT7nenHU+meb0332bn67e4d+gEcCbwfeBA4LtN+NLAE6AYMIGoa5kY+FwLD0vE9wCnp\neBxwXTo+A7g9HVcBLwK90+NFYL907k7gC+n4euCCdPwpYhob4HjgkWJ/V82+ty7pOxmQvqMlwFHF\nvq8d3OtHgcHAskzb94BL0vFk4MqO8Htv5X4fBBybjvcBngOOKpO+751+diXWA/9rmfR7IvALYF65\n/J2n914BVDVrK/m+EzV0v5T5W9+vHPqd6X8FUWHk0FLvd7r3PwM90vM7iHyHTtXvNvlDaKM/ruZB\n4VRgcub5vcAJwMHAM5n2M4HZmdccn/kPdH06Pgu4PnPN7HSdAeuBitR+AnBvOv5P4IzMNc8CBxb7\ne8rcz0dy95qeTwGmFPu+dnK/AygMCrd9n0Tw9GxH+L238Xfwa+Ckcuo7sDfwJ+CDpd5voB9wP/Bx\nouJC2fydE0Hhe5q1lXTfiQDwzy20l3S/m/X1ZOC/y6HfRGD2HNAn3dPdwIjO1u8OP328E61V6Po9\nO3mvKuA1d29q4b365t4rc02/PetSq9rW1yTXp87iQHdfl47XAQem42L/3tuERWmmwcCjlEHfzazC\nzJYQ/XvQ3Z+i9Pt9NXAx0JRpK/U+5zhwv5k9ZmZjU1up930gsN7MbjazRWZ2o5n1pPT7nXUmcFs6\nLul+u/sGoubyX4C16fPm08n63SGCQttxoevPFPG2fBde07zMza5c01460r3sEY9/4rRXf9r9ezOz\nfYgtGie4+8aCmynRvrt7k7sfS/xD6mNm9vFm50uq32b2aeBv7r6Ylrf4LLk+N3Oiuw8GTgW+ZmYf\nLbiZ0ux7V+A4YrrvOOBNYsYmfyOl2W8AzKw78Bngl9vdSAn228wOAy4kZr36AvuY2dkFN9IJ+t0h\ngkJ3H+Hug1p43L2Ty9YQ6xRy+hHR8RoKR+xy7blr3gtgUeh6P3d/tYX3OjS1bQB6m1lF5r3W7OTz\n19BxtNSn1Tt4bUe0zswOgqhrCfwttRf7996q0qLfu4CfufuvU3NZ9B3A3V8HfgcMobT7/S/AKDNb\nQYycfMLMfkZp93kbT3Vp3X09MBcYRun3fTWw2t3/lJ7/iggSXy7xfuecCjyefudQ+r/vocD/N9RQ\nWQAABLNJREFUuPuraRTvv4hlXJ3r992ac+pt+SDWFA7JPM8t0uxODNO/SH6R5qNE8oex/SLN6z0/\nT59dpPlnYoFmn9xxOncnae0gMU/fUqLJCXS8RJOu6TsZkL6jDptoku53ANsnmkxOx1PYfnFuUX7v\nrdxnA24Brm7WXtJ9B/bPfFYl8Efgk6Xe70z/h5NfU1jyfSbWjfZKxz2Bh4m1ZuXQ9z8C70/H01Kf\nS77f6b1vB8Zknpd0v4FjgCeJ/6cZkWT0tc7W71b/Q2iDP6zRxBx6A/Ay8PvMuW8SGTvPAiMz7UOI\nXVKWA9dm2nukL+gFIuNxQObcuan9hWZ/yAPTL+gFIpuoW+bcj9JnLCWTBNNRHsS/1J5L9zi12Pez\nk/u8jViDsTn9rs9Nf+T3A88D9+X+wDvC770V+/2vxPqyJcDi9Dil1PsODAIWpX4/AVyc2ku635nP\nGU4++7jk+5w+Y0l6PEn6f1GZ9P0YIpFqKTFytF+Z9Lsn8ArpHwNl9Pu+BHgq3XMtkVncqfqt4tUi\nIiIi0jHWFIqIiIhIcSkoFBEREREFhSIiIiKioFBEREREUFAoIiIiIigoFBEREREUFIpIJ2Rmp5lZ\nk5l9oAifvdLMqna1XUSks1BQKCKd0VnAb9PP9raj4q4q+ioinZqCQhHpVMxsH2ILqK8DZ2Taq82s\n3sx+aWbPmNnPM+dWmtk0M3vczJ7IjTCmtprM6540s9zeonPN7LHUNvZd3N+A9Pk3pGvrzGyvdO5w\nM7vfzJakexmY2r9vZsvSvX0h058FZvZrM3vRzK40s3PMbGF63fvS6w4ws1+l9oVm9i978PWKSBlT\nUCginc1ngXvd/S/AejM7LnPuWGACsa/o+zIBkgPr3X0IcD0wKdOelX3+JXcfCvwzMN7M+ryLezwc\n+JG7fwh4DTg9tf8C+A93Pxb4CPCymZ1ObIf2YeAk4PtmdlB6/YeBrwBHAecAh7n7MOAnwDfSa64h\n9s8eBnw+nRMRedcUFIpIZ3MW8Mt0/EsKp5AXuvtaj/07lwADMuf+K/1c1Kx9RyaY2RLgf4FDgSPe\nxT2ucPcn0vHjwIA0wtnX3X8D4O6b3b0BOBG41cPfgAVEIOrAn9x9nbtvJvZBrUvv+WSmDycBPzKz\nxcBvgF5mtve7uFcREQC6FvsGRER2VUrk+DjwITNzoAsRPF2cXrIp8/KtFP4/blML7Y0U/uM4N81b\nDXwSOMHd3zazB3PndlHz+3ina63Z89yIZfZ9mjLPm8j3wYDjU+AoIrLbNFIoIp3J54Fb3H2Auw90\n9/cCK8zso7v5fiuB4wDSNPTA1L4v8PcUEB4JnLCH923u/g9gtZl9Nn1eDzOrBP4bOMPMKszsAOBj\nwEK2DxR35D5g/LYPMjt2D+9VRMqUgkIR6UzOBOY2a7uLmEJ2di0DOPu6u4AqM3sS+BrwXGq/F+hq\nZk8DM4gp5F1535aOs8/PIdYnLgUeBg5097nAE8BS4AHg4jSNvLP+ZM+NB4aa2VIzewo4fxfuVURk\nOxZLb0RERESknGmkUEREREQUFIqIiIiIgkIRERERQUGhiIiIiKCgUERERERQUCgiIiIiKCgUERER\nERQUioiIiAjw/wH6JplDCzgd8AAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x12dbf5fd0>"
]
},
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1027,
"text": [
"<matplotlib.text.Text at 0x11b5567d0>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAokAAAFHCAYAAADN3dZ4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X20ZFV55/HvA428CNo0cXiztVHQSGKmkQgkvqQJiGRG\nwSxfgJkgKKNRjK3JjArOjBiTUYwxiiYSEwmCiQiEiJIQ3mmXMxltEFpaEAHhJtBCQ9BGyCjQ8Mwf\ntS8Ud+/uLoG659S9389ate45u06d2vVbt+G55zznVGQmkiRJ0rDNup6AJEmS+sciUZIkSRWLREmS\nJFUsEiVJklSxSJQkSVLFIlGSJEmVsRWJEbE4Ii6PiGsj4jsRsbyML4qIiyPihoi4KCIWDr3m+Ii4\nMSKuj4iDhsb3jojV5bmThsa3jIgzy/g3IuLZQ88dVd7jhoh447g+pyRJ0lw0ziOJDwK/m5m/AOwH\nvCMiXgAcB1ycmc8DLi3rRMSewGHAnsDBwGciIsq+TgaOycw9gD0i4uAyfgxwdxn/BPDRsq9FwAeA\nfcrjhOFiVJIkSRs3tiIxM+/IzFVl+T7gu8CuwCHAaWWz04DXlOVDgTMy88HMnAJuAvaNiJ2B7TJz\nZdnu9KHXDO/rHOCAsvxK4KLMXJeZ64CLGRSekiRJGsGs9CRGxBJgL+CbwI6ZubY8tRbYsSzvAtw2\n9LLbGBSVM8fXlHHKz1sBMnM9cE9E7LCRfUmSJGkEYy8SI2JbBkf53pWZ9w4/l4PvBPR7ASVJknpm\nwTh3HhFbMCgQv5CZ55bhtRGxU2beUU4l31nG1wCLh17+TAZHANeU5Znj0695FvCDiFgAPD0z746I\nNcCyodcsBi5rzM8CVZIkTYzMjE1v9eQY59XNAZwCXJeZnxx66qvAUWX5KODcofHDI+IpEbEbsAew\nMjPvAH4cEfuWfR4JfKWxr9cxuBAG4CLgoIhYGBHbA68ALmzNMzN9zHiccMIJnc+hbw8zMRdzMRcz\nMZeuH7NtnEcSXwL8FnBNRFxdxo4HTgTOiohjgCngDQCZeV1EnAVcB6wHjs1HEzkW+DywNXB+Zl5Q\nxk8BvhARNwJ3A4eXff0wIv4AuKJs9/s5uIBFI5iamup6Cr1jJm3m0mYubeZSM5M2c+mHsRWJmfm/\n2fCRygM38JoPAx9ujH8LeGFj/H5Kkdl47lTg1FHnK0mSpEf5jSuqHH300V1PoXfMpM1c2sylzVxq\nZtJmLv0QXZzj7ouIyPn8+SVJ0uSICHIuXLiiybVixYqup9A7ZtJmLm3m0mYuNTNpM5d+sEiUJElS\nxdPN8/jzS5KkyeHpZkmSJHXOIlEVe0FqZtJmLm3m0mYuNTNpM5d+sEiUJElSxZ7Eefz5JUnS5LAn\nUZIkSZ2zSFTFXpCambSZS5u5tJlLzUzazKUfxvbdzZPivvvu63oKT9gWW2zBlltu2fU0JEnSHDLv\nexK32OKpXU/jCXnooQd429vezp/92UldT0WSJI3RbPckzvsjiQ8+OOlHEk9i/fqbu56EJEmaY+xJ\nVMVekJqZtJlLm7m0mUvNTNrMpR8sEiVJklSZ9z2JMOmf/yTe+tab+exn7UmUJGku8z6JkiRJ6pxF\noir2gtTMpM1c2sylzVxqZtJmLv1gkShJkqSKPYn2JEqSpAlgT6IkSZI6Z5Goir0gNTNpM5c2c2kz\nl5qZtJlLP1gkSpIkqWJPoj2JkiRpAtiTKEmSpM5ZJKpiL0jNTNrMpc1c2sylZiZt5tIPFomSJEmq\n2JNoT6IkSZoA9iRKkiSpcxaJqtgLUjOTNnNpM5c2c6mZSZu59INFoiRJkir2JNqTKEmSJoA9iZIk\nSeqcRaIq9oLUzKTNXNrMpc1cambSZi79YJEoSZKkij2J9iRKkqQJYE+iJEmSOmeRqIq9IDUzaTOX\nNnNpM5eambSZSz9YJEqSJKliT6I9iZIkaQLYkyhJkqTOWSSqYi9IzUzazKXNXNrMpWYmbebSDxaJ\nkiRJqtiTaE+iJEmaAPYkSpIkqXMWiarYC1IzkzZzaTOXNnOpmUmbufSDRaIkSZIq9iTakyhJkiaA\nPYmSJEnqnEWiKvaC1MykzVzazKXNXGpm0mYu/WCRKEmSpIo9ifYkSpKkCWBPoiRJkjpnkaiKvSA1\nM2kzlzZzaTOXmpm0mUs/WCRKkiSpYk+iPYmSJGkC2JMoSZKkzlkkqmIvSM1M2sylzVzazKVmJm3m\n0g8WiZIkSarYk2hPoiRJmgBzqicxIv4qItZGxOqhsQ9GxG0RcXV5/MbQc8dHxI0RcX1EHDQ0vndE\nrC7PnTQ0vmVEnFnGvxERzx567qiIuKE83jjOzylJkjTXjPt086nAwTPGEviTzNyrPP4RICL2BA4D\n9iyv+UxETFfLJwPHZOYewB4RMb3PY4C7y/gngI+WfS0CPgDsUx4nRMTCcX3IucZekJqZtJlLm7m0\nmUvNTNrMpR/GWiRm5teBHzWeah0qPRQ4IzMfzMwp4CZg34jYGdguM1eW7U4HXlOWDwFOK8vnAAeU\n5VcCF2XmusxcB1xMXaxKkiRpA7q6cOWdEfHtiDhl6AjfLsBtQ9vcBuzaGF9Txik/bwXIzPXAPRGx\nw0b2pREsW7as6yn0jpm0mUububSZS81M2sylH7ooEk8GdgOWArcDH+9gDpIkSdqIBbP9hpl55/Ry\nRHwOOK+srgEWD236TAZHANeU5Znj0695FvCDiFgAPD0z746INcCyodcsBi5rz+hoYElZXsigdp1+\n6Yrys8/rNwKbD9ZKD8f0X2CPd3167Mna31xYn5lN1/Ppy/qqVat497vf3Zv59GXd3xd/X0Zdnx7r\ny3z6sv7JT36SpUuX9mY+Xf5+rFixgqmpKTqRmWN9MKjAVg+t7zy0/LvAF8vynsAq4CkMjjR+n0dv\n0fNNYF8GvYznAweX8WOBk8vy4cCXyvIi4GYGVd/208uNuSXkhD8+mW996/J8Ml1++eVP6v7mAjNp\nM5c2c2kzl5qZtJlL26BsG2/dNvwY630SI+IM4NeAnwPWAicwOAy2dFCgcQvw25m5tmz/fuDNwHrg\nXZl5YRnfG/g8sDVwfmYuL+NbAl8A9gLuBg7PwUUvRMSbgPeXqfxhZk5f4DI8P++TKEmSJsJs3yfR\nm2lbJEqSpAkwp26mrck03AuhATNpM5c2c2kzl5qZtJlLP1gkSpIkqeLpZk83S5KkCeDpZkmSJHXO\nIlEVe0FqZtJmLm3m0mYuNTNpM5d+sEiUJElSxZ5EexIlSdIEsCdRkiRJnbNIVMVekJqZtJlLm7m0\nmUvNTNrMpR8sEiVJklSxJ9GeREmSNAHsSZQkSVLnLBJVsRekZiZt5tJmLm3mUjOTNnPpB4tESZIk\nVexJtCdRkiRNAHsSJUmS1DmLRFXsBamZSZu5tJlLm7nUzKTNXPrBIlGSJEkVexLtSZQkSRPAnkRJ\nkiR1ziJRFXtBambSZi5t5tJmLjUzaTOXfrBIlCRJUsWeRHsSJUnSBLAnUZIkSZ3bZJEYEbtHxFZl\nef+IWB4RC8c/NXXFXpCambSZS5u5tJlLzUzazKUfRjmSeA6wPiJ2Bz4LLAa+ONZZSZIkqVOb7EmM\niKszc6+IeC/wk8z89PTY7ExxfOxJlCRJk6KPPYkPRMR/At4I/H0Z22J8U5IkSVLXRikS3wz8CvC/\nMvOWiHgO8NfjnZa6ZC9IzUzazKXNXNrMpWYmbebSDws2tUFmXgu8c2j9ZuDEcU5KkiRJ3RqlJ/Gl\nwAnAEh4tKjMznzPeqY2fPYmSJGlSzHZP4iaPJAKnAO8GrgIeGu90JEmS1Aej9CSuy8x/zMy1mfmv\n04+xz0ydsRekZiZt5tJmLm3mUjOTNnPph1GOJF4eER8D/g64f3owM68a26wkSZLUqVF6ElfQaNzL\nzP3HNKdZY0+iJEmaFL3rSczMZbMwD0mSJPXIKD2JRMSrIuK9EfGB6ce4J6bu2AtSM5M2c2kzlzZz\nqZlJm7n0wyaLxIj4LPAGYDkQZfnZY56XJEmSOjRKT+LqzHxhRFyTmb8UEdsCF2TmS2dniuNjT6Ik\nSZoUffzu5p+Un/8vInYF1gM7jW9KkiRJ6tooReJ5EbE98DEGN9SeAs4Y56TULXtBambSZi5t5tJm\nLjUzaTOXfhjl6uY/KIvnRMTfA1tl5j3jnZYkSZK6NEpP4lOAtwMvL0MrgD/PzAfHO7XxsydRkiRN\nit7dJxE4uWz3Zwyubj6yjP2XMc5LkiRJHRqlJ/HFmXlUZl6WmZdm5tHAPmOelzpkL0jNTNrMpc1c\n2sylZiZt5tIPoxSJ6yNi9+mViHgugyucJUmSNEeN0pN4AHAqcEsZWgK8KTMvG+/Uxs+eREmSNCl6\n15OYmZdGxPOA5zOoqG4AXjXuiUmSJKk7I313c2b+NDO/nZnXZOZPgU+MeV7qkL0gNTNpM5c2c2kz\nl5qZtJlLP4xUJEqSJGl+2WRPYvNFEbdm5uIxzGdW2ZMoSZImRW96EiNi9UZet+MY5iJJkqSe2Njp\n5ldv5PG88U9NXbEXpGYmbebSZi5t5lIzkzZz6YcNHknMzKlZnIckSZJ65HH1JM4V9iRKkqRJMds9\niV7dLEmSpMoGi8SIuLT8/KPZm476wF6Qmpm0mUububSZS81M2sylHzb2jSs7R8SvAodExJeAYOjc\nbGZeNe7JSZIkqRsb7EmMiNcDxwAvAa6c+Xxm7j/eqY2fPYmSJGlS9OY+iZl5NnB2RHwgMz80WxOS\nJElS9zZ54UpmfigiDo2Ij0fEH0fEq2djYuqOvSA1M2kzlzZzaTOXmpm0mUs/bLJIjIgTgeXAtcB3\ngeUR8ZFRdh4RfxURa4e/vSUiFkXExRFxQ0RcFBELh547PiJujIjrI+KgofG9I2J1ee6kofEtI+LM\nMv6NiHj20HNHlfe4ISLeOMp8JUmSNLDJ+ySWAm9pZj5U1jcHVmXmCze584iXAfcBp09vX66W/tfM\n/KOIeB+wfWYeFxF7Al8EXgzsClwC7JGZGRErgd/JzJURcT7wqcy8ICKOBX4xM4+NiMOA38zMwyNi\nEXAFsHeZyreAvTNz3Yz52ZMoSZImQh/vk5jAwqH1hYxYWWXm14EfzRg+BDitLJ8GvKYsHwqckZkP\nlm97uQnYNyJ2BrbLzJVlu9OHXjO8r3OAA8ryK4GLMnNdKQwvBg4eZc6SJEkarUj8CHBVRHw+Ik5j\ncFTuw0/gPXfMzLVleS2wY1neBbhtaLvbGBxRnDm+poxTft4KkJnrgXsiYoeN7EsjsBekZiZt5tJm\nLm3mUjOTNnPph43dJxGAzDwjIr7G4DRwAsdl5u1PxpuXU8kdn+89GlhSlhcCS4FlZX1F+dnn9RuB\nzQdr5R/VsmXLntD6tCdrf67P3fVVq1b1aj6u93vd3xf/ezvq+qpVq3o1ny5/P1asWMHU1BRdGPt3\nN0fEEuC8oZ7E64FlmXlHOZV8eWb+fEQcB5CZJ5btLgBOAP65bPOCMn4E8PLMfHvZ5oOZ+Y2IWADc\nnpnPiIjDy3u8rbzms8BlmXnmjLnZkyhJkiZCH3sSn2xfBY4qy0cB5w6NHx4RT4mI3YA9gJWZeQfw\n44jYNyICOBL4SmNfrwMuLcsXAQdFxMKI2B54BXDhOD+UJEnSXDLWIjEizgD+CXh+RNwaEW8CTgRe\nERE3AL9e1snM64CzgOuAfwSOzUcPcx4LfI7BudWbMvOCMn4KsENE3Ai8G5g+GvlD4A8YXOG8Evj9\nmVc2a8NmngaRmWyIubSZS5u51MykzVz6YaM9ieUU7rWZ+fzHs/PMPGIDTx24ge0/TOOimMz8FlDd\ncicz7wfesIF9nQqcOvJkJUmS9IhR7pP4FWB5Zv7z7Exp9tiTKEmSJkVvvrt5yCLg2nJD638rY5mZ\nh4xvWpIkSerSKD2J/xN4FfAh4ONDD81R9oLUzKTNXNrMpc1cambSZi79MMp9EleU29jsnpmXRMQ2\no7xOkiRJk2uUnsS3Am8BFmXmcyPiecDJmXnARl84AexJlCRJk6KP90l8B/BS4McAmXkD8O/GOSlJ\nkiR1a5Qi8f5yqxngkdviTPrhN22EvSA1M2kzlzZzaTOXmpm0mUs/jFIkfi0i/juwTUS8AjgbOG+8\n05IkSVKXRulJ3Bw4BjioDF0IfC439cIJYE+iJEmaFL27T2JmPhQRpwHfZFBRXT8XCkRJkiRt2CZP\nN0fEfwRuAj4FfBr4fkT8h3FPTN2xF6RmJm3m0mYubeZSM5M2c+mHUe53+CfA/pl5E0BEPBc4vzwk\nSZI0B43Sk3hFZr54aD2AlcNjk8qeREmSNCl605MYEa8ti1dGxPnAWWX99cCV456YJEmSurOxnsRX\nM/jO5q2AO4FfK4+7ypjmKHtBambSZi5t5tJmLjUzaTOXftjgkcTMPHoW5yFJkqQeGaUn8TnAO4El\nPFpUZmYeMt6pjZ89iZIkaVL0pidxyLnA5xh8y8rDZWzSKytJkiRtxChfy/fTzPxUZl6WmSvK42tj\nn5k6Yy9IzUzazKXNXNrMpWYmbebSD6McSfx0RHyQwdfx3T89mJlXjWtSkiRJ6tYoPYknAkcy+NaV\n6dPNZOb+453a+NmTKEmSJkUfexJfD+yWmQ+MezKSJEnqh1F6ElcD2497IuoPe0FqZtJmLm3m0mYu\nNTNpM5d+GOVI4vbA9RFxBY/2JM6JW+BIkiSpbZSexGWt8cxcMYb5zCp7EiVJ0qToXU/iXCgGJUmS\n9LPZZE9iRNwXEfeWx/0R8XBE/Hg2Jqdu2AtSM5M2c2kzlzZzqZlJm7n0wyhHEredXo6IzYBDgP3G\nOSlJkiR1a5M9ic0XRazKzKVjmM+ssidRkiRNit71JEbEa4dWNwP2Bn4ythlJkiSpc6PcJ/HVwKvK\n4yDgXuDQcU5K3bIXpGYmbebSZi5t5lIzkzZz6YdRehKPnoV5SJIkqUc22JMYESds4DUJkJkfGtek\nZos9iZIkaVL0qSfx36grqKcCxwA/B0x8kShJkqS2DfYkZuYfZ+bHM/PjwF8CWwNvAr4E7DZL81MH\n7AWpmUmbubSZS5u51MykzVz6YaM9iRGxA/C7wH8GTgdelJk/mo2JSZIkqTsb60n8Y+A3gb8APpOZ\n987mxGaDPYmSJGlSzHZP4sZugfN7wK7A/wB+MPTVfPf6tXySJElz28Z6EjfLzK0yc7vG42mzOUnN\nLntBambSZi5t5tJmLjUzaTOXfhjlZtqSJEmaZx7XdzfPFfYkSpKkSdGnnkRJkiTNUxaJqtgLUjOT\nNnNpM5c2c6mZSZu59INFoiRJkir2JNqTKEmSJoA9iZIkSeqcRaIq9oLUzKTNXNrMpc1cambSZi79\nYJEoSZKkij2J9iRKkqQJYE+iJEmSOmeRqIq9IDUzaTOXNnNpM5eambSZSz9YJEqSJKliT6I9iZIk\naQLYkyhJkqTOWSSqYi9IzUzazKXNXNrMpWYmbebSDxaJkiRJqtiTaE+iJEmaAPYkSpIkqXMWiarY\nC1IzkzZzaTOXNnOpmUmbufSDRaIkSZIqnfUkRsQU8GPgIeDBzNwnIhYBZwLPBqaAN2TmurL98cCb\ny/bLM/OiMr438HlgK+D8zHxXGd8SOB14EXA3cFhm/vOMOdiTKEmSJsJ86klMYFlm7pWZ+5Sx44CL\nM/N5wKVlnYjYEzgM2BM4GPhMREyHdDJwTGbuAewREQeX8WOAu8v4J4CPzsaHkiRJmgu6Pt08sxo+\nBDitLJ8GvKYsHwqckZkPZuYUcBOwb0TsDGyXmSvLdqcPvWZ4X+cABzz505+b7AWpmUmbubSZS5u5\n1MykzVz6oesjiZdExJUR8ZYytmNmri3La4Edy/IuwG1Dr70N2LUxvqaMU37eCpCZ64F7yulsSZIk\nbcKCDt/7JZl5e0Q8A7g4Iq4ffjIzc9AzqNm2bNmyrqfQO2bSZi5t5tJmLjUzaTOXfuisSMzM28vP\nuyLiy8A+wNqI2Ckz7yinku8sm68BFg+9/JkMjiCuKcszx6df8yzgBxGxAHh6Zv6wnsnRwJKyvBBY\nCiwr6yvKzz6v3whsPlgrh+en/3G57rrrrrvuuuuTuz69PDU1RRc6ubo5IrYBNs/MeyPiqcBFwO8D\nBzK42OSjEXEcsDAzjysXrnyRQSG5K3AJsHs52vhNYDmwEvgH4FOZeUFEHAu8MDPfHhGHA6/JzMNn\nzMOrmxtWrFjxyC+qBsykzVzazKXNXGpm0mYubbN9dXNXRxJ3BL5cLlBeAPxNZl4UEVcCZ0XEMZRb\n4ABk5nURcRZwHbAeODYfrW6PZXALnK0Z3ALngjJ+CvCFiLiRwS1wHlMgSpIkacP87maPJEqSpAkw\nn+6TKEmSpJ6ySFRluGFWA2bSZi5t5tJmLjUzaTOXfrBIlCRJUsWeRHsSJUnSBLAnUZIkSZ2zSFTF\nXpCambSZS5u5tJlLzUzazKUfLBIlSZJUsSfRnkRJkjQB7EmUJElS5ywSVbEXpGYmbebSZi5t5lIz\nkzZz6QeLREmSJFXsSbQnUZIkTQB7EiVJktQ5i0RV7AWpmUmbubSZS5u51MykzVz6wSJRkiRJFXsS\n7UmUJEkTwJ5ESZIkdc4iURV7QWpm0mYubebSZi41M2kzl36wSJQkSVLFnkR7EiVJ0gSwJ1GSJEmd\ns0hUxV6Qmpm0mUububSZS81M2sylHywSJUmSVLEn0Z5ESZI0AexJlCRJUucsElWxF6RmJm3m0mYu\nbeZSM5M2c+kHi0RJkiRV7Em0J1GSJE0AexIlSZLUOYtEVewFqZlJm7m0mUubudTMpM1c+sEiUZIk\nSRV7Eu1JlCRJE8CeREmSJHXOIlEVe0FqZtJmLm3m0mYuNTNpM5d+sEiUJElSxZ5EexIlSdIEsCdR\nkiRJnbNIVMVekJqZtJlLm7m0mUvNTNrMpR8sEiVJklSxJ9GeREmSNAHsSZQkSVLnLBJVsRekZiZt\n5tJmLm3mUjOTNnPpB4tESZIkVexJtCdRkiRNAHsSJUmS1DmLRFXsBamZSZu5tJlLm7nUzKTNXPrB\nIlGSJEkVexLtSZQkSRPAnkRJkiR1ziJRFXtBambSZi5t5tJmLjUzaTOXfrBIlCRJUsWeRHsSJUnS\nBLAnUZIkSZ2zSFTFXpCambSZS5u5tJlLzUzazKUfLBIlSZJUsSfRnkRJkjQB7EmUJElS5ywSVbEX\npGYmbebSZi5t5lIzkzZz6QeLREmSJFXsSbQnUZIkTQB7EiVJktS5OV0kRsTBEXF9RNwYEe/rej6T\nwl6Qmpm0mUububSZS81M2sylH+ZskRgRmwN/ChwM7AkcEREv6HZWk2HVqlVdT6F3zKTNXNrMpc1c\nambSZi79MGeLRGAf4KbMnMrMB4EvAYd2PKeJsG7duq6n0Dtm0mYubebSZi41M2kzl36Yy0XirsCt\nQ+u3lTFJkiRtwoKuJzBGI122/LSnvXrc8xirBx64mc02O/BJ3efU1NSTur+5wEzazKXNXNrMpWYm\nbebSD3P2FjgRsR/wwcw8uKwfDzycmR8d2mZufnhJkjQnzeYtcOZykbgA+B5wAPADYCVwRGZ+t9OJ\nSZIkTYA5e7o5M9dHxO8AFwKbA6dYIEqSJI1mzh5JlCRJ0uM3l69u3qC5cpPtiPiriFgbEauHxhZF\nxMURcUNEXBQRC4eeO7585usj4qCh8b0jYnV57qSh8S0j4swy/o2IePbQc0eV97ghIt44NL5bRHyz\nvOZLEbHFeFOoRcTiiLg8Iq6NiO9ExPIyPq+ziYityvuviojrIuIjZXxe51LmsHlEXB0R55V1M4mY\niohrSi4ry5i5RCyMiL+NiO+Wf0f7zvdcIuL55fdk+nFPRCw3lzg+Bv8fWh0RXyyfYbIyycx59WBw\n6vkmYAmwBbAKeEHX83qcn+VlwF7A6qGxPwLeW5bfB5xYlvcsn3WL8tlv4tEjySuBfcry+cDBZflY\n4DNl+TDgS2V5EfB9YGF5fB94ennuLOANZflk4G0d5LITsLQsb8ugN/UFZpMA25SfC4BvAC81lwT4\nPeBvgK/67+iRTG4BFs0YMxc4DXjz0L+jp5vLY/LZDLgdWDyfcymf62Zgy7J+JnDUpGXSyS9Rlw/g\nV4ALhtaPA47rel5P8BdxuEi8HtixLO8EXF+WjwfeN7TdBcB+wM7Ad4fGDwf+fGibfcvyAuCusnwE\ncPLQa/68vC6Au4DNyvh+w1l3mNG5wIFm85hMtgGuAH5hvucCPBO4BNgfOM9/R4/M5xZghxlj8zoX\nBgXhzY3xeZ3LjCwOAr4+33NhUKh9D9i+zPc84BWTlsl8PN0812+yvWNmri3La4Edy/IuDD7rtOnP\nPXN8DY/m8UhWmbkeuCcidtjIvhYB6zLz4ca+OhERSxgcbf0mZkNEbBYRqxh8/ssz81rM5RPAe4CH\nh8bmeyYwuNfsJRFxZUS8pYzN91x2A+6KiFMj4qqI+MuIeCrmMuxw4IyyPG9zycwfAh8H/oXBHVbW\nZebFTFgm87FIzK4nMFty8KfCbH3e3uUaEdsC5wDvysx7h5+br9lk5sOZuZTB0bOXR8T+M56fV7lE\nxKuAOzPzagZ/ZVfmWyZDXpKZewG/AbwjIl42/OQ8zWUB8CIGp/heBPwbg7NRj5inuQAQEU8BXg2c\nPfO5+ZZLRDwXeDeDs327ANtGxG8NbzMJmczHInENg16JaYt5bMU96dZGxE4AEbEzcGcZn/m5n8ng\nc68pyzPHp1/zrLKvBQx6Gu5u7GtxGfshsDAiNhva15on52P9bEoz7jnAFzLz3DJsNkVm3gP8A7A3\n8zuXXwUOiYhbGBz9+PWI+ALzOxMAMvP28vMu4MvAPpjLbcBtmXlFWf9bBkXjHfM8l2m/AXyr/M7A\n/P59+WXgnzLz7nKU7+8YtLtN1O/KfCwSrwT2iIgl5a+ew4CvdjynJ9NXGTTHUn6eOzR+eEQ8JSJ2\nA/YAVmbmHcCPY3CFXgBHAl9p7Ot1wKVl+SLgoBhc5bc9gz6LC8tfRZcDr2+8/6wpn+MU4LrM/OTQ\nU/M6m4j4uekr6SJi6zK3q5nHuWTm+zNzcWbuxuA02WWZeSTzOBOAiNgmIrYry09l0Ge2mnmeS/k8\nt0bE88pzduCGAAAEE0lEQVTQgcC1DPrN5m0uQ47g0VPNML9/X64H9ouIrctnORC4jkn7XXk8DZmT\n/mDw1873GFw9dHzX83kCn+MMBr0ODzDoS3gTg56DS4Abyi/KwqHt318+8/XAK4fG92bwP4CbgE8N\njW/J4EqoGxlcCbtk6Lk3lfEbgaOGxndj0P93I4OrubboIJeXMugvW8WgCLoaOHi+ZwO8ELiq5HIN\n8J4yPq9zGZrHr/Ho1c3zOpPy/qvK4zuU/07O91zKHP49g4u+vs3g6NDTzSUBngr8K7Dd0Ni8zgV4\nL4M/IlYzuCp+i0nLxJtpS5IkqTIfTzdLkiRpEywSJUmSVLFIlCRJUsUiUZIkSRWLREmSJFUsEiVJ\nklSxSJQ0J0TEayLi4Yh4fgfvPRURi0Ydl6RJYJEoaa44Avj78nO2beiGs96IVtLEskiUNPEiYltg\nX+B3GHzV5vT4sohYERFnR8R3I+Kvh56biogPRsS3IuKa6SOQZey/Dm33nYiY/n7UL0fElWXsLT/D\n/JaU9/+L8toLI2Kr8tzuEXFJRKwqc9mtjH8sIlaXub1h6PN8LSLOjYjvR8SJEXFkRKws2z2nbPeM\niPjbMr4yIn71CcQraZ6ySJQ0FxwKXJCZ/wLcFREvGnpuKfAuYE/gOUMFUwJ3ZebewMnAfxsaHza8\n/ubM/GXgxcDy8r2oo9od+NPM/EVgHfDaMv43wKczcynwK8AdEfFaBl//9ksMvvP1YxGxU9n+l4Df\nBl7A4Htcn5uZ+wCfA95ZtjkJ+EQZf115TpJ+JhaJkuaCI4Czy/LZPPaU88rM/EEOvoN0FbBk6Lm/\nKz+vmjG+Ie+KiFXA/wUWA3v8DHO8JTOvKcvfApaUI6C7ZOZXADLzgcz8CfAS4Is5cCfwNQaFaQJX\nZObazHyAwXe5Xlj2+Z2hz3Ag8KcRcTXwFWC7iNjmZ5irJLGg6wlI0hNRLgzZH/jFiEhgcwbF1HvK\nJvcPbf4Qj/3v3v2N8fU89g/o6dPCy4ADgP0y86cRcfn0cyOaOY9NvTZmrE8f0Rzez8ND6w/z6GcI\nYN9SSErS4+KRREmT7nXA6Zm5JDN3y8xnAbdExMse5/6mgBcBlNPWu5XxpwE/KgXizwP7PcF5R2be\nB9wWEYeW99syIrYGvg4cFhGbRcQzgJcDK6kLxw25CFj+yBtFLH2Cc5U0D1kkSpp0hwNfnjF2DoNT\nzsloVxgPb3cOsCgivgO8A/heGb8AWBAR1wEfYXDKeZT9tpaH149k0N/4beD/ADtm5peBa4BvA5cC\n7ymnnTf2eYafWw78ckR8OyKuBd46wlwl6TFi0KYjSZIkPcojiZIkSapYJEqSJKlikShJkqSKRaIk\nSZIqFomSJEmqWCRKkiSpYpEoSZKkikWiJEmSKv8fNiNpYLf+4tEAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x11b58ed10>"
]
}
],
"prompt_number": 1027
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There are several outliers to be accounted for. Lets limit the data to annual income of $200000."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_2 = loan_2[loan_2['annual_inc']<200000]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1028
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_2.annual_inc.hist(figsize=(10,5))\n",
"plt.ylabel('Number of Loans')\n",
"plt.xlabel('Annual Income')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1029,
"text": [
"<matplotlib.text.Text at 0x11b7d6210>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAFHCAYAAAAxyP2yAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+0ZXV55/n3R0sRI1pWYpeIaGHECB0zpURJR6PX0dAk\no0BWbMDuRVORtmckETs9+QE905GVWZOgSdrRZOl0tySCHYkktD+S0Agix053BktUBEECOF6HQikN\nKmpChArP/HH2pc653qo6Vdx999n7vF9rnXX3/p69z32+db9336f299l7p6qQJEnS4nhU1wFIkiRp\nY5kASpIkLRgTQEmSpAVjAihJkrRgTAAlSZIWjAmgJEnSgmk9AUyyOcmfJPl8kluTnJhkS5Jrktye\n5Ookmye2vyDJHUluS3LSRPsJSW5u3nv7RPthSd7ftF+f5Jlt90mSJKnPNuIM4NuBK6vqOOBHgNuA\n84Frquo5wLXNOkmOB84AjgdOBt6ZJM3nvAs4p6qOBY5NcnLTfg5wb9P+NuAtG9AnSZKk3mo1AUzy\nJOAnqur3AapqT1XdB5wCXNJsdglwWrN8KnBZVT1YVcvAncCJSY4Ejqiqnc12l07sM/lZVwCvaLFL\nkiRJvdf2GcBjgK8l+YMkn07yH5N8H7C1qnY32+wGtjbLTwN2Tey/Czhqjfa7m3aar3fBOMEE7kuy\npZXeSJIkDUDbCeAm4AXAO6vqBcDf0Ez3rqjxs+h8Hp0kSdIG2dTy5+8CdlXVJ5v1PwEuAO5J8tSq\nuqeZ3v1q8/7dwNET+z+9+Yy7m+XV7Sv7PAP4cpJNwJOq6uuTQSQxwZQkSb1RVTnwVoeu1QSwSfDu\nSvKcqrodeCVwS/M6m/EFG2cDH2x2+TDwviT/jvHU7rHAzqqqJN9KciKwEzgLeMfEPmcD1wOvYXxR\nyVqxtNFFDcyFF17IhRde2HUY6gnHi2blWNHB2Hv9a3vaPgMI8EbgD5M8FvgC8HPAo4HLk5wDLAOn\nA1TVrUkuB24F9gDn1t7M7VzgPcDhjK8qvqppvxh4b5I7gHuBMzegTxqo5eXlrkNQjzheNCvHiuZN\n6wlgVX0WeOEab71yH9v/BvAba7R/CnjeGu3fpUkgJUmSdGA+CUSasGPHjq5DUI84XjQrx4rmTRah\nNi5JLUI/JUlS/yVp/SIQzwBKE0ajUdchqEccL5qVY0XzxgRQkiRpwTgFLEmSNEecApYkSdK6MwGU\nJlino4PheNGsHCuaNyaAkiRJC8YaQEmSpDliDaAkSZLWnQmgNME6HR0Mx4tm5VjRvDEBlCRJWjDW\nAEqSJM0RawAlSZK07kwApQnW6ehgOF40K8eK5o0JoCRJ0oKxBlCSJGmOWAMoSZKkdWcCKE2wTkcH\nw/GiWTlWNG9MACVJkhaMNYCSJElzxBpASZIkrTsTQGmCdTo6GI4XzcqxonljAihJkrRgrAGUJEma\nIxtRA7ipzQ+XNlLS6u9K5/xPjCRpvTgFrIGpR/i6bh0+o42X5pF1XZqVY0XzxgRQkiRpwVgDqMEY\nTwEP9eccp4AlaUF4H0BJkiStOxNAacqo6wDUI9Z1aVaOFc0bE0BJkqQFYw2gBsMaQEnSEFgDKEmS\npHVnAihNGXUdgHrEui7NyrGieWMCKEmStGCsAdRgWAMoSRoCawAlSZK07lpPAJMsJ7kpyWeS7Gza\ntiS5JsntSa5Osnli+wuS3JHktiQnTbSfkOTm5r23T7QfluT9Tfv1SZ7Zdp80ZKOuA1CPWNelWTlW\nNG824gxgAUtV9fyqelHTdj5wTVU9B7i2WSfJ8cAZwPHAycA7M57XA3gXcE5VHQscm+Tkpv0c4N6m\n/W3AWzagT5IkSb3Veg1gki8CP1pV90603Qa8rKp2J3kqMKqq5ya5AHioqt7SbHcVcCHwJeBjVXVc\n034m46Tyf2m2eXNVfSLJJuArVfWUVTFYA7gArAGUJA3BUGoAC/hokhuSvL5p21pVu5vl3cDWZvlp\nwK6JfXcBR63RfnfTTvP1LoCq2gPcl2TLuvdCkiRpIDZtwPd4cVV9JclTgGuas38Pq6pK0vqpjR07\ndrBt2zYANm/ezPbt21laWgL21ma43u/1vVbWlw5hffKzDmX/NtebtTn593Z9aWrszUM8rs/v+krb\nvMTj+nytrywvLy+zUTb0NjBJ3gx8B3g9sFRV9yQ5EriumQI+H6CqLmq2vwp4M+Mp4OsmpoBfC7y0\nqt6wMk1cVdc7BbzY1mcKeMTexGueOAU8j0aj0cMHcml/HCs6GL2fAk7y+CRHNMvfB5wE3Ax8GDi7\n2exs4IPN8oeBM5M8NskxwLHAzqq6B/hWkhObi0LOAj40sc/KZ72G8UUl0iFa6joA9Yh/0DUrx4rm\nTdtTwFuBDzQX8m4C/rCqrk5yA3B5knOAZeB0gKq6NcnlwK3AHuDciVN35wLvAQ4Hrqyqq5r2i4H3\nJrkDuBc4s+U+SZIk9ZpPAtFgOAWsjea0nmblWNHB6P0UsCRJkuaPZwA1GN4HUJI0BJ4BlCRJ0roz\nAZSmjLoOQD0yeQ8vaX8cK5o3JoCSJEkLxhpADYY1gJKkIbAGUJIkSevOBFCaMuo6APWIdV2alWNF\n88YEUJIkacFYA6jBsAZQkjQE1gBKkiRp3ZkASlNGXQegHrGuS7NyrGjemABKkiQtGGsANRjWAEqS\nhsAaQEmSJK07E0BpyqjrANQj1nVpVo4VzRsTQEmSpAVjDaAGwxpASdIQWAMoSZKkdWcCKE0ZdR2A\nesS6Ls3KsaJ5YwIoSZK0YKwB1GBYAyhJGgJrACVJkrTuTAClKaOuA1CPWNelWTlWNG9MACVJkhaM\nNYAaDGsAJUlDYA2gJEmS1p0JoDRl1HUA6hHrujQrx4rmjQmgJEnSgrEGUINhDaAkaQisAZQkSdK6\nMwGUpoy6DkA9Yl2XZuVY0bwxAZQkSVow1gBqMKwBlCQNgTWAkiRJWncmgNKUUdcBqEes69KsHCua\nNyaAkiRJC6b1GsAkjwZuAHZV1auTbAHeDzwTWAZOr6pvNtteALwO+HvgvKq6umk/AXgP8Djgyqp6\nU9N+GHAp8ALgXuCMqvrSGjFYA7gArAGUJA3BUGoA3wTcyt6/zOcD11TVc4Brm3WSHA+cARwPnAy8\nM+O/6ADvAs6pqmOBY5Oc3LSfA9zbtL8NeMsG9EeSJKnXWk0Akzwd+Gng3cBKMncKcEmzfAlwWrN8\nKnBZVT1YVcvAncCJSY4Ejqiqnc12l07sM/lZVwCvaKkrWhijrgNQj1jXpVk5VjRv2j4D+Dbgl4GH\nJtq2VtXuZnk3sLVZfhqwa2K7XcBRa7Tf3bTTfL0LoKr2APc1U8ySJEnah9YSwCSvAr5aVZ9h79m/\nKU1hnoVNmiNLXQegHllaWuo6BPWEY0XzZlOLn/3jwClJfprxxRtPTPJeYHeSp1bVPc307leb7e8G\njp7Y/+mMz/zd3Syvbl/Z5xnAl5NsAp5UVV9fK5gdO3awbds2ADZv3sz27dsf/oVcOTXver/X91pZ\nXxrYerM2J//errvuuuuur8/6yvLy8jIbZUOeBJLkZcAvNVcBv5XxhRtvSXI+sLmqzm8uAnkf8CLG\nU7sfBZ5dVZXkE8B5wE7gz4F3VNVVSc4FnldVb0hyJnBaVZ25xvf3KuAFsD5XAY/Ym3jNE68Cnkej\n0ejhA7m0P44VHYyNuAq4zTOAq6389boIuDzJOTS3gQGoqluTXM74iuE9wLkTWdu5jG8Dczjj28Bc\n1bRfDLw3yR2MbwPzPcmfJEmSpvksYA2G9wGUJA3BUO4DKEmSpDlywAQwybOTPK5ZfnmS85Jsbj80\nqQujrgNQj0wWcEv741jRvJnlDOAVwJ4kzwb+PeMrdd/XalSSJElqzQFrAJN8pqqen+RXgPur6ndX\n2jYmxEfOGsDFMPQawKHyd1OSps3LVcAPJPmnwD8HXt20Paa9kCStbYiJ0nATW0maZ7NMAb8O+EfA\n/1lVX0zyLOA/tRuW1JVR1wGoR6zr0qwcK5o3BzwDWFW3AG+cWP9/Gd/LTz01niqVJEmLapYawJcA\nbwa2sTdhrKp6VruhrR9rAKcNt1ZuqP2C4fbN+xtK0mobUQM4SwL4V8C/Aj4N/P1Ke1X9dZuBrScT\nwGkmgH001L6ZAErSavNyI+hvVtV/qardVfXXK682g5K6M+o6APWIdV2alWNF82aWq4CvS/JbwH8G\nvrvSWFWfbi0qSZIktWaWKeARa8w9VdXLW4pp3TkFPM0p4D4aat+cApak1eaiBnAITACnmQD20VD7\nZgIoSavNSw0gSV6V5FeS/NrKq82gpO6Mug5APWJdl2blWNG8OWACmOTfA6cD5zE+DXE68MyW45Ik\nSVJLZqkBvLmqnpfkpqr6kSRPAK6qqpdsTIiPnFPA05wC7qOh9s0pYElabV6mgO9vvv5tkqOAPcBT\n2wtJkiRJbZolAfzTJE8GfovxzaCXgcvaDErqzqjrANQj1nVpVo4VzZtZngX8fzSLVyT5M+BxVXVf\nu2FJkiSpLbPUAD4WeAPw0qZpBPzfVfVgu6GtH2sAp1kD2EdD7Zs1gJK02lzcBzDJxYzPFF7C+K/Q\nWcCeqvoXbQa2nkwAp5kA9tFQ+2YCKEmrzctFIC+sqrOr6mNVdW1V7QBe1GZQUndGXQegHrGuS7Ny\nrGjezJIA7kny7JWVJD/I+EpgSZIk9dAsU8CvAP4A+GLTtA34uar6WLuhrR+ngKc5BdxHQ+2bU8CS\ntNpGTAHPchXwtUmeA/wQ479AtwOvajMoSZIktWemZwFX1d9V1Wer6qaq+jvgbS3HJXVk1HUA6hHr\nujQrx4rmzUwJoCRJkobjgDWAa+6U3FVVR7cQTyusAZxmDWAfDbVv1gBK0mqd1gAmuXk/+21tIRZJ\nkiRtgP1dBPLqDYtCmhsjYKnjGNQXo9GIpaWlrsNQDzhWNG/2mQBW1fIGxiFJkqQNckg1gH1jDeA0\nawD7aKh9swZQklabl0fBSZIkaUD2mQAmubb5+taNC0fq2qjrANQj3ttNs3KsaN7s7yKQI5P8OHBK\nkj9i1RxUVX267eAkSZK0/vZZA5jknwDnAC8Gblj9flW9vN3Q1o81gNOsAeyjofbNGkBJWm0jagAP\neBFIkl+rql9vM4i2mQBOMwHso6H2zQRQklabi4tAqurXk5ya5HeS/HYS7w+oARt1HYB6xLouzcqx\nonlzwAQwyUXAecAtwOeB85L85gz7PS7JJ5LcmOTWlX2SbElyTZLbk1ydZPPEPhckuSPJbUlOmmg/\nIcnNzXtvn2g/LMn7m/brkzzz4LovSZK0eGaZAr4Z2F5Vf9+sPxq4saqed8APTx5fVX+bZBPw34Bf\nAk4B/rqq3prkV4EnV9X5SY4H3ge8EDgK+ChwbFVVkp3AL1TVziRXAu+oqquSnAv8cFWdm+QM4Geq\n6sw14nAKeIJTwH001L45BSxJq83FFDDjvzqbJ9Y3M+Nfoqr622bxscCjgW8wTgAvadovAU5rlk8F\nLquqB5unkNwJnJjkSOCIqtrZbHfpxD6Tn3UF8IpZ4pIkSVpksySAvwl8Osl7klwCfAr4jVk+PMmj\nktwI7Aauq6pbgK1VtbvZZDewtVl+GrBrYvddjM8Erm6/u2mn+XoXQFXtAe5LsmWW2KS1jboOQD1i\nXZdm5VjRvNnffQABqKrLknyc8dRsAedX1Vdm+fCqegjYnuRJwEeSvHzV+5VkQ+Z/duzYwbZt2wDY\nvHkz27dvf/jB3Cu/mIuyPjYCliaWGcA6B3i/7+sc4P1+rnf9++C66xuxvmJe4nF9vtZXlpeXl9ko\nG/Ys4CT/Frgf+BfAUlXd00zvXldVz01yPkBVXdRsfxXwZuBLzTbHNe2vBV5aVW9otrmwqq5v6gy/\nUlVPWeN7WwM4wRrAPhpq36wBlKTV5qUG8JAk+YGVK3yTHA78JPAZ4MPA2c1mZwMfbJY/DJyZ5LFJ\njgGOBXZW1T3At5KcmHHmchbwoYl9Vj7rNcC1bfVHkiRpKFpLAIEjgY81NYCfAP60qq4FLgJ+Msnt\nwP/YrFNVtwKXA7cC/wU4d+K03bnAu4E7gDur6qqm/WLg+5PcAfwr4PwW+6OFMOo6APXI6uk9aV8c\nK5o3+60BbKZVb6mqHzrYD66qm4EXrNH+deCV+9jnN1jjApOq+hTwPbedqarvAqcfbGySJEmLbJb7\nAH4IOK+qvrQxIa0/awCnWQPYR0PtmzWAkrTaRtQAHvAqYGALcEtzM+a/adqqqk5pLyxJkiS1ZZYE\n8N+u0eZ/2TVQI/berkTav9Fo9PDtHKT9caxo3sxyH8BRkm3As6vqo0keP8t+kiRJmk+z1AD+S+D1\nwJaq+sEkzwHeVVW9eeyaNYDTrAHso6H2zRpASVptXu4D+PPAS4BvAVTV7cA/aDMoSZIktWeWBPC7\nze1WgIdvDeN/2TVQo64DUI94bzfNyrGieTNLAvjxJP8b8PgkPwn8MfCn7YYlSZKktsxSA/ho4Bzg\npKbpI8C7+1RUZw3gNGsA+2iofbMGUJJW24gawAMmgE0ghwHPZfwX6LaqeqDNoNabCeA0E8A+Gmrf\nTAAlabW5uAgkyf8E3Am8A/hd4AtJfrrNoKTujLoOQD1iXZdm5VjRvJnlfn7/Dnh5Vd0JkOQHgSub\nlyRJknpmlhrAT1bVCyfWA+ycbJt3TgFPcwq4j4baN6eAJWm1Tp8FnORnm8UbklwJXN6s/xPghjaD\nkiRJUnv2VwP4auBVwOOArwIva15fa9qkARp1HYB6xLouzcqxonmzzzOAVbVjA+OQJEnSBpmlBvBZ\nwBuBbexNGKuqTmk3tPVjDeA0awD7aKh9swZQklbrtAZwwgeBdzN++sdDTZtHbEmSpJ6a5VFwf1dV\n76iqj1XVqHl9vPXIpE6Mug5APWJdl2blWNG8meUM4O8muZDxI+C+u9JYVZ9uKyhJkiS1Z5YawIuA\nsxg/DWRlCpiqenm7oa0fawCnWQPYR0PtW6slLp3ymCPpUM3Fs4CTfAE4rm/P/51kAjjNBLCPhtq3\n4fbLY46kQzUXzwIGbgae3GYQ0vwYdR2AemXUdQDqCWsANW9mqQF8MnBbkk+ytwawV7eBkSRJ0l6z\nTAEvrdVeVaMW4mmFU8DTnALuo6H2bbj98pgj6VDNRQ3gEJgATjMB7KOh9m24/fKYI+lQzUUNYJLv\nJPl28/pukoeSfKvNoKTujLoOQL0y6joA9YQ1gJo3B6wBrKonrCwneRRwCvBjbQYlSZKk9hzSFHCS\nG6tqewvxtMIp4GlOAffRUPs23H55zJF0qObiWcBJfnZi9VHACcD9rUUkSZKkVs1yH8BXA69qXicB\n3wZObTMoqTujrgNQr4y6DkA9YQ2g5s0sNYA7NiAOSZIkbZB91gAmefM+9imAqvr1toJab9YATrMG\nsI+G2rfh9stjjqRD1XUN4N/wvUfm7wPOAX4A6E0CKEmSpL32WQNYVb9dVb9TVb8D/EfgcODngD8C\njtmg+KQNNuo6APXKqOsA1BPWAGre7LcGMMn3A78I/DPgUuAFVfWNjQhMkiRJ7dhfDeBvAz8D/Afg\nnVX17Y0MbD1ZAzjNGsA+GmrfhtsvjzmSDlXXj4L718BRwP8OfHnicXDfnvVRcEmOTnJdkluSfC7J\neU37liTXJLk9ydVJNk/sc0GSO5LcluSkifYTktzcvPf2ifbDkry/ab8+yTMP9h9BkiRpkeyvBvBR\nVfW4qjpijdcTZ/z8B4FfrKp/yPjxcT+f5DjgfOCaqnoOcG2zTpLjgTOA44GTgXdmfLoK4F3AOVV1\nLHBskpOb9nOAe5v2twFvOYj+S6uMug5AvTLqOgD1hDWAmjez3Aj6kFXVPVV1Y7P8HeDzjM8qngJc\n0mx2CXBas3wqcFlVPVhVy8CdwIlJjgSOqKqdzXaXTuwz+VlXAK9or0eSJEn912oCOCnJNuD5wCeA\nrVW1u3lrN7C1WX4asGtit12ME8bV7Xc37TRf7wKoqj3AfUm2rH8PtBiWug5AvbLUdQDqiaWlpa5D\nkKZsSAKY5AmMz869afXFJM3VGVZLS5IkbZADPgrukUryGMbJ33ur6oNN8+4kT62qe5rp3a827XcD\nR0/s/nTGZ/7ubpZXt6/s8wzGF6psAp5UVV9fHceOHTvYtm0bAJs3b2b79u0P/49spTZjUdbHRuw9\nezFqvvZ9nQO8P8v65Getd3yPdJ0DvO/6xq+vLK/1frM2Z7//rnezvtI2L/G4Pl/rK8vLy8tslH3e\nBmZdPnx8AccljC/S+MWJ9rc2bW9Jcj6wuarOby4CeR/wIsZTux8Fnl1VleQTwHnATuDPgXdU1VVJ\nzgWeV1VvSHImcFpVnbkqDm8DM8HbwOzPiL1/yOeJP7P5NGLt8eJtYDRtNBo9/EdfOpCNuA1M2wng\nS4D/CtzE3qP8BYyTuMsZn7lbBk6vqm82+/wb4HXAHsZTxh9p2k8A3sP4iSRXVtXKLWUOA97LuL7w\nXuDM5gKSyThMACeYAPbRUPs23H55zJF0qHqfAM4LE8BpJoB9NNS+DbdfHnMkHaqubwQtLaBR1wGo\nV0ZdB6CemKz1kuaBCaAkSdKCcQp4ATkF3EdD7dtw++UxR9KhcgpYkiRJ684EUJoy6joA9cqo6wDU\nE9YAat6YAEqSJC0YawAXkDWAfTTUvg23Xx5zJB0qawAlSZK07kwApSmjrgNQr4y6DkA9YQ2g5o0J\noCRJ0oKxBnABWQPYR0Pt23D75TFH0qGyBlCSJEnrzgRQmjLqOgD1yqjrANQT1gBq3pgASpIkLRhr\nABeQNYB9NNS+DbdfHnMkHSprACVJkrTuTAClKaOuA1CvjLoOQD1hDaDmjQmgJEnSgrEGcAFZA9hH\nQ+3bcPvlMUfSobIGUJIkSevOBFCaMuo6APXKqOsA1BPWAGremABKkiQtGGsAF5A1gH001L4Nt18e\ncyQdKmsAJUmStO5MAKUpo64DUK+Mug5APWENoOaNCaAkSdKCsQZwAVkD2EdD7dtw++UxR9KhsgZQ\nkiRJ684EUJoy6joA9cqo6wDUE9YAat6YAEqSJC0YawAXkDWAfTTUvg23Xx5zJB0qawAlSZK07kwA\npSmjrgNQr4z2+U6Swb508KwB1LzZ1HUAkjRMQ50CNgGUhsAawAVkDWAfDbVv9qt/rG+U2mYNoCRJ\nktadCaA0ZdR1AOqVUdcBqCesAdS8MQGUJElaMK0mgEl+P8nuJDdPtG1Jck2S25NcnWTzxHsXJLkj\nyW1JTppoPyHJzc17b59oPyzJ+5v265M8s83+aBEsdR2AemWp6wDUE0tLS12HIE1p+wzgHwAnr2o7\nH7imqp4DXNusk+R44Azg+Gafd2bv/QbeBZxTVccCxyZZ+cxzgHub9rcBb2mzM5IkSUPQagJYVX8B\nfGNV8ynAJc3yJcBpzfKpwGVV9WBVLQN3AicmORI4oqp2NttdOrHP5GddAbxi3TuhBTPqOgD1yqjr\nANQT1gBq3nRRA7i1qnY3y7uBrc3y04BdE9vtAo5ao/3upp3m610AVbUHuC/JlpbiliRJGoRObwRd\nVZVkQ24otWPHDrZt2wbA5s2b2b59+8M1GSv/M1uU9bERe+uXRs3Xvq9zgPdnWV9qMb5Hus4B3nd9\n49eX9vM+q9a7iK+N9fExZV6OZ667PoT1leXl5WU2Sus3gk6yDfjTqnpes34bsFRV9zTTu9dV1XOT\nnA9QVRc1210FvBn4UrPNcU37a4GXVtUbmm0urKrrk2wCvlJVT1kjBm8EPcEbQffRUPtmv/rHG0FL\nbRvqjaA/DJzdLJ8NfHCi/cwkj01yDHAssLOq7gG+leTE5qKQs4APrfFZr2F8UYn0CIy6DkC9Muo6\nAPXE5JkeaR60OgWc5DLgZcAPJLkL+DXgIuDyJOcAy8DpAFV1a5LLgVuBPcC5E6ftzgXeAxwOXFlV\nVzXtFwPvTXIHcC9wZpv9kSRJGgKfBbyAnALuo6H2zX71j1PAUtuGOgUsSZKkDpkASlNGXQegXhl1\nHYB6whpAzRsTQEmSpAVjDeACsgawj4baN/vVP9YASm2zBlCSJEnrzgRQmjLqOgD1yqjrANQT1gBq\n3pgASpIkLRhrABeQNYB9NNS+2a/+sQZQaps1gJIkSVp3JoDSlFHXAahXRl0HoJ6wBlDzxgRQkiRp\nwVgDuICsAeyjofbNfvWPNYBS2zaiBnBTmx8uSRqe8X8ih8fEVovEKWBpyqjrANQro64D6EgN8NUu\nawA1b0wAJUmSFow1gAvIGsA+Gmrf7Ff/DLVv1jZqfngfQEmSJK07E0BpyqjrANQro64DUE9YA6h5\n41XAa/jGN77BX/7lX3YdhiRJUiusAVzD9ddfz8tedjKHH/7iFqPqxv33/zceeOBbDLWGZ5j9guH2\nzX71z1D7Zg2g5of3AezQ4Yc/l/vu+/Ouw1h3T3rSi3jggU92HYYkSeqQNYDSlFHXAahXRl0HoJ6w\nBlDzxgRQkiRpwZgASlOWug5AvbLUdQDqiaWlpa5DkKZYAyhJEsN9xjH4nGN9L88ASlNGXQegXhl1\nHYDWVZvPGr6u5c/v7jnH6icTQEmSpAVjAihNWeo6APXKUtcBqDeWug5AmmICKEmStGBMAKUpo64D\nUK+Mug5AvTHqOgBpigmgJEnSgjEBlKYsdR2AemWp6wDUG0tdByBN8T6AkiQN3FDvcej9DQ+dZwCl\nKaOuA1CvjLoOQL0x6vj7d3UPQu9vOK9MACVJkhaMCaA0ZanrANQrS10HoN5Y6joAaYoJoCRJ0oIZ\nRAKY5OQktyW5I8mvdh2P+mzUdQDqlVHXAag3Rl0HIE3pfQKY5NHA7wEnA8cDr01yXLdRqb9u7DoA\n9YrjRbNyrLQhySBfG2EIt4F5EXBnVS0DJPkj4FTg810Gpb76ZtcBqFccL5qVY6UdQ70auP0ksPdn\nAIGjgLsm1nc1bZIkSVrDEM4AtpL+33//bTzxia9u46M7df/9t3cdwpxb7joA9cpy1wGoN5a7DkCa\nMoQE8G7g6In1oxmfBZxyKHPqDzzwZ4ce1dwb5l3h16dfl6zDZ7TBn9l82td46Xu/9meofWu7X10e\nW/yZaVrUmVgFAAAG30lEQVT6/hiVJJuAvwJeAXwZ2Am8tqqsAZQkSVpD788AVtWeJL8AfAR4NHCx\nyZ8kSdK+9f4MoCRJkg7OEK4C3idvEL24kiwnuSnJZ5LsbNq2JLkmye1Jrk6yeWL7C5pxcluSkyba\nT0hyc/Pe2yfaD0vy/qb9+iTP3Nge6pFI8vtJdie5eaJtQ8ZHkrOb73F7kn++Ef3VodvHWLkwya7m\n+PKZJD818Z5jZYElOTrJdUluSfK5JOc17fN3fKmqQb4YTwffCWwDHsP4LpzHdR2Xrw37+X8R2LKq\n7a3ArzTLvwpc1Cwf34yPxzTj5U72nh3fCbyoWb4SOLlZPhd4Z7N8BvBHXffZ10GNj58Ang/cvJHj\nA9gCfAHY3Ly+AGzu+t/D10GPlTcD/3qNbR0rC/4Cngpsb5afwPgahePm8fgy5DOAD98guqoeBFZu\nEK3FsfrysFPYexneJcBpzfKpwGVV9WCNbyh+J3BikiOBI6pqZ7PdpRP7TH7WFYwvQlJPVNVfAN9Y\n1bwR4+MfA1dX1Ter6pvANYyfYqQ5tY+xAmtffupYWXBVdU9V3dgsf4fxQymOYg6PL0NOAL1B9GIr\n4KNJbkjy+qZta1XtbpZ3A1ub5acxfeuglbGyuv1u9o6hh8dXVe0B7kuyZd17oY3U9vj4/v18lvrn\njUk+m+Tiiek8x4oelmQb47PHn2AOjy9DTgC9umWxvbiqng/8FPDzSX5i8s0any93jGhNjg8dwLuA\nY4DtwFeA3+k2HM2bJE9gfHbuTVX17cn35uX4MuQEcKYbRGuYquorzdevAR9gXBKwO8lTAZrT619t\nNl89Vp7OeKzc3Syvbl/Z5xnNZ20CnlRVX2+lM9oobY+Pe9f4LI9LPVRVX60G8G7GxxdwrAhI8hjG\nyd97q+qDTfPcHV+GnADeABybZFuSxzIulPxwxzFpAyR5fJIjmuXvA04Cbmb88z+72exsYOUX88PA\nmUkem+QY4FhgZ1XdA3wryYlJApwFfGhin5XPeg1wbcvdUvs2YnxcDZyUZHOSJwM/yfgepuqR5g/4\nip9hfHwBx8rCa36+FwO3VtX/NfHW/B1fur5ipuWrcX6K8RU4dwIXdB2Prw37uR/D+KqqG4HPrfzs\nGV8h9VHg9uYXZfPEPv+mGSe3Af94ov0Exgf3O4F3TLQfBlwO3AFcD2zrut++DmqMXMb4yUEPMK6l\n+bmNGh/N97qjeZ3d9b+Fr4MeK69jXJB/E/BZxn/ItzpWfDU/s5cADzV/fz7TvE6ex+OLN4KWJEla\nMEOeApYkSdIaTAAlSZIWjAmgJEnSgjEBlCRJWjAmgJIkSQvGBFCSJGnBmABK6pUkpyV5KMkPdfC9\nl9d65vO+2iVpXpkASuqb1wJ/1nzdaPu6cao3VJXUKyaAknqjecD6icAvMH6840r7UpJRkj9O8vkk\n/2niveUkFyb5VJKbVs4cNm3/68R2n0uy8nzNDyS5oWl7/UHEt635/v+h2fcjSR7XvPfsJB9NcmMT\nyzFN+28lubmJ7fSJ/nw8yQeTfCHJRUnOSrKz2e5ZzXZPSfInTfvOJD/+CP55JS0QE0BJfXIqcFVV\n/X/A15K8YOK97cCbgOOBZ00kQwV8rapOAN4F/NJE+6TJ9ddV1Y8CLwTOa56rOatnA79XVT8MfBP4\n2ab9D4HfrartwD8C7knys8D/APwI8Ergt1YeGN+0/c/AcYyfA/qDVfUi4N3AG5tt3g68rWl/TfOe\nJB2QCaCkPnkt8MfN8h8zPQ28s6q+XOPnW94IbJt47z83Xz+9qn1f3pTkRuD/AY5m/ID2WX2xqm5q\nlj8FbGvOXD6tqj4EUFUPVNX9wIuB99XYV4GPM046C/hkVe2uqgcYPwt05aHun5vowyuB30vyGcYP\nij8iyeMPIlZJC2pT1wFI0iyaiyxeDvxwkgIezThR+uVmk+9ObP73TB/fvrtG+x6m/xO8MlW7BLwC\n+LGq+rsk1628N6PVcRxo36xaXzkTOfk5D02sP8TePgQ4sUkSJWlmngGU1BevAS6tqm1VdUxVPQP4\nYpKfOMTPWwZeANBMJR/TtD8R+EaT/D0X+LFHGHeq6jvAriSnNt/vsCSHA38BnJHkUUmeArwU2Mn3\nJoX7cjVw3sPfKNn+CGOVtCBMACX1xZnAB1a1XcF4GriY7Urcye2uALYk+Rzw88BfNe1XAZuS3Ar8\nJuNp4Fk+d63lyfWzGNcTfhb478DWqvoAcBPwWeBa4JebqeD99WfyvfOAH03y2SS3AP9yhlgliYzL\nZSRJkrQoPAMoSZK0YEwAJUmSFowJoCRJ0oIxAZQkSVowJoCSJEkLxgRQkiRpwZgASpIkLRgTQEmS\npAXz/wPSgu4IAH5fqgAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x12dbf52d0>"
]
}
],
"prompt_number": 1029
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Much better!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's take a quick look at the funded amount. We will plot funded amount both from the unfiltered data frame and the filtered data frame (annual income < $200,000). "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print loan.funded_amnt.hist()\n",
"plt.title(\"Loan with income maximum of $8,000,000.00\")\n",
"plt.xlabel(\"Funded Amount\")\n",
"plt.show()\n",
"\n",
"print loan_2.funded_amnt.hist()\n",
"plt.title(\"Loan with income maximum of $200,000.00\")\n",
"plt.xlabel(\"Funded Amount\")\n",
"plt.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Axes(0.125,0.125;0.775x0.775)\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEZCAYAAABvpam5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xv8XVV95//XG8JFAfkatNwhVKOVggZR4k9Fj6IU/VnA\nyk/CWEos07FGRezlZ7AzQm0H0RlbYVoZK7EBWylYvGCFyMVsxbEhlRKIRCSZaZBECF4oEFFMyGf+\n2Oskm+P5Xs53n/Nde4f38/E4j+y99mW99z45Z5291j7nq4jAzMxsELvkDmBmZu3jxsPMzAbmxsPM\nzAbmxsPMzAbmxsPMzAbmxsPMzAbmxmMnIeltkr46wfKOpPsG2N91ks4cTrqdl6RLJf3n3DkGJekV\nktZKelTSyROsd4Gkw2cym7WDG49JSFov6YTcOSYTEX8fEb/RnZe0TdKv1tjfGyPiM8NJt/OKiHdG\nxJ/nzjENHwIuiYh9IuLa3oWSjpJ0C/BHwO2SbpG0V2X5qZLukvRI+veU8SqSNFvSFyRtTq+nM3qW\nnyDpbkk/lfQ1SYf1LP+IpB+lx0UTHVSdfUmaI2l52va7k73uh7mvNnLjMblIjzZS7gDWWIcBayZY\n/mngJuBjwMvTvwEg6VeAvwf+ICKeAfwx8FlJzxpnX38N/Bz4FeBtwKWSjkz7ehZwDfAnwDOBbwNX\ndTeU9A7gFOCF6fGbqeyXDGFfVwK3AbPTPv5xvGMa5r5aKyL8mOAB/Bvw2j7lewAfBzamx18Cu6dl\nY8A/AQ8CPwG+DBxc2bag/OT3TeAR4KvAfuPU/3Xgt9L0K4BtwBvT/AnA7Wl6IXBLmv5GWm8z8Cjw\n/wEd4D7gD4BNwA+AhRMcdwGcXdn3N4H/lo7n/wAnVdadDfxtOg8/Ab5QWfZ7wFrgx8CXgAMry7YB\n70zLH0nn5DnAPwP/DvwDsFtl/TcBq4CHgP8FHD1B/inve6LnKx3bfcCb0vzewDrgt9P8UuDP0nQH\n2ED5ZvpgOsenAm8E7knnYHEl4/ZtK9vfV5lfT/nJ/870PC4B9geuBx4GbgTGJjgHfc898L+BJ4DH\n0rnZrc+2PwWOBs4HDu9Z9nJgU0/Zg8D8PvvZC3gceG6l7HLgw2n6PwHfrCx7esr1vDT/LeA/Vpa/\nHfjncY532vsCnkfZwO3V89p7xzh1DW1fbX34ymP6/gQ4DnhRehwHdPu+d6F8oR+WHj8D/qpn+zMo\n35R/Bdid8k2in4LyTQXg1ZRv3K+qzBe9G0REd/kLo+yW+FyaPwB4BnAQcDbw15L2Hafe3iuu44C7\ngf2Aj6bj6/oMsCdwZDqevwCQ9FrgQsrG60DgXso37aoTgWOAlwHvBz5FeW4Oo3zzOiPt65hU5+9R\nvqF/ErhW0u7j5J/yvpng+YqInwC/C3xK0rMpPyT8a0T83TjnaX/KDxYHAh8ELqP8tH0McDzwwcoY\nwmRXtQH8FuWHhOdTNp7XA4spz/MuwDn9Npzo3EfEc4DvUzaIz4iILX12cVvafi6wa8+yO4Ctkt4k\naVdJp1K+Wd7ZZz/PA7ZGxLqe7X89Tf96midle4yyce4uP7K6PNXx6/RXZ1+/DvyfiPjpODl7DXNf\nreTGY/r+A/ChiPhRRPwI+FPgTCjfcCLiCxHx84jYTPkifHVl2wD+NiLWRcTPgauBeePU8/XKtscD\nH67Mvzotn6otKfMTEXE95ZXJ86e47b0RsSTKj1FXAAdK+hVJBwInAb8fEQ9HxNaIuCVt8zZgSUSs\niohfAOcB/09PP/RHI2JzRKwBVgPXR8T6iHiE8o3ymLTefwI+GRH/EqUrKD/RvmyCzFPa92TPV0Tc\nCHwO+Fo61t5uk2r34Bbgv0bEE5RdJrOBj0fET1OONZQfNvpt28//iIgfRsQPgFsoP93eERGPA1+o\nnJ9eUzn3E3kb5af2U4BVkj4uaRZAelN8Rzq+n1N2Yb0jIn7WZz97U17dVD0K7DPB8kd6lj/cs2zv\ncTLvVWNfvct6t+01zH21khuP6TuI8tNc1/dTGZKeLumTaXDwYco3+H0lVd8oHqhM/4zxXxArgOel\nfuZ5lG/ch0raD3gpZRfVVP04IrZV5h+boN5e2/OmT3SkbQ8FfhIRvS8W2PGJt7vdTym7UA6urLOp\nMv2znvmfU74hABwO/KGkh7oP4JBUx3gm2vf2cz7F5+tTlJ8cl0bEQxPU+ePUwHbr6Jdjqud8smP4\n+QT7msq5H1dE3BcRpwP/nfLq5jRSoynpxcDfAMdHxG6UDe0SSS/qs6vNlFe7Vfuy403+0XGWPzrO\n9vumsn7Gq2sq++q37Ri/3BiNV1edfbWSG4/p+wEwpzJ/GGWfP8AfUl6uHxcR+1K+uMQ0BrDTG/Vt\nwLnA6tTF8K1Ux7rUrZLTfcDscbq/nnSO0t06+7HjPE2m2qXzfcpP9M+sPPaOiKvG23gAEz5fknal\nfLO8AniXpOdMkHMQP6Xsl+86YArbTPX/UN1zX7Wc8uri6DR/ArAiIv4VICK+DdwKvK7PtvcAsyQ9\nt1L2IuCuNH0XlSuxlPM5Pcvn9Wz7nXFy1tnXXcCvStq7Z/ld9DfMfbWSG4+p2V3SnpXHLMq7Kf6z\npGeluyg+CHT7wfem/JT4sKTZlIOOvQZpSL4OvIsdXVQF8G4m7rLaRPnCGamIuJ+yC+gTksYk7Sap\nO+ZyJfB2SS+StAdld9CKiPj+BLtUz3R3/lPA70s6TqW9JP2/PS/QyfTuu2uy5+sDlAPMb6e8aeAK\nSd3XzrQ+FCSrgDdKeqakAyg/IAzLdM79dpI+UDm3e1N2mXbfHO8Aju9eaaTxqONTOZIWSvo32H7F\n83ngQ+kK75XAb1KOk0HZ9XaUpN+StCfluV8VEfek5VcAfyDpIEkHU97wsbSSs5DUfb6+ON19pXVW\nAeen1/hvAUdR3r3VzzD31UpuPKbmOsounu7jg8CfU94KeGd6fDuVQXkX1tOAH1FeJVzPL386jZ7p\niT69fp3yBdztovoGZXdOtcuqdx8XAJenLp7TplDHRPptW50/k7Kv/27KRuscgIi4GfgvlC+aHwBH\nAAvG2Ue/su31RsRtlIPlf0V5R9Ra4HcmyTylfTPB8yXpWOB9wO+k7qiPpGXv77OffvVOdM4/Q/mG\nux5YRjmgPdlzNKX/N1M495N5LuUn5XOBm4HvUd6kQETcQHnTxOclPQr8I+VV4U1p20Mp787rWkR5\nfh+k/ID1+xHx3bSvHwFvAf4r5fP6kmrOiPgk5d1vqylfZ1+OiL+p7PuQbl0R8cOa+1qQtvlJ2sdb\nIuLHAJKOT8dae187C+3onp1gpfKy/dvAhoj4zfTp7CrKfuj1wFsj4t/TuudR3p3yBHBO+o/WfREu\npbwr57qIeG8q34OyFX8xZZ/s6RFRHUsws0wkfZBynGdKVyxpm69Svva/N7pkIOkQ4B8i4pWjrMf6\nm+qVx3sp7xLptjSLgRsj4nmUn0oWA6Qv/pxOeRvbSZRdGd1L+kspvzcwF5gr6aRUfjblIONcytsg\nP1LvkMxsWCLiQ4M0HGmb3xh1w5Hq2eCGI59JG4/Uur+R8n71bkNwMuUXfUj/npqmTwGujIgtEbGe\n8h7r+el2zn0iYmVa74rKNtV9XUM5GGdmZg02lSuPv6T8xmz1Fs/9I6J7y+Amyi9GQXmr6obKehso\nbw3sLd/IjlsGD6a8Y4eI2MqOQUszM2uoCRsPSW8CHoyI2xnnjpI0iNjW334yM7NpmDXJ8pcDJ0t6\nI+VA9zMkfQbYJOmAiHggdUk9mNbfSHmnRdchlFccG9N0b3l3m8OAH6RbYPft990FSW6gzMymISKG\n/iOpE155RMQHIuLQiOje5ve1iDgTuBY4K612FuX91aTyBZJ2l3QE5e/irIyIB4BHJM1PA+hnUv5Q\nGz37Oo1yAH68PK19nH/++dkzPFXztzm78+d/tD3/qEx25dGrm+Qi4GpJZ5Nu1QWIiDWSrqa8M2sr\nsCh2pF9Eeavu0yhv1V2WypcAn5HU/fXPQe5Fb43169fnjlBLm/O3OTs4f25tzz8qU248IuLrpG80\nR9mt1O+nCIiICym/zdpbfhs7ft6gWv44qfExM7N28DfMZ8jChQtzR6ilzfnbnB2cP7e25x+VKX3D\nvAkkRVuympk1hSRipgfMbXiKosgdoZY2529zdnD+3Nqef1QGHTC3Fnjyn6HIw1eJZjs3d1vthMrG\nI+e5khsPs4Zwt5WZmTWGG48Z0v5+0yJ3gGlr+7l3/rzann9U3HiYmdnAPOaxE/KYh5l1eczDzMwa\nw43HDGl/v2mRO8C0tf3cO39ebc8/Km48zMxsYB7z2Al5zMPMujzmYWZmjeHGY4a0v9+0yB1g2tp+\n7p0/r7bnHxU3HmZmNjCPeeyEPOZhZl0e8zAzs8Zw4zFD2t9vWuQOMG1tP/fOn1fb84/KhI2HpD0l\n3SpplaQ1kj6cyi+QtEHS7enxhso250laK+luSSdWyo+VtDotu7hSvoekq1L5CkmHj+JAzcxseCYd\n85D09Ih4TNIs4JvAHwEnAI9GxF/0rHsk8FngpcDBwE3A3IgISSuBd0fESknXAZdExDJJi4CjImKR\npNOBN0fEgj45POYxRR7zMLOubGMeEfFYmtwd2BV4qJupz+qnAFdGxJaIWA+sA+ZLOhDYJyJWpvWu\nAE5N0ycDl6fpaygbJjMza7BJGw9Ju0haBWwClkfEXWnReyTdIWmJpLFUdhCwobL5BsorkN7yjamc\n9O99ABGxFXhY0uzpHlBTtb/ftMgdYNrafu6dP6+25x+VqVx5bIuIecAhwKskdYBLgSOAecD9wMdG\nGdLMzJpl1lRXjIiHJX0FeElEFN1ySZcBX06zG4FDK5sdQnnFsTFN95Z3tzkM+EEaV9k3In7SL8PC\nhQuZM2cOAGNjY8ybN49OpwPs+HTQ1Plu2czVV6R/hzXfLZva+rnPd3W+0+k0Ko/zNyvfzpa/KAqW\nLl0KsP39chQmHDCX9Cxga0T8u6SnAV8F/hS4KyIeSOu8D3hpRPyHyoD5cewYMH9uGjC/FTgHWAl8\nhScPmB8dEe+UtAA41QPm9XjA3My6cg2YHwh8LY153Ap8OSJuBj4q6U5JdwCvBt4HEBFrgKuBNcD1\nwKLKO/4i4DJgLbAuIpal8iXAfpLWAucCi4d2dA3S/WTQXkXuANPW9nPv/Hm1Pf+oTNhtFRGrgRf3\nKf+dCba5ELiwT/ltwNF9yh8H3jqVsGZm1gz+baudkLutzKzLv21lZmaN4cZjhrS/37TIHWDa2n7u\nnT+vtucfFTceZmY2MI957IQ85mFmXR7zMDOzxnDjMUPa329a5A4wbW0/986fV9vzj4obDzMzG5jH\nPHZCHvMwsy6PeZiZWWO48Zgh7e83LXIHmLa2n3vnz6vt+UfFjYeZmQ3MYx47IY95mFmXxzzMzKwx\n3HjMkPb3mxa5A0xb28+98+fV9vyj4sbDzMwG5jGPnZDHPMysy2MeZmbWGG48Zkj7+02L3AGmre3n\n3vnzanv+UZmw8ZC0p6RbJa2StEbSh1P5bEk3SrpH0g2SxirbnCdpraS7JZ1YKT9W0uq07OJK+R6S\nrkrlKyQdPooDNTOz4Zl0zEPS0yPiMUmzgG8CfwScDPwoIj4q6f3AMyNisaQjgc8CLwUOBm4C5kZE\nSFoJvDsiVkq6DrgkIpZJWgQcFRGLJJ0OvDkiFvTJ4TGPKfKYh5l1ZRvziIjH0uTuwK7AQ5SNx+Wp\n/HLg1DR9CnBlRGyJiPXAOmC+pAOBfSJiZVrviso21X1dA5ww7aMxM7MZMWnjIWkXSauATcDyiLgL\n2D8iNqVVNgH7p+mDgA2VzTdQXoH0lm9M5aR/7wOIiK3Aw5JmT+9wmqv9/aZF7gDT1vZz7/x5tT3/\nqMyabIWI2AbMk7Qv8FVJr+lZHpJmpI9i4cKFzJkzB4CxsTHmzZtHp9MBdjzBTZ1ftWrVjNa3481+\nWPOrBlo/9/n2vOefqvNFUbB06VKA7e+XozDQ9zwk/RfgZ8B/BDoR8UDqkloeEb8maTFARFyU1l8G\nnA/cm9Z5QSo/A3hVRLwzrXNBRKxI4yr3R8Sz+9TtMY8p8piHmXVlGfOQ9KzunVSSnga8HrgduBY4\nK612FvDFNH0tsEDS7pKOAOYCKyPiAeARSfNVvrOdCXypsk13X6cBNw/lyMzMbGQmG/M4EPhaGvO4\nFfhyRNwMXAS8XtI9wGvTPBGxBrgaWANcDyyqXC4sAi4D1gLrImJZKl8C7CdpLXAusHhYB9ck3cvK\n9ipyB5i2tp9758+r7flHZcIxj4hYDby4T/lPgNeNs82FwIV9ym8Dju5T/jjw1inmNTOzBvBvW+2E\nPOZhZl3+bSszM2sMNx4zpP39pkXuANPW9nPv/Hm1Pf+ouPEwM7OBecxjJ+QxDzPr8piHmZk1hhuP\nGdL+ftMid4Bpa/u5d/682p5/VNx4mJnZwDzmMWTleEMTeMzDzEY35jHpr+radOR+42xKA2ZmOyt3\nW82YIneAmorcAaat7X3Wzp9X2/OPihsPMzMbmMc8hiz/dyyg7LbymIeZ+XseZmbWIG48ZkyRO0BN\nRe4A09b2Pmvnz6vt+UfFjYeZmQ3MYx5D5jGPsv42PFdmTwUe8zAzs8Zw4zFjitwBaipyB5i2tvdZ\nO39ebc8/KpM2HpIOlbRc0l2SviPpnFR+gaQNkm5PjzdUtjlP0lpJd0s6sVJ+rKTVadnFlfI9JF2V\nyldIOnzYB2pmZsMz6ZiHpAOAAyJilaS9gduAU4G3Ao9GxF/0rH8k8FngpcDBwE3A3IgISSuBd0fE\nSknXAZdExDJJi4CjImKRpNOBN0fEgp79esxj6ikyZ/CYh1lTZBvziIgHImJVmt4MfJeyUYD+P6J0\nCnBlRGyJiPXAOmC+pAOBfSJiZVrvCspGCOBk4PI0fQ1wwjSOxczMZshAYx6S5gDHACtS0Xsk3SFp\niaSxVHYQsKGy2QbKxqa3fCM7GqGDgfsAImIr8LCk2YNka74id4CaitwBpi1Hn7WkRjyaoO1jBm3P\nPypT/lXd1GX1j8B7I2KzpEuBD6XFfwZ8DDh7+BF3WLhwIXPmzAFgbGyMefPm0el0gB1PcO75Hbrz\nnfTvqp753uVNnx8sfxPeuJYvX57t/0NKwHDOf3d60O1fs32rprw+PD/6+aIoWLp0KcD298tRmNL3\nPCTtBvwTcH1EfLzP8jnAlyPiaEmLASLiorRsGXA+cC+wPCJekMrPAF4VEe9M61wQESskzQLuj4hn\n99ThMY+pp8icIXf9ZYac/1+a8v+gDa8ZG61sYx4qXwVLgDXVhiONYXS9GVidpq8FFkjaXdIRwFxg\nZUQ8ADwiaX7a55nAlyrbnJWmTwNurnFMZmY2YlMZ83gF8NvAa3puy/2IpDsl3QG8GngfQESsAa4G\n1gDXA4sqlwyLgMuAtcC6iFiWypcA+0laC5wLLB7O4TVJkTtATUXuANPW/j7rIneAWtp+/tuef1Qm\nHfOIiG/Sv5G5foJtLgQu7FN+G3B0n/LHKW/9NTOzFvBvWw1ZU/q6PebhMY/c58Cawb9tZWZmjeHG\nY8YUuQPUVOQOMG3t77Mucgeope3nv+35R8WNh5mZDcxjHkPWlL5uj3nk/5JiE85BG14zNlqjGvOY\n8jfMzdondwNqtvNyt9WMKXIHqKnIHaCGIneAmorcAWpp+5hB2/OPihsPMzMbmMc8hsxjHk2ovwkZ\nctdfZmjDa8ZGy9/zMDOzxnDjMWOK3AFqKnIHqKHIHaCmIneAWto+ZtD2/KPixsPMzAbmMY8h85hH\nE+pvQobc9ZcZ2vCasdHymIeZmTWGG48ZU+QOUFORO0ANRe4ANRW5A9TS9jGDtucfFTceZmY2MI95\nDJnHPJpQfxMy5K6/zNCG14yNlsc8zMysMdx4zJgid4CaitwBaihyB6ipyB2glraPGbQ9/6hM2nhI\nOlTSckl3SfqOpHNS+WxJN0q6R9INksYq25wnaa2kuyWdWCk/VtLqtOziSvkekq5K5SskHT7sAzUz\ns+GZdMxD0gHAARGxStLewG3AqcDbgR9FxEclvR94ZkQslnQk8FngpcDBwE3A3IgISSuBd0fESknX\nAZdExDJJi4CjImKRpNOBN0fEgp4cHvOYeorMGXLX34QMuesvM7ThNWOjlW3MIyIeiIhVaXoz8F3K\nRuFk4PK02uWUDQrAKcCVEbElItYD64D5kg4E9omIlWm9KyrbVPd1DXBCnYMyM7PRGmjMQ9Ic4Bjg\nVmD/iNiUFm0C9k/TBwEbKpttoGxsess3pnLSv/cBRMRW4GFJswfJ1nxF7gA1FbkD1FDkDlBTkTtA\nLW0fM2h7/lGZ8l8STF1W1wDvjYhHy+6ZUuqSGvn18cKFC5kzZw4AY2NjzJs3j06nA+x4gnPP79Cd\n76R/V/XM9y5v+nzb8nfLnqr1d+fTXENeH54f/XxRFCxduhRg+/vlKEzpex6SdgP+Cbg+Ij6eyu4G\nOhHxQOqSWh4RvyZpMUBEXJTWWwacD9yb1nlBKj8DeFVEvDOtc0FErJA0C7g/Ip7dk8FjHlNPkTlD\n7vqbkCF3/WWGNrxmbLSyjXmofDdcAqzpNhzJtcBZafos4IuV8gWSdpd0BDAXWBkRDwCPSJqf9nkm\n8KU++zoNuLnGMZmZ2YhNZczjFcBvA6+RdHt6nARcBLxe0j3Aa9M8EbEGuBpYA1wPLKpcMiwCLgPW\nAusiYlkqXwLsJ2ktcC6weChH1yhF7gA1FbkD1FDkDlBTkTtALW0fM2h7/lGZdMwjIr7J+I3M68bZ\n5kLgwj7ltwFH9yl/HHjrZFnMzKwZ/NtWQ+YxjybU34QMuesvM7ThNWOj5d+2MjOzxnDjMWOK3AFq\nKnIHqKHIHaCmIneAWto+ZtD2/KPixsPMzAbmMY8h85hHE+pvQobc9ZcZ2vCasdHymIeZmTWGG48Z\nU+QOUFORO0ANRe4ANRW5A9TS9jGDtucfFTceZmY2MI95DJnHPJpQfxMy5K6/zNCG14yNlsc8zMys\nMdx4zJgid4CaitwBaihyB6ipyB2glraPGbQ9/6i48TAzs4F5zGPIPObRhPqbkCF3/WWGNrxmbLQ8\n5mFmZo3hxmPGFLkD1FTkDlBDkTtATUXuALW0fcyg7flHxY2HmZkNzGMeQ+YxjybU34QMuesvM7Th\nNWOj5TEPMzNrDDceM6bIHaCmIneAGorcAWoqcgeope1jBm3PPyqTNh6SPi1pk6TVlbILJG2QdHt6\nvKGy7DxJayXdLenESvmxklanZRdXyveQdFUqXyHp8GEeoJmZDd+kYx6Sjgc2A1dExNGp7Hzg0Yj4\ni551jwQ+C7wUOBi4CZgbESFpJfDuiFgp6TrgkohYJmkRcFRELJJ0OvDmiFjQJ4fHPKaeInOG3PU3\nIUPu+ssMbXjN2GhlG/OIiFuAh/pl6lN2CnBlRGyJiPXAOmC+pAOBfSJiZVrvCuDUNH0ycHmavgY4\nYerxzcwshzpjHu+RdIekJZLGUtlBwIbKOhsor0B6yzemctK/9wFExFbgYUmza+RqqCJ3gJqK3AFq\nKHIHqKnIHaCWto8ZtD3/qMya5naXAh9K038GfAw4eyiJJrBw4ULmzJkDwNjYGPPmzaPT6QA7nuDc\n8zt05zvp31U9873Lmz7ftvzdsqdq/d35NNeQ14fnRz9fFAVLly4F2P5+OQpT+p6HpDnAl7tjHuMt\nk7QYICIuSsuWAecD9wLLI+IFqfwM4FUR8c60zgURsULSLOD+iHh2n3o85jH1FJkz5K6/CRly119m\naMNrxkarUd/zSGMYXW8GundiXQsskLS7pCOAucDKiHgAeETSfJXvrmcCX6psc1aaPg24eTqZzMxs\n5kzlVt0rgW8Bz5d0n6TfBT4i6U5JdwCvBt4HEBFrgKuBNcD1wKLK5cIi4DJgLbAuIpal8iXAfpLW\nAucCi4d2dI1S5A5QU5E7QA1F7gA1FbkD1NL2MYO25x+VScc8IuKMPsWfnmD9C4EL+5TfBvxSt1dE\nPA68dbIcZmbWHDvNb1tt2bKFz3/+8zOYqL8FCxbQhL5u9/fnzpC7/jJDW17fNjqjGvPYaRqPzZs3\ns+++Y+y111tmMNWT/eIXd/L443fThDcNv3HmzpC7/jJDW17fNjqjajyme6tuI+266548+uhV2erf\nZZcPAB8eZ2nBk2/jbJuC9uYvaG92aHv+oii231LaRm3PPyr+YUQzMxvYTtVtNXv2AWzZsnkGUz3Z\nLrt8gG3bPkwTuivcZZM7Q+76ywxteX3b6DTqex5mZvbU5sZjxhS5A9RU5A5QQ5E7QE1F7gC1tP17\nEm3PPypuPMzMbGAe8xgij3k0pf4mZMhdf5mhLa9vGx2PeZiZWWO48ZgxRe4ANRW5A9RQ5A5QU5E7\nQC1tHzNoe/5RceNhZmYD85jHEHnMoyn1NyFD7vrLDG15fdvoeMzDzMwaw43HjClyB6ipyB2ghiJ3\ngJqK3AFqafuYQdvzj4obDzMzG5jHPIbIYx5Nqb8JGXLXX2Zoy+vbRsdjHmZm1hhuPGZMkTtATUXu\nADUUuQPUVEx7S0lZH9D+MYO25x+VSRsPSZ+WtEnS6krZbEk3SrpH0g2SxirLzpO0VtLdkk6slB8r\naXVadnGlfA9JV6XyFZIOH+YBmj21RcaH7cymcuXxt8BJPWWLgRsj4nnAzWkeSUcCpwNHpm0+oe7H\nD7gUODsi5gJzJXX3eTbw41T+l8BHahxPg3VyB6ipkztADZ3cAWrq5A5QS9v/Cl/b84/KpI1HRNwC\nPNRTfDJweZq+HDg1TZ8CXBkRWyJiPbAOmC/pQGCfiFiZ1ruisk11X9cAJ0zjOMzMbAZNd8xj/4jY\nlKY3Afun6YOADZX1NgAH9ynfmMpJ/94HEBFbgYclzZ5mrgYrcgeoqcgdoIYid4CaitwBamn7mEHb\n84/KrLo7iIiQNCMdnAsXLmTOnDkAjI2NMW/evO2XlLfccgvbtj1RWbtI/3ZmbD7i3gnqXzXjeYY7\n37b83bKnav3deSZZPtr5Hb3W+UTE9gag+36xM88XRcHSpUsBtr9fjsKUvuchaQ7w5Yg4Os3fDXQi\n4oHUJbXXUd0gAAAN3klEQVQ8In5N0mKAiLgorbcMOB+4N63zglR+BvCqiHhnWueCiFghaRZwf0Q8\nu08Gf89jynJ/xyB3/U3IkLv+JmTIXX+Z4an+XZemfc/jWuCsNH0W8MVK+QJJu0s6ApgLrIyIB4BH\nJM1PA+hnAl/qs6/TKAfgzcyswaZyq+6VwLeA50u6T9LbgYuA10u6B3htmici1gBXA2uA64FFlcuF\nRcBlwFpgXUQsS+VLgP0krQXOJd25tfMpcgeoqcgdoIYid4CaitwBaipyB6jFYx79TTrmERFnjLPo\ndeOsfyFwYZ/y24Cj+5Q/Drx1shxmZtYc/m2rIfKYR1Pqb0KG3PU3IUPu+ssMbXmPG5WmjXmYmdlT\nmBuPGVPkDlBTkTtADUXuADUVuQPUVOQOUIvHPPpz42FmZgPzmMcQecyjKfU3IUPu+puQIXf9ZYa2\nvMeNisc8zMysMdx4zJgid4CaitwBaihyB6ipyB2gpiJ3gFo85tFf7d+2MjOz/prw216j4jGPIfKY\nR1Pqb0KG3PU3IUPu+ssMOd/jysajEefAYx5mZpafG48ZU+QOUFORO0ANRe4ANRW5A9RU5A5Qi8c8\n+nPjYWZmA/OYxxB5zKMp9TchQ+76m5Ahd/1lBo95eMzDzMwawo3HjClyB6ipyB2ghiJ3gJqK3AFq\nKnIHqMVjHv258TAzs4F5zGOIPObRlPqbkCF3/U3IkLv+MoPHPDzmYWZmDVGr8ZC0XtKdkm6XtDKV\nzZZ0o6R7JN0gaayy/nmS1kq6W9KJlfJjJa1Oyy6uk6m5itwBaipyB6ihyB2gpiJ3gJqK3AFq8ZhH\nf3WvPALoRMQxEXFcKlsM3BgRzwNuTvNIOhI4HTgSOAn4hHb88MulwNkRMReYK+mkmrnMzGyEhtFt\n1duXdjJweZq+HDg1TZ8CXBkRWyJiPbAOmC/pQGCfiFiZ1ruiss1OpJM7QE2d3AFq6OQOUFMnd4Ca\nOrkD1NLpdHJHaKS6v6obwE2SngA+GRGfAvaPiE1p+SZg/zR9ELCisu0G4GBgS5ru2pjKzcxq25l/\n2Tanulcer4iIY4A3AO+SdHx1Ybo9KvetBg1R5A5QU5E7QA1F7gA1FbkD1FRkrj9qPpbX2HbnVevK\nIyLuT//+UNIXgOOATZIOiIgHUpfUg2n1jcChlc0Pobzi2Jimq+Ub+9W3cOFC5syZA8DY2Bjz5s3b\nfkl5yy23sG3bE5W1i/RvZ8bmI+6doP5VM55nuPNty98te6rW351nkuWuf+ervwCWpvk5jMq0v+ch\n6enArhHxqKS9gBuAPwVeB/w4Ij4iaTEwFhGL04D5ZykbmIOBm4DnRkRIuhU4B1gJfAW4JCKW9dTn\n73lMWe57y3PX34QMuetvQobc9TchQ+76ywyj+J5HnSuP/YEvpP7EWcDfR8QNkr4NXC3pbGA98FaA\niFgj6WpgDbAVWFRpDRZRNpVPA67rbTjMzKxZ/A3zIZr4yqNg5u46GcWnnYKp52/Gp60dGQpm/o6f\nYZ6Dgunlz/08dOsvyHfH1TDOQcH08+d+DsoM/oa5mZk1ghuPGdPJHaCmTu4ANXRyB6ipkztATZ3c\nAWrq5A7QSG48zMxsYG48ZkyRO0BNRe4ANRS5A9RU5A5QU5E7QE1F7gCN5MbDzMwG5sZjxnRyB6ip\nkztADZ3cAWrq5A5QUyd3gJo6uQM0khsPMzMbmBuPGVPkDlBTkTtADUXuADUVuQPUVOQOUFORO0Aj\nufEwM7OBufGYMZ3cAWrq5A5QQyd3gJo6uQPU1MkdoKZO7gCN5MbDzMwG5sZjxhS5A9RU5A5QQ5E7\nQE1F7gA1FbkD1FTkDtBIbjzMzGxgbjxmTCd3gJo6uQPU0MkdoKZO7gA1dXIHqKmTO0AjufEwM7OB\nufGYMUXuADUVuQPUUOQOUFORO0BNRe4ANRW5AzSSGw8zMxuYG48Z08kdoKZO7gA1dHIHqKmTO0BN\nndwBaurkDtBIbjzMzGxgjWk8JJ0k6W5JayW9P3ee4StyB6ipyB2ghiJ3gJqK3AFqKnIHqKnIHaCR\nGtF4SNoV+CvgJOBI4AxJL8ibathW5Q5QU5vztzk7OH9ubc8/Go1oPIDjgHURsT4itgD/AJySOdOQ\n/XvuADW1OX+bs4Pz59b2/KPRlMbjYOC+yvyGVGZmZg00K3eAJIaxk61bf8YznvGbw9jVtDz++Hd5\n/PHxlq6fwSSjsD53gBrW5w5Q0/rcAWpanztATetzB2gkRQzlfbteCOllwAURcVKaPw/YFhEfqayT\nP6iZWQtFhIa9z6Y0HrOA7wEnAD8AVgJnRMR3swYzM7O+GtFtFRFbJb0b+CqwK7DEDYeZWXM14srD\nzMzapSl3W42ryV8elLRe0p2Sbpe0MpXNlnSjpHsk3SBprLL+eek47pZ0YqX8WEmr07KLR5j305I2\nSVpdKRtaXkl7SLoqla+QdPiIs18gaUM6/7dLekMTs6f9HyppuaS7JH1H0jmpvC3nf7z8rXgOJO0p\n6VZJqyStkfThVN748z9B9rznPiIa+6DswloHzAF2o/y2zgty56rk+zdgdk/ZR4H/P02/H7goTR+Z\n8u+WjmcdO678VgLHpenrgJNGlPd44Bhg9SjyAouAT6Tp04F/GHH284E/6LNuo7KnfR4AzEvTe1OO\n8b2gRed/vPxteg6env6dBawAXtmi898ve9Zz3/QrjzZ8ebD3LoaTgcvT9OXAqWn6FODKiNgSEesp\nn9D5kg4E9omIlWm9KyrbDFVE3AI8NMK81X1dQ3kDxCizwy+f/8ZlB4iIByJiVZreDHyX8rtMbTn/\n4+WH9jwHj6XJ3Sk/mD5Ee85/v+yQ8dw3vfFo+pcHA7hJ0rcl/V4q2z8iNqXpTcD+afogyvxd3WPp\nLd/IzB7jMPNuf74iYivwsKTZI8rd9R5Jd0haUulyaHR2SXMor6JupYXnv5J/RSpqxXMgaRdJqyjP\n8/KIuIuWnP9xskPGc9/0xqPpo/mviIhjgDcA75J0fHVhlNeATT+G7dqWF7gUOAKYB9wPfCxvnMlJ\n2pvyk917I+LR6rI2nP+U/x8p82+mRc9BRGyLiHnAIcCrJL2mZ3ljz3+f7B0yn/umNx4bgUMr84fy\n5JYzq4i4P/37Q+ALlN1smyQdAJAuEx9Mq/ceyyGUx7IxTVfLN442+ZMMI++GyjaHpX3NAvaNiJ+M\nKnhEPBgJcBnl+W9sdkm7UTYcn4mIL6bi1pz/Sv6/6+Zv23OQMj8MfAU4lhad/57sL8l97pveeHwb\nmCtpjqTdKQdyrs2cCQBJT5e0T5reCzgRWE2Z76y02llA903iWmCBpN0lHQHMBVZGxAPAI5LmSxJw\nZmWbmTCMvF/qs6/TgJtHGTy92LveTHn+G5k91bcEWBMRH68sasX5Hy9/W54DSc/qdutIehrweuB2\nWnD+x8vebfSSmT/3k42o535Qdgl9j3LQ57zceSq5jqC8o2EV8J1uNmA2cBNwD3ADMFbZ5gPpOO4G\nfqNSfmx64tcBl4ww85WU3+D/BWX/5tuHmRfYA7gaWEvZHz5nhNl/l3LA707gDsoX/f5NzJ72/0pg\nW/r/cnt6nNSi898v/xva8hwARwP/mvLfCfzxsF+vo8o/Qfas595fEjQzs4E1vdvKzMwayI2HmZkN\nzI2HmZkNzI2HmZkNzI2HmZkNzI2HmZkNzI2HtYakJyo/P327pMOGsM8LJP3hgNtsnmDZqZK2SXp+\n3Wx1SDo3faHMbCTceFibPBYRx1Qe3x/CPqfzRaeJtjkD+Kf0b07vBZ6eOYPtxNx4WKup/INcs9P0\nSyQtT9MXqPwDUssl/W9J76ls8yeSvifpFuD5lfLnSLo+/UryN7pXD5KOkPTPKv/w159PkGVvYD7w\nbsqf0umWdyR9XdIXU5aLJJ0paWXa56+m9eZI+lr6ldSbJB2aypdKektlf5sr+y0kfU7SdyX9XSo/\nh/IXVJdLGulPxNhTlxsPa5OnVbqsrkllE10FPI/yN8eOA86XtKukYynf2F8EvBF4aWUffwO8JyJe\nAvwx8IlUfjHw1xHxQsqfSBnPKcCydEX0Q0kvrix7IfAOyj+gdCbwnIg4jvIH7boN2/8A/jYiXgT8\nPXDJOMdYnZ9HeZVxJPCrkl4eEZeknJ2IGOrfxDDrcuNhbfKzSpfVWyZZN4CvRPkHcX5M+WupB1D+\nRcLPR8TPo/xJ9Gth+49bvhz4nKTbgf+Z1ieVX5mm/26COs8APpemP8eTu67+JSI2RcQvKH9X6Kup\n/DuUf+0N4GXAZyv1vHKSY4TyB+9+EOXvDK2q7MtspGblDmBW01Z2fAjas2fZLyrTT1D+fw+e/NfX\nutO7AA9F+fdZBpa6zl4DHCUpKP/aW1BewQA8Xll9W2V+G09+Hfb7y3Dbj1HSLpR/Ta6rut/uMZqN\nnK88rO3WAy9J09WrkX5vwgF8AzhV0p7pJ/XfBJCuQv5N0mlQ/gS5pBem7f4XsCBNv22cHKcBV0TE\nnIg4IiIOS/s7fpz1+/lWTz3fqBzjsWn6ZMq/TT2ZR4FnDFC32UDceFib9Bvf+FPgYkn/QvkJPSrr\n/tL6EXE7cBXlz1hfB6ysLH4bcLbKP/f5Hco3aijHFN4l6U7Kgeh+ORZQ/kGwqmsou64m+gt11WXv\nAd4u6Y6U5b2p/FPAq1OulwGbe7bv52+AZR4wt1HxT7KbmdnAfOVhZmYDc+NhZmYDc+NhZmYDc+Nh\nZmYDc+NhZmYDc+NhZmYDc+NhZmYDc+NhZmYD+79LXt+IBOwX+wAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x1170528d0>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Axes(0.125,0.125;0.775x0.775)\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEZCAYAAABvpam5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X28XGV97/3PF3kQBdkGLQQENtpopaJBFLxr1VGUg94t\nYMsRqKXE0p7WqIh9uA32HKG2RfS+bYXTI6eV2IAPFCxHxQqRB7MUayGVQyASKclpgySSUJUCEaXB\n/O4/1jXJYpz9MHvNzLXW5vt+vea117rW03fW7Jlr1vqtmVFEYGZmNojdcgcwM7P2cedhZmYDc+dh\nZmYDc+dhZmYDc+dhZmYDc+dhZmYDc+cxz0l6q6QvTzO9I+m+AdZ3raQzhpNu/pJ0iaT/mjvHoCS9\nUtJ6SY9IOnGa+c6XdNg4s1mzuPOYI0kbJR2XO8dMIuLTEfGfuuOSdkh6bo31vSkiPjmcdPNXRLw9\nIv40d445+ABwcUTsGxHX9E6U9CJJNwN/ANwu6WZJT0/TXiHpBknfl/SApKskHdiz/IckfS/dLuyZ\nNilplaQfSvr2TM+vOuuS9GuS7pW0TdLnJD1zmu0MbV3ziTuPuYt0ayPlDmCNdSiwbprpnwBuBD4C\n/EL6230eTAD/Ezgs3R4B/qa7oKTfAU4CXpxuv5zauq4AbgMWAH8E/J2kZ/ULUWddkn4+5XwrcADw\nKPCxae7zMNc1f0SEb3O4Af8KvK5P+17AR4HN6fYXwJ5p2gTw98ADwA+ALwIHV5YtKN/5fR14GPgy\nsP8U2/8q8Ctp+JXADuBNafw44PY0vAS4OQ1/Lc23jfKJ/Z+BDnAf8HvAVuC7wJJp7ncBnFVZ99eB\n/zfdn38BTqjMu4DyxWNzmv65yrTfBtYD3we+ACysTNsBvD1Nfzjtk+cB/wj8O/C3wB6V+X8JWAM8\nCPwDcOQ0+We97uker3Tf7gN+KY3vA2wAfj2NrwD+JA13gE3AH6Z1fRc4GXgTcE/aB8sqGXcuW1n+\nvsr4Rsp3/nemx3E55QvXdcBDwA3AxDT7oO++B/4P8BPKF8CHq/u4suwPgSOB84DDZniOvBR4uDL+\nDeC3KuNvA/4xDT8f+DHw9J7/8d+ZYt1zXhdwAfCpyrTnAo9V569MG9q65tvNRx7D90fAMcBL0u0Y\noHvuezfKJ/qh6fYj4C97lj+d8kX5Z4A9KV8k+ikoX1QAXkP5wv3qynjRu0BEdKe/OMrTEp9N4wcC\nzwAOAs4C/oek/abYbu8R1zHA3cD+wIfT/ev6JPBU4Ih0f/4cQNLrKJ90/xlYCNxL+aJddTxwFPAK\n4L3Axyn3zaGUL16np3Udlbb525Qv6H8FXCNpzynyz3rdTPN4RcQPgN8EPi7p2ZRvEv53RHxqiv10\nAOUbi4XA+4FLKd+tHgW8Cnh/pYYw01FtAL9C+SbhBZSd53XAMsr9vBtwdr8Fp9v3EfE84DuUHeIz\nImJ7n1XclpZfBDxlmoxQ/j9+qzJ+BHBHZfxO4OfT8M8D/xIRP6xMv6MyvVeddf18ddmI+BfKF/zn\n99nOMNc1r7jzGL5fAz4QEd+LiO8BfwycAeULTkR8LiJ+HBHbKJ+Er6ksG8DfRMSGiPgxcBWweIrt\nfLWy7KuAD1bGX5Omz9b2lPknEXEd5ZHJC2a57L0RsTzKt12XAwsl/YykhcAJwO9GxEMR8XhE3JyW\neSuwPCLWRMR/AOcC/5ekQyvr/XBEbIuIdcBa4LqI2BgRD1O+UB6V5vsvwF9FxD9F6XLKJ+8rpsk8\nq3XP9HhFxA3AZ4GvpPv6Oz3bqZ4e3A78WUT8BLiSsqP7aET8MOVYR/lmo9+y/fz3iPi3iPgucDPl\nu+47IuIx4HOV/dNrNvt+Om+lPDI5CVgj6aOSdu+dSdKLgf9GebTVtQ/lkVHXw6mt37Tu9H2nyDHo\nuh6pTH/6ANsa5rrmFXcew3cQ5bu5ru+kNiQ9TdJfpWL7Q5Qv8PtJqr5QbKkM/4hd/6S9bgGeL+ln\nKDuYy4FDJO0PvJzyFNVsfT8idlTGH51mu7125o2IR9PgPsAhwA8ioveJBbve8XaX+yHlKZSDK/Ns\nrQz/qGf8x5RPWijPrf++pAe7N+A5aRtTmW7dO/f5LB+vj1O++1wREQ9Os83vpw62u41+OWa7z2e6\nDz+eZl2z2fdTioj7IuJU4P+jPLo5hZ5OU9LPAtcCZ0fEP1QmbaM8wu3aL7X1mwblacOHp4gy6Lr2\no3zR707vPbKuTp9uO3XWNa+48xi+7wKTlfFDKc/5A/w+5eHsMRGxH+W7WDGHAnZ6ob4NOAdYm04x\nfCNtY0M6rZLTfcCCKU5/PWEfpat19mfXfppJ9ZTOdyjf0T+zctsnIq6cY+6qaR8vSU8B/pqy436H\npOdNk3MQPwSeVhk/cKoZK2b7P1R331etAj5Neaqvu77DKGsuH4iIT/fMfxdPPJJ+CbtOa90FPFfS\nPj3T75pi23XWdReVo7z0uO1JWX/qt51hrWtecedRz56Snlq57U55ZcZ/lfSsdEXG+4HuefB9KN8l\nPiRpAWXRsdcgHclXgXew6xRVAbyT6U9ZbaUsEI9URNxPeQroY5ImJO0hqVtzuQJ4m6SXSNqL8nTQ\nLRHxnWlWqZ7h7vjHgd+VdIxKT5f0f/c82WfSu+6umR6v91EWmN9GedHA5ZK6z6k5vSlI1gBvkvTM\ndKnrOXNcTz9z2fc7SXpfZd/uQ3nK9Ftp2sGUp/D+MiL+us/ilwO/J+mgNO/vUV4cQETcQ3m/z0vP\npV8BXgRcndY9qfIy80Prrouyw/tlSb+YOs8/Aa7uqWsw7HXNN+486rmW8hRP9/Z+4E+Bb1IW8O5M\nw93r/T8K7A18j/Io4Tp++t1p9AxP9+71q5RP4O4pqq9Rns6pnrLqXcf5wGXpFM8ps9jGdPotWx0/\ng/Jc/92UndbZABFxE+X58Ksp3wkfDpw2xTr6te3cbkTcRlks/0vKK6LWA78xQ+ZZrZtpHi9JRwPv\nAX4jnY76UJr23j7r6bfd6fb5JymLsBuBlZQF7Zkeo1n938xi38/kZynfbZ8D3AT8M+VFCgC/ldZ3\nvsoPGT4iaedpp4j4K8or1tZSPje+2NPJnAa8jPJx/DPgVyPi+2naIZT7Y3PddaUa0+9SvvBvpXyM\nl3YXVPkBz0uGsa75TLtOw04zU3l4/k1gU0T8cnoXdiXl+eaNwFsi4t/TvOdSXoXyE8pznten9qMp\n3xk8Fbg2It6d2veifBfxUspzr6dGRLVmYGYNI+n9lHWeWR2xDGF7fwQ8EBEfH8f2bGazPfJ4N+XV\nIN2eZhlwQ0Q8n/LdxzIASUcAp1JeRncC5SmL7qH7JZSfD1gELJJ0Qmo/i7KYuIjycscP1btLZjZq\nEfGBcXUcaXt/5o6jWWbsPCQ9h/LDTJey6xzuicBlafgyyg88QXn53hURsT0iNlJ+aOrYdNnmvhGx\nOs13eWWZ6rquprx23czMGmw2Rx5/QXmtdvVSzgMiontp4FbKD0BBeUnqpsp8mygvAext38yuSwMP\nprwyh4h4nF3FSTMza6hpOw9Jv0R5nvF2prhyJBUL2/odT2ZmNgc/9cnQHr8AnCjpTZSF7mdI+iSw\nVdKBEbElnZJ6IM2/mfKqiK7nUB5xbE7Dve3dZQ4Fvpsudd2v32cUJLmDMjObg4gY+pehTnvkERHv\ni4hDIqJ7Od9XIuIM4BrgzDTbmcDn0/A1wGmS9pR0OOX336yOiC3Aw5KOTQX0Myi/kI2edZ1CWYCf\nKk9rb+edd172DE/W/G3O7vz5b23PPyozHXn06ia5ELhK0lmkS3WhvOZZ0lWUV2Y9DiyNXemXUl6q\nuzflpborU/ty4JOSut/yOcg1562xcePG3BFqaXP+NmcH58+t7flHZdadR0R8lfTJ5ShPK71+ivku\noPzUam/7bVS+xqDS/hip8zEzs3bwJ8zHZMmSJbkj1NLm/G3ODs6fW9vzj8qsPmHeBJKiLVnNzJpC\nEjHugrkNT1EUuSPU0ub8bc4Ozp9b2/OPijsPMzMbmE9bzUNP/K2iPPxYmTXDqE5bDXqprrVGzhfv\n/J2XmY2WT1uNSfvPmxa5A8xZ2/e98+fV9vyj4s7DzMwG5prHPFTWPPKetvJjZdYMvlTXzMwaw53H\nmLT/vGmRO8CctX3fO39ebc8/Ku48zMxsYK55zEOueZhZl2seZmbWGO48xqT9502L3AHmrO373vnz\nanv+UXHnYWZmA3PNYx5yzcPMulzzMDOzxnDnMSbtP29a5A4wZ23f986fV9vzj8q0nYekp0q6VdIa\nSeskfTC1ny9pk6Tb0+2NlWXOlbRe0t2Sjq+0Hy1pbZp2UaV9L0lXpvZbJB02ijtqZmbDM2PNQ9LT\nIuJRSbsDXwf+ADgOeCQi/rxn3iOAzwAvBw4GbgQWRURIWg28MyJWS7oWuDgiVkpaCrwoIpZKOhV4\nc0Sc1ieHax6z5JqHmXVlq3lExKNpcE/gKcCD3Ux9Zj8JuCIitkfERmADcKykhcC+EbE6zXc5cHIa\nPhG4LA1fTdkxmZlZg83YeUjaTdIaYCuwKiLuSpPeJekOScslTaS2g4BNlcU3UR6B9LZvTu2kv/cB\nRMTjwEOSFsz1DjVV+8+bFrkDzFnb973z59X2/KMymyOPHRGxGHgO8GpJHeAS4HBgMXA/8JFRhjQz\ns2aZ9c/QRsRDkr4EvCwiim67pEuBL6bRzcAhlcWeQ3nEsTkN97Z3lzkU+G6qq+wXET/ol2HJkiVM\nTk4CMDExweLFi+l0OsCudwdNHe+2jW97Rfo7rPFu2+zmz72/q+OdTqdReZy/WfnmW/6iKFixYgXA\nztfLUZi2YC7pWcDjEfHvkvYGvgz8MXBXRGxJ87wHeHlE/FqlYH4MuwrmP5sK5rcCZwOrgS/xxIL5\nkRHxdkmnASe7YF6PC+Zm1pWrYL4Q+EqqedwKfDEibgI+LOlOSXcArwHeAxAR64CrgHXAdcDSyiv+\nUuBSYD2wISJWpvblwP6S1gPnAMuGdu8apPvOoL2K3AHmrO373vnzanv+UZn2tFVErAVe2qf9N6ZZ\n5gLggj7ttwFH9ml/DHjLbMKamVkz+Lut5iGftjKzLn+3lZmZNYY7jzFp/3nTIneAOWv7vnf+vNqe\nf1TceZiZ2cBc85iHXPMwsy7XPMzMrDHceYxJ+8+bFrkDzFnb973z59X2/KPizsPMzAbmmsc85JqH\nmXW55mFmZo3hzmNM2n/etMgdYM7avu+dP6+25x8Vdx5mZjYw1zzmIdc8zKzLNQ8zM2sMdx5j0v7z\npkXuAHPW9n3v/Hm1Pf+ouPMwM7OBueYxD7nmYWZdrnmYmVljuPMYk/afNy1yB5iztu9758+r7flH\nZdrOQ9JTJd0qaY2kdZI+mNoXSLpB0j2Srpc0UVnmXEnrJd0t6fhK+9GS1qZpF1Xa95J0ZWq/RdJh\no7ijZmY2PDPWPCQ9LSIelbQ78HXgD4ATge9FxIclvRd4ZkQsk3QE8Bng5cDBwI3AoogISauBd0bE\naknXAhdHxEpJS4EXRcRSSacCb46I0/rkcM1jllzzMLOubDWPiHg0De4JPAV4kLLzuCy1XwacnIZP\nAq6IiO0RsRHYABwraSGwb0SsTvNdXlmmuq6rgePmfG/MzGwsZuw8JO0maQ2wFVgVEXcBB0TE1jTL\nVuCANHwQsKmy+CbKI5De9s2pnfT3PoCIeBx4SNKCud2d5mr/edMid4A5a/u+d/682p5/VHafaYaI\n2AEslrQf8GVJr+2ZHpLGco5iyZIlTE5OAjAxMcHixYvpdDrArge4qeNr1qwZ6/Z2vdgPa3zNQPPn\n3t8e9/iTdbwoClasWAGw8/VyFAb6nIek/wb8CPgtoBMRW9IpqVUR8XOSlgFExIVp/pXAecC9aZ4X\npvbTgVdHxNvTPOdHxC2prnJ/RDy7z7Zd85gl1zzMrCtLzUPSs7pXUknaG3gDcDtwDXBmmu1M4PNp\n+BrgNEl7SjocWASsjogtwMOSjlX5ynYG8IXKMt11nQLcNJR7ZmZmIzNTzWMh8JVU87gV+GJE3ARc\nCLxB0j3A69I4EbEOuApYB1wHLK0cLiwFLgXWAxsiYmVqXw7sL2k9cA6wbFh3rkm6h5XtVeQOMGdt\n3/fOn1fb84/KtDWPiFgLvLRP+w+A10+xzAXABX3abwOO7NP+GPCWWeY1M7MG8HdbzUOueZhZl7/b\nyszMGsOdx5i0/7xpkTvAnLV93zt/Xm3PPyruPMzMbGCuecxDrnmYWZdrHmZm1hjuPMak/edNi9wB\n5qzt+97582p7/lFx52FmZgNzzWMecs3DzLpGVfOY8Vt1bTDlC7eZ2fzm01YjEX1uq6ZoH8VtFIoR\nrXf02n7O2vnzanv+UXHnYWZmA3PNY8jy1xsAcmdwzcOsKfw5DzMzawx3HmNT5A5QU5E7wJy1/Zy1\n8+fV9vyj4s7DzMwG5prHkLnmUW6/DY+V2ZOBax5mZtYY7jzGpsgdoKYid4A5a/s5a+fPq+35R2XG\nzkPSIZJWSbpL0rcknZ3az5e0SdLt6fbGyjLnSlov6W5Jx1faj5a0Nk27qNK+l6QrU/stkg4b9h01\nM7PhmbHmIelA4MCIWCNpH+A24GTgLcAjEfHnPfMfAXwGeDlwMHAjsCgiQtJq4J0RsVrStcDFEbFS\n0lLgRRGxVNKpwJsj4rSe9brmMfsUmTO45mHWFNlqHhGxJSLWpOFtwLcpOwUoX6V6nQRcERHbI2Ij\nsAE4VtJCYN+IWJ3mu5yyEwI4EbgsDV8NHDeH+2JmZmMyUM1D0iRwFHBLanqXpDskLZc0kdoOAjZV\nFttE2dn0tm9mVyd0MHAfQEQ8DjwkacEg2ZqvyB2gpiJ3gDlr+zlr58+r7flHZdbfqptOWf0d8O6I\n2CbpEuADafKfAB8Bzhp+xF2WLFnC5OQkABMTEyxevJhOpwPseoBzj+/SHe+kv2t6xnunN318sPxN\neTw87vEn23hRFKxYsQJg5+vlKMzqcx6S9gD+HrguIj7aZ/ok8MWIOFLSMoCIuDBNWwmcB9wLrIqI\nF6b204FXR8Tb0zznR8QtknYH7o+IZ/dswzWP2afInME1j6Z8Nf+T/XGwjDUPlc+C5cC6aseRahhd\nbwbWpuFrgNMk7SnpcGARsDoitgAPSzo2rfMM4AuVZc5Mw6cAN9W4T9YAkrLf8hvXV/CP86v5zUqz\nqXm8Evh14LU9l+V+SNKdku4AXgO8ByAi1gFXAeuA64CllUOGpcClwHpgQ0SsTO3Lgf0lrQfOAZYN\n5+41SZE7QE3FgPM354Xzp08ptk2RO0Atbd//bc8/KjPWPCLi6/TvZK6bZpkLgAv6tN8GHNmn/THK\nS3/NzKwF/N1WQ+aaRxO2X2bI+f/SlP+DNjxnbLT83VZmZtYY7jzGpsgdoKYid4A5a/856yJ3gFra\nvv/bnn9U3HmYmdnAXPMYsqac63bNwzWP3PvAmmFUNY9Zf8LcrG2a8VkPs/nJp63GpsgdoKYid4A5\n6H7mYxXD+/xIjg/oFUNe33i1vWbQ9vyj4s7DzMwG5prHkDXlXLdrHrkz5N5+maENzxkbLX/Ow8zM\nGsOdx9gUuQPUVOQOUEORO0BNRe4AtbS9ZtD2/KPizsPMzAbmmseQuebRhO03IUPu7ZcZ2vCcsdFy\nzcPMzBrDncfYFLkD1FTkDlBDkTtATUXuALW0vWbQ9vyj4s7DzMwG5prHkLnm0YTtNyFD7u2XGdrw\nnLHRcs3DzMwaw53H2BS5A9RU5A5QQ5E7QE1F7gC1tL1m0Pb8ozJj5yHpEEmrJN0l6VuSzk7tCyTd\nIOkeSddLmqgsc66k9ZLulnR8pf1oSWvTtIsq7XtJujK13yLpsGHfUTMzG54Zax6SDgQOjIg1kvYB\nbgNOBt4GfC8iPizpvcAzI2KZpCOAzwAvBw4GbgQWRURIWg28MyJWS7oWuDgiVkpaCrwoIpZKOhV4\nc0Sc1pPDNY/Zp8icIff2m5Ah9/bLDG14zthoZat5RMSWiFiThrcB36bsFE4ELkuzXUbZoQCcBFwR\nEdsjYiOwAThW0kJg34hYnea7vLJMdV1XA8fVuVNmZjZaA9U8JE0CRwG3AgdExNY0aStwQBo+CNhU\nWWwTZWfT2745tZP+3gcQEY8DD0laMEi25ityB6ipyB2ghiJ3gJqK3AFqaXvNoO35R2XWvySYTlld\nDbw7Ih6p/kpbOiU18uPjJUuWMDk5CcDExASLFy+m0+kAux7g3OO7dMc76e+anvHe6U0fb1v+btuT\ndfvd8TTWkOeHx0c/XhQFK1asANj5ejkKs/qch6Q9gL8HrouIj6a2u4FORGxJp6RWRcTPSVoGEBEX\npvlWAucB96Z5XpjaTwdeHRFvT/OcHxG3SNoduD8int2TwTWP2afInCH39puQIff2ywxteM7YaGWr\neah8NVwOrOt2HMk1wJlp+Ezg85X20yTtKelwYBGwOiK2AA9LOjat8wzgC33WdQpwU437ZGZmIzab\nmscrgV8HXivp9nQ7AbgQeIOke4DXpXEiYh1wFbAOuA5YWjlkWApcCqwHNkTEytS+HNhf0nrgHGDZ\nUO5doxS5A9RU5A5QQ5E7QE1F7gC1tL1m0Pb8ozJjzSMivs7Unczrp1jmAuCCPu23AUf2aX8MeMtM\nWczMrBn83VZD5ppHE7bfhAy5t19maMNzxkbL321lZmaN4c5jbIrcAWoqcgeoocgdoKYid4Ba2l4z\naHv+UXHnYWZmA3PNY8hc82jC9puQIff2ywxteM7YaLnmYWZmjeHOY2yK3AFqKnIHqKHIHaCmIneA\nWtpeM2h7/lFx52FmZgNzzWPIXPNowvabkCH39ssMbXjO2Gi55mFmZo3hzmNsitwBaipyB6ihyB2g\npiJ3gFraXjNoe/5RcedhZmYDc81jyFzzaML2m5Ah9/bLDG14zthoueZhZmaN4c5jbIrcAWoqcgeo\nocgdoKYid4Ba2l4zaHv+UXHnYWZmA3PNY8hc82jC9puQIff2ywxteM7YaLnmYWZmjeHOY2yK3AFq\nKnIHqKHIHaCmIneAWtpeM2h7/lGZsfOQ9AlJWyWtrbSdL2mTpNvT7Y2VaedKWi/pbknHV9qPlrQ2\nTbuo0r6XpCtT+y2SDhvmHTQzs+GbseYh6VXANuDyiDgytZ0HPBIRf94z7xHAZ4CXAwcDNwKLIiIk\nrQbeGRGrJV0LXBwRKyUtBV4UEUslnQq8OSJO65PDNY/Zp8icIff2m5Ah9/bLDG14zthoZat5RMTN\nwIP9MvVpOwm4IiK2R8RGYANwrKSFwL4RsTrNdzlwcho+EbgsDV8NHDf7+GZmlkOdmse7JN0habmk\nidR2ELCpMs8myiOQ3vbNqZ309z6AiHgceEjSghq5GqrIHaCmIneAGorcAWoqcgeope01g7bnH5Xd\n57jcJcAH0vCfAB8BzhpKomksWbKEyclJACYmJli8eDGdTgfY9QDnHt+lO95Jf9f0jPdOb/p42/J3\n256s2++Op7GGPD88PvrxoihYsWIFwM7Xy1GY1ec8JE0CX+zWPKaaJmkZQERcmKatBM4D7gVWRcQL\nU/vpwKsj4u1pnvMj4hZJuwP3R8Sz+2zHNY/Zp8icIff2m5Ah9/bLDG14zthoNepzHqmG0fVmoHsl\n1jXAaZL2lHQ4sAhYHRFbgIclHavy1fUM4AuVZc5Mw6cAN80lk5mZjc9sLtW9AvgG8AJJ90n6TeBD\nku6UdAfwGuA9ABGxDrgKWAdcByytHC4sBS4F1gMbImJlal8O7C9pPXAOsGxo965RitwBaipyB6ih\nyB2gpiJ3gFraXjNoe/5RmbHmERGn92n+xDTzXwBc0Kf9NuCnTntFxGPAW2bKYWZmzTFvvttqx44d\nPPDAA2NM1N/ChQtpwrlun+/PnSH39ssMbXl+2+iMquYx16utGufRRx9l4cKF7L33AdkybN/+SLZt\nm5mN07zpPAD22OPp/OhHW7Jtf7fd3gd8cIqpBU+8jLNtCtqbv6C92aHt+Yui2HlJaRu1Pf+o+IsR\nzcxsYPOm5rFt2zYWLDiQ7du3jTHVE+222/vYseODNOFct8/3586Qe/tlhrY8v210GvU5DzMze3Jz\n5zE2Re4ANRW5A9RQ5A5QU5E7QC1t/5xE2/OPijsPMzMbmGseQ+SaR1O234QMubdfZmjL89tGxzUP\nMzNrDHceY1PkDlBTkTtADUXuADUVuQPU0vaaQdvzj4o7DzMzG5hrHkPkmkdTtt+EDLm3X2Zoy/Pb\nRsc1DzMzawx3HmNT5A5QU5E7QA1F7gA1FbkD1NL2mkHb84+KOw8zMxuYax5D5JpHU7bfhAy5t19m\naMvz20bHNQ8zM2sMdx5jU+QOUFORO0ANRe4ANRW5A9TS9ppB2/OPyoydh6RPSNoqaW2lbYGkGyTd\nI+l6SROVaedKWi/pbknHV9qPlrQ2Tbuo0r6XpCtT+y2SDhvmHTR7MpOU9Wbz12yOPP4GOKGnbRlw\nQ0Q8H7gpjSPpCOBU4Ii0zMe06z/oEuCsiFgELJLUXedZwPdT+18AH6pxfxqskztATZ3cAWro5A5Q\nU6fGspHxltK3/Ff42p5/VGbsPCLiZuDBnuYTgcvS8GXAyWn4JOCKiNgeERuBDcCxkhYC+0bE6jTf\n5ZVlquu6GjhuDvfDzMzGaK41jwMiYmsa3gockIYPAjZV5tsEHNynfXNqJ/29DyAiHgcekrRgjrka\nrMgdoKYid4AaitwBaipyB6il7TWDtucfld3rriAiQtJYrgdcsmQJk5OTAExMTLB48eKdh5Q333wz\nO3b8pDJ3kf52xjYece80218z9jzDHW9b/m7bk3X73XFmmD6e7XdfgLvPV4+PbrwoClasWAGw8/Vy\nFGb1OQ9Jk8AXI+LINH430ImILemU1KqI+DlJywAi4sI030rgPODeNM8LU/vpwKsj4u1pnvMj4hZJ\nuwP3R8Sz+2Tw5zxmLfdnDHJvvwkZcm+/CRn8OZMmaNrnPK4BzkzDZwKfr7SfJmlPSYcDi4DVEbEF\neFjSsamAfgbwhT7rOoWyAG9mZg02m0t1rwC+AbxA0n2S3gZcCLxB0j3A69I4EbEOuApYB1wHLK0c\nLiwFLgUiYMzXAAANUUlEQVTWAxsiYmVqXw7sL2k9cA7pyq35p8gdoKYid4AaitwBaipyB5iz3JcK\nD+NyYdc8+pux5hERp08x6fVTzH8BcEGf9tuAI/u0Pwa8ZaYcZtZGwRNrP+Pmz5qMir/baohc82jK\n9puQIff2m5Ah9/bLDG15jRuVptU8zMzsScydx9gUuQPUVOQOUEORO0BNRe4ANRW5A9Timkd/7jzM\nzGxgrnkMkWseTdl+EzLk3n4TMuTefpmhLa9xo+Kah5mZNYY7j7EpcgeoqcgdoIYid4CaitwBaipy\nB6jFNY/+3HmYmdnAXPMYItc8mrL9JmTIvf0mZMi9/TJDW17jRsU1DzMzawx3HmNT5A5QU5E7QA1F\n7gA1FbkD1FTkDlCLax79ufMwM7OBueYxRK55NGX7TciQe/tNyJB7+2WGnK9xw/hW32EYRc2j9i8J\nmpnZdPJ3oKPg01ZjU+QOUFORO0ANRe4ANRW5A9RU5A5Qi2se/bnzMDOzgbnmMUSueTRl+03IkHv7\nTciQe/tlhvw1j0bsA3/Ow8zM8qvVeUjaKOlOSbdLWp3aFki6QdI9kq6XNFGZ/1xJ6yXdLen4SvvR\nktamaRfVydRcRe4ANRW5A9RQ5A5QU5E7QE1F7gC1uObRX90jjwA6EXFURByT2pYBN0TE84Gb0jiS\njgBOBY4ATgA+pl3XsV0CnBURi4BFkk6omcvMzEZoGKetes+lnQhcloYvA05OwycBV0TE9ojYCGwA\njpW0ENg3Ilan+S6vLDOPdHIHqKmTO0ANndwBaurkDlBTJ3eAWjqdTu4IjTSMI48bJX1T0m+ntgMi\nYmsa3gockIYPAjZVlt0EHNynfXNqNzOzhqrbebwyIo4C3gi8Q9KrqhPT5VG5LzVoiCJ3gJqK3AFq\nKHIHqKnIHaCmIneAWlzz6K/WJ8wj4v70998kfQ44Btgq6cCI2JJOST2QZt8MHFJZ/DmURxyb03C1\nfXO/7S1ZsoTJyUkAJiYmWLx48c5DyptvvpkdO35SmbtIfztjG4+4d5rtrxl7nuGOty1/t+3Juv3u\nODNMn//bb8ZXhBTpb2cM4wWwIo1PzjrhoOb8OQ9JTwOeEhGPSHo6cD3wx8Drge9HxIckLQMmImJZ\nKph/hrKDORi4EfjZiAhJtwJnA6uBLwEXR8TKnu35cx6zlvva8tzbb0KG3NtvQobc229ChtzbLzM0\n7butDgA+l3r13YFPR8T1kr4JXCXpLGAj8BaAiFgn6SpgHfA4sLTSGyyl7Cr3Bq7t7TjMzKxZ/Anz\nIZr+yKNgfFedjOLdTsHs8zfj3dauDAXjv+JnmPugYG75cz8O3e0X5Lviahj7oGDu+XM/BmUGf8Lc\nzMwawZ3H2HRyB6ipkztADZ3cAWrq5A5QUyd3gJo6uQM0kjsPMzMbmDuPsSlyB6ipyB2ghiJ3gJqK\n3AFqKnIHqKnIHaCR3HmYmdnA3HmMTSd3gJo6uQPU0MkdoKZO7gA1dXIHqKmTO0AjufMwM7OBufMY\nmyJ3gJqK3AFqKHIHqKnIHaCmIneAmorcARrJnYeZmQ3MncfYdHIHqKmTO0ANndwBaurkDlBTJ3eA\nmjq5AzSSOw8zMxuYO4+xKXIHqKnIHaCGIneAmorcAWoqcgeoqcgdoJHceZiZ2cDceYxNJ3eAmjq5\nA9TQyR2gpk7uADV1cgeoqZM7QCO58zAzs4G58xibIneAmorcAWoocgeoqcgdoKYid4CaitwBGsmd\nh5mZDcydx9h0cgeoqZM7QA2d3AFq6uQOUFMnd4CaOrkDNJI7DzMzG1hjOg9JJ0i6W9J6Se/NnWf4\nitwBaipyB6ihyB2gpiJ3gJqK3AFqKnIHaKRGdB6SngL8JXACcARwuqQX5k01bGtyB6ipzfnbnB2c\nP7e25x+NRnQewDHAhojYGBHbgb8FTsqcacj+PXeAmtqcv83Zwflza3v+0WhK53EwcF9lfFNqMzOz\nBto9d4AkhrGSxx//Ec94xi8PY1Vz8thj3+axx6aaunGMSUZhY+4ANWzMHaCmjbkD1LQxd4CaNuYO\n0EiKGMrrdr0Q0iuA8yPihDR+LrAjIj5UmSd/UDOzFooIDXudTek8dgf+GTgO+C6wGjg9Ir6dNZiZ\nmfXViNNWEfG4pHcCXwaeAix3x2Fm1lyNOPIwM7N2acrVVlNq8ocHJW2UdKek2yWtTm0LJN0g6R5J\n10uaqMx/brofd0s6vtJ+tKS1adpFI8z7CUlbJa2ttA0tr6S9JF2Z2m+RdNiIs58vaVPa/7dLemMT\ns6f1HyJplaS7JH1L0tmpvS37f6r8rXgMJD1V0q2S1khaJ+mDqb3x+3+a7Hn3fUQ09kZ5CmsDMAns\nQflpnRfmzlXJ96/Agp62DwP/Txp+L3BhGj4i5d8j3Z8N7DryWw0ck4avBU4YUd5XAUcBa0eRF1gK\nfCwNnwr87Yiznwf8Xp95G5U9rfNAYHEa3oeyxvfCFu3/qfK36TF4Wvq7O3AL8Ist2v/9smfd900/\n8mjDhwd7r2I4EbgsDV8GnJyGTwKuiIjtEbGR8gE9VtJCYN+IWJ3mu7yyzFBFxM3AgyPMW13X1ZQX\nQIwyO/z0/m9cdoCI2BIRa9LwNuDblJ9lasv+nyo/tOcxeDQN7kn5xvRB2rP/+2WHjPu+6Z1H0z88\nGMCNkr4p6bdT2wERsTUNbwUOSMMHUebv6t6X3vbNjPc+DjPvzscrIh4HHpK0YES5u94l6Q5Jyyun\nHBqdXdIk5VHUrbRw/1fy35KaWvEYSNpN0hrK/bwqIu6iJft/iuyQcd83vfNoejX/lRFxFPBG4B2S\nXlWdGOUxYNPvw05tywtcAhwOLAbuBz6SN87MJO1D+c7u3RHxSHVaG/Z/yv93lPm30aLHICJ2RMRi\n4DnAqyW9tmd6Y/d/n+wdMu/7pncem4FDKuOH8MSeM6uIuD/9/Tfgc5Sn2bZKOhAgHSY+kGbvvS/P\nobwvm9NwtX3zaJM/wTDybqosc2ha1+7AfhHxg1EFj4gHIgEupdz/jc0uaQ/KjuOTEfH51Nya/V/J\n/6lu/rY9BinzQ8CXgKNp0f7vyf6y3Pu+6Z3HN4FFkiYl7UlZyLkmcyYAJD1N0r5p+OnA8cBaynxn\nptnOBLovEtcAp0naU9LhwCJgdURsAR6WdKwkAWdUlhmHYeT9Qp91nQLcNMrg6cne9WbK/d/I7Gl7\ny4F1EfHRyqRW7P+p8rflMZD0rO5pHUl7A28AbqcF+3+q7N1OLxn/vp+pop77RnlK6J8piz7n5s5T\nyXU45RUNa4BvdbMBC4AbgXuA64GJyjLvS/fjbuA/VdqPTg/8BuDiEWa+gvIT/P9BeX7zbcPMC+wF\nXAWspzwfPjnC7L9JWfC7E7iD8kl/QBOzp/X/IrAj/b/cnm4ntGj/98v/xrY8BsCRwP9O+e8E/nDY\nz9dR5Z8me9Z97w8JmpnZwJp+2srMzBrInYeZmQ3MnYeZmQ3MnYeZmQ3MnYeZmQ3MnYeZmQ3MnYe1\nhqSfVL5++nZJhw5hnedL+v0Bl9k2zbSTJe2Q9IK62eqQdE76QJnZSLjzsDZ5NCKOqty+M4R1zuWD\nTtMtczrw9+lvTu8GnpY5g81j7jys1VT+INeCNPwySavS8Pkqf0BqlaT/I+ldlWX+SNI/S7oZeEGl\n/XmSrkvfkvy17tGDpMMl/aPKH/7602my7AMcC7yT8qt0uu0dSV+V9PmU5UJJZ0handb53DTfpKSv\npG9JvVHSIal9haRfraxvW2W9haTPSvq2pE+l9rMpv0F1laSRfkWMPXm587A22btyyurq1DbdUcDz\nKb9z7BjgPElPkXQ05Qv7S4A3AS+vrOOvgXdFxMuAPwQ+ltovAv5HRLyY8itSpnISsDIdEf2bpJdW\npr0Y+B3KH1A6A3heRBxD+YV23Y7tvwN/ExEvAT4NXDzFfayOL6Y8yjgCeK6kX4iIi1POTkQM9Tcx\nzLrceVib/KhyyupXZ5g3gC9F+YM436f8ttQDKX+R8H9FxI+j/Er0a2Dnl1v+AvBZSbcD/zPNT2q/\nIg1/apptng58Ng1/lieeuvqniNgaEf9B+b1CX07t36L8tTeAVwCfqWznF2e4j1B+4d13o/yeoTWV\ndZmN1O65A5jV9Di73gQ9tWfaf1SGf0L5/x488dfXusO7AQ9G+fssA0unzl4LvEhSUP7aW1AewQA8\nVpl9R2V8B098Hvb7Zbid91HSbpS/JtdVXW/3PpqNnI88rO02Ai9Lw9WjkX4vwgF8DThZ0lPTV+r/\nEkA6CvlXSadA+RXkkl6clvsH4LQ0/NYpcpwCXB4RkxFxeEQcmtb3qinm7+cbPdv5WuU+Hp2GT6T8\nbeqZPAI8Y4Btmw3EnYe1Sb/6xh8DF0n6J8p36FGZ96fmj4jbgSspv8b6WmB1ZfJbgbNU/tzntyhf\nqKGsKbxD0p2Uheh+OU6j/EGwqqspT11N9wt11WnvAt4m6Y6U5d2p/ePAa1KuVwDbepbv56+BlS6Y\n26j4K9nNzGxgPvIwM7OBufMwM7OBufMwM7OBufMwM7OBufMwM7OBufMwM7OBufMwM7OBufMwM7OB\n/f9KfyvUkBAYigAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x1212a77d0>"
]
}
],
"prompt_number": 1030
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There's no significant difference to Funded Amount when we remove the outliers in Annual Income. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Cleaning Loan_Status\n",
"\n",
"Our feature \"loan_status\" has seven unique values. To do our logistic regression we require two.\n",
"\n",
"Below, you'll notice a bar chart that highlights each of the seven values. We'll be removing \"Current\", as our goal is to focus on who paid or didn't pay their loans. \"Fully Paid\" will remain as is and the rest of the columns will be characterized as \"Unpaid\", after all that's pretty much what they are."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_2.loan_status.value_counts().plot(kind='bar',alpha=.30)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1031,
"text": [
"<matplotlib.axes._subplots.AxesSubplot at 0x11b5a8dd0>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFUCAYAAADLQSDCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XXV97//XWyiTRANcZBIJ2jBJNEIRW4dGpvLrZWy5\nDKVIlKtXUvU6VA16W7C2FNFW0f7UtgzCLVBQrJIWApHpYr0xMhyIREzQBkkYNCKDE4K87x9r7WRz\nus85+5yzzxpy3s/HI4+z13evvfI+Oyfnu9f3813fJdtEREQAPK/uABER0RzpFCIiYr10ChERsV46\nhYiIWC+dQkRErJdOISIi1hu1U5B0oaRHJC3v8dz7JD0raduutjMkrZJ0r6TDutr3l7S8fO68rvbN\nJV1Rti+VtFvXc6dKWln+edPkv9WIiBjLWGcKFwGHD2+UtCtwKHB/V9s+wAnAPuVrPitJ5dOfA06z\nPRuYLalzzNOAH5ftnwQ+Vh5rW+DPgVeXf86UNHNC32FERPRt1E7B9q3AT3o89bfAB4a1HQ1cbvtp\n26uB+4ADJe0EzLC9rNzvEuCY8vFRwMXl46uAg8vHvwdcb/sx248BS+jROUVExGCNu6Yg6Whgje27\nhz21M7Cma3sNsEuP9rVlO+XXBwBsPwM8Lmm7UY4VERFTaNPx7CxpK+BDFENH65sHmigiImozrk4B\neBkwC7irLBe8GLhd0oEUZwC7du37YopP+GvLx8PbKZ97CfCgpE2BF9r+saS1wLyu1+wK3NgrkKQs\n3hQRMU62e36gH9fwke3ltnewvbvt3Sl+ue9n+xHgauBESZtJ2h2YDSyz/TDwhKQDy8LzKcBXy0Ne\nDZxaPj4OuKF8fD1wmKSZkrahODO5bpRcrftz5pln1p4huZv/J7mTfSpyj2bUMwVJlwO/C2wn6QHg\nz21f1P37uOsX8wpJVwIrgGeABd7wty8AvgBsCVxje3HZfgHwvyWtAn4MnFge61FJHwW+Ve73ERcF\n543G6tWr644wIcldreSuXluzDyr3qJ2C7ZPGeP6lw7bPBs7usd/twJwe7U8Bx49w7IsopsRGRERF\nckVzTebPn193hAlJ7mold/Xamn1QuTXW+FLTSXLbv4eIiCpJwoMoNMfg3HzzzXVHmJDkrlZyV6+t\n2QeVO51CRESsl+GjiIhpJsNHERHRl3QKNZnu45ZVS+5qtTU3tDd7agoRETFwqSlEREwzo9UUxrsg\nXozg0ksX8eSTU3PsGTPg5JOPnJqDR0R0SacwIE8+Cbvs0v8v7uXLb2bOnHl97bt27aIJphq8m2++\nmXnz5tUdY9ySu1ptzQ3tzT6o3KkpRETEeqkpDMjnP79oXGcK47F27SLe/vYMH0XEYOQ6hYiI6Es6\nhZosX35z3REmZLrP4a5aclevrdlznUJERAxcagoDkppCRLRFagoREdGXdAo1SU2hWsldrbbmhvZm\nT00hIiIGLjWFAUlNISLaIjWFiIjoSzqFmqSmUK3krlZbc0N7s1dSU5B0oaRHJC3vavu4pO9IukvS\nlyW9sOu5MyStknSvpMO62veXtLx87ryu9s0lXVG2L5W0W9dzp0paWf5500C+24iIGNWoNQVJrwd+\nClxie07Zdihwg+1nJZ0DYHuhpH2Ay4ADgF2ArwGzbVvSMuAdtpdJugb4tO3FkhYA+9peIOkE4Fjb\nJ0raFvgWsH8Z5XZgf9uP9ciYmkJExDhMuKZg+1bgJ8Palth+ttz8JvDi8vHRwOW2n7a9GrgPOFDS\nTsAM28vK/S4BjikfHwVcXD6+Cji4fPx7wPW2Hys7giXA4WN+pxERMSmTrSm8BbimfLwzsKbruTUU\nZwzD29eW7ZRfHwCw/QzwuKTtRjnWRiM1hWold7Xamhvam7326xQkfRj4le3LBpIkIiJqN6E7r0ma\nD/w+G4Z7oDgD2LVr+8UUn/DXsmGIqbu985qXAA9K2hR4oe0fS1oLzOt6za7AjSPlmT9/PrNmzQJg\n5syZzJ07d/0diDq951Rvd3TOADp3VRvE9rp1y4EjK/1+RtrutNX190+37U5bU/JMl+2OpuTpZ3ve\nvHmjfj8333wzq1evZixjXrwmaRawqKvQfDjwN8Dv2l7XtV+n0PxqNhSaf7MsNH8TeBewDPg3nlto\nnmP7dEknAsd0FZpvA/YDRFFo3i+F5oiIyZtwoVnS5cA3gD0lPSDpLcBngK2BJZLulPRZANsrgCuB\nFcC1wIKu39YLgPOBVcB9theX7RcA20laBbwbWFge61HgoxQzkJYBH+nVIbRZagrVSu5qtTU3tDf7\noHKPOnxk+6QezReOsv/ZwNk92m8H5vRofwo4foRjXQRcNFq+iIgYrKx9NCAZPoqItsjaRxER0Zd0\nCjVJTaFayV2ttuaG9mYfVO50ChERsV5qCgOSmkJEtEVqChER0Zd0CjVJTaFayV2ttuaG9mZPTSEi\nIgYuNYUBSU0hItoiNYWIiOhLOoWapKZQreSuVltzQ3uzp6YQEREDl5rCgKSmEBFtkZpCRET0JZ1C\nTVJTqFZyV6utuaG92VNTiIiIgUtNYUBSU4iItkhNISIi+pJOoSapKVQruavV1tzQ3uypKURExMCl\npjAgqSlERFukphAREX1Jp1CT1BSqldzVamtuaG/2SmoKki6U9Iik5V1t20paImmlpOslzex67gxJ\nqyTdK+mwrvb9JS0vnzuvq31zSVeU7Usl7db13Knl37FS0psG8t1GRMSoRq0pSHo98FPgEttzyrZz\ngXW2z5X0QWAb2wsl7QNcBhwA7AJ8DZht25KWAe+wvUzSNcCnbS+WtADY1/YCSScAx9o+UdK2wLeA\n/csotwP7236sR8bUFCIixmHCNQXbtwI/GdZ8FHBx+fhi4Jjy8dHA5baftr0auA84UNJOwAzby8r9\nLul6TfexrgIOLh//HnC97cfKjmAJcPio32VEREzaRGoKO9h+pHz8CLBD+XhnYE3XfmsozhiGt68t\n2ym/PgBg+xngcUnbjXKsjUZqCtVK7mq1NTe0N/ugcm86mReXQ0O1j93Mnz+fWbNmATBz5kzmzp3L\nvHnzgA1v1FRvd3R+2c+ZM2/U7fHsv27dcuDISr+fkbaHhoZq/fsn++/TlDx5v5u7PTQ01Kg8g9ju\nPF69ejVjGfM6BUmzgEVdNYV7gXm2Hy6Hhm6yvZekhQC2zyn3WwycCdxf7rN32X4S8Abbp5f7nGV7\nqaRNgYdsby/pxPLveHv5mr8HbrR9RY98qSlERIzDoK9TuBo4tXx8KvCVrvYTJW0maXdgNrDM9sPA\nE5IOlCTgFOCrPY51HHBD+fh64DBJMyVtAxwKXDeBrBERMQ5jTUm9HPgGsKekByS9GTgHOFTSSuCg\nchvbK4ArgRXAtcCCro/wC4DzgVXAfbYXl+0XANtJWgW8G+icbTwKfJRiBtIy4CO9Zh61WWoK1Uru\narU1N7Q3+6Byj1pTsH3SCE8dMsL+ZwNn92i/HZjTo/0p4PgRjnURcNFo+SIiYrCy9tGApKYQEW2R\ntY8iIqIv6RRqkppCtZK7Wm3NDe3NPqjc6RQiImK91BQGJDWFiGiL1BQiIqIv6RRqkppCtZK7Wm3N\nDe3NnppCREQMXGoKA5KaQkS0RWoKERHRl3QKNUlNoVrJXa225ob2Zk9NISIiBi41hQFJTSEi2iI1\nhYiI6Es6hZqkplCt5K5WW3NDe7OnphAREQOXmsKApKYQEW2RmkJERPQlnUJNUlOoVnJXq625ob3Z\nU1OIiIiBS01hQFJTiIi2SE0hIiL6kk6hJqkpVCu5q9XW3NDe7LXXFCSdIekeScslXSZpc0nbSloi\naaWk6yXNHLb/Kkn3Sjqsq33/8hirJJ3X1b65pCvK9qWSdpv4txkREf2YUE1B0izgRmBv209JugK4\nBng5sM72uZI+CGxje6GkfYDLgAOAXYCvAbNtW9Iy4B22l0m6Bvi07cWSFgD72l4g6QTgWNsn9siS\nmkJExDhMRU3hCeBpYCtJmwJbAQ8CRwEXl/tcDBxTPj4auNz207ZXA/cBB0raCZhhe1m53yVdr+k+\n1lXAwRPMGhERfZpQp2D7UeBvgB9QdAaP2V4C7GD7kXK3R4Adysc7A2u6DrGG4oxhePvasp3y6wPl\n3/cM8LikbSeSt4lSU6hWclerrbmhvdkHlXvTibxI0suAdwOzgMeBL0r64+59yqGhSsZ15s+fz6xZ\nswCYOXMmc+fOZd68ecCGN2qqtzs6v+znzJk36vZ49l+3bjlwZKXfz0jbQ0NDtf79k/33aUqevN/N\n3R4aGmpUnkFsdx6vXr2asUy0pnACcKjt/15unwK8BjgIeKPth8uhoZts7yVpIYDtc8r9FwNnAveX\n++xdtp8EvMH26eU+Z9leWg5RPWR7+x5ZUlOIiBiHqagp3Au8RtKWkgQcAqwAFgGnlvucCnylfHw1\ncKKkzSTtDswGltl+GHhC0oHlcU4Bvtr1ms6xjgNumGDWiIjo00RrCndRFIVvA+4um/8BOAc4VNJK\nirOGc8r9VwBXUnQc1wILuj7eLwDOB1YB99leXLZfAGwnaRXFUNXCiWRtqtQUqpXc1Wprbmhv9kHl\nnlBNAcD2ucC5w5ofpThr6LX/2cDZPdpvB+b0aH8KOH6i+SIiYvyy9tGApKYQEW2RtY8iIqIv6RRq\nkppCtZK7Wm3NDe3NPqjc6RQiImK91BQGJDWFiGiL1BQiIqIv6RRqkppCtZK7Wm3NDe3NnppCREQM\nXGoKA5KaQkS0RWoKERHRl3QKNUlNoVrJXa225ob2Zk9NISIiBi41hQFJTSEi2iI1hYiI6Es6hZqk\nplCt5K5WW3NDe7OnphAREQOXmsKApKYQEW2RmkJERPQlnUJNUlOoVnJXq625ob3ZU1OIiIiBS01h\nQFJTiIi2SE0hIiL6kk6hJqkpVCu5q9XW3NDe7LXXFCTNlPQlSd+RtELSgZK2lbRE0kpJ10ua2bX/\nGZJWSbpX0mFd7ftLWl4+d15X++aSrijbl0rabeLfZkRE9GPCNQVJFwO32L5Q0qbA84EPA+tsnyvp\ng8A2thdK2ge4DDgA2AX4GjDbtiUtA95he5mka4BP214saQGwr+0Fkk4AjrV9Yo8cqSlERIzDwGsK\nkl4IvN72hQC2n7H9OHAUcHG528XAMeXjo4HLbT9tezVwH3CgpJ2AGbaXlftd0vWa7mNdBRw8kawR\nEdG/iQ4f7Q78SNJFku6Q9I+Sng/sYPuRcp9HgB3KxzsDa7pev4bijGF4+9qynfLrA1B0OsDjkrad\nYN7GSU2hWsldrbbmhvZmH1TuTSfxuv0ohn2+JelTwMLuHcqhoUrGdebPn8+sWbMAmDlzJnPnzmXe\nvHnAhjdqqrc7Or/s58yZN+r2ePZft245cGSl389I20NDQ7X+/ZP992lKnrzfzd0eGhpqVJ5BbHce\nr169mrFMqKYgaUfg/9revdx+HXAG8FLgjbYfLoeGbrK9l6SFALbPKfdfDJwJ3F/us3fZfhLwBtun\nl/ucZXtpWbN4yPb2PbKkphARMQ4DrynYfhh4QNIeZdMhwD3AIuDUsu1U4Cvl46uBEyVtJml3YDaw\nrDzOE+XMJQGnAF/tek3nWMcBN0wka0RE9G8y1ym8E7hU0l3AK4C/As4BDpW0Ejio3Mb2CuBKYAVw\nLbCg6+P9AuB8YBVwn+3FZfsFwHaSVgHvZtjwVNulplCt5K5WW3NDe7MPKvdEawrYvotiiulwh4yw\n/9nA2T3abwfm9Gh/Cjh+ovkiImL8svbRgKSmEBFtkbWPIiKiL+kUapKaQrWSu1ptzQ3tzT6o3OkU\nIiJivdQUBiQ1hYhoi9QUIiKiL+kUapKaQrWSu1ptzQ3tzZ6aQkREDFxqCgOSmkJEtEVqChER0Zd0\nCjVJTaFayV2ttuaG9mZPTSEiIgYuNYUBSU0hItoiNYWIiOhLOoWapKZQreSuVltzQ3uzp6YQERED\nl5rCgKSmEBFtkZpCRET0JZ1CTVJTqFZyV6utuaG92VNTiIiIgUtNYUBSU4iItkhNISIi+pJOoSap\nKVQruavV1tzQ3uyNqClI2kTSnZIWldvbSloiaaWk6yXN7Nr3DEmrJN0r6bCu9v0lLS+fO6+rfXNJ\nV5TtSyXtNpmsERExtknVFCS9F9gfmGH7KEnnAutsnyvpg8A2thdK2ge4DDgA2AX4GjDbtiUtA95h\ne5mka4BP214saQGwr+0Fkk4AjrV9Yo8MqSlERIzDlNQUJL0Y+H3gfKBz8KOAi8vHFwPHlI+PBi63\n/bTt1cB9wIGSdqLoUJaV+13S9ZruY10FHDzRrBER0Z/JDB99Eng/8GxX2w62HykfPwLsUD7eGVjT\ntd8aijOG4e1ry3bKrw8A2H4GeFzStpPI2yipKVQruavV1tzQ3uyDyr3pRF4k6Qjgh7bvlDSv1z7l\n0FAl4zrz589n1qxZAMycOZO5c+cyb14Rq/NGTfV2R+eX/Zw580bdHs/+69YtB46s9PsZaXtoaKjW\nv3+y/z5NyZP3u7nbQ0NDjcoziO3O49WrVzOWCdUUJJ0NnAI8A2wBvAD4MkXNYJ7th8uhoZts7yVp\nIYDtc8rXLwbOBO4v99m7bD8JeIPt08t9zrK9VNKmwEO2t++RJTWFiIhxGHhNwfaHbO9qe3fgROBG\n26cAVwOnlrudCnylfHw1cKKkzSTtDswGltl+GHhC0oGSRNHRfLXrNZ1jHQfcMJGsERHRv0Fdp9D5\nqH4OcKiklcBB5Ta2VwBXAiuAa4EFXR/vF1AUq1cB99leXLZfAGwnaRXwbmDhgLI2QmoK1UruarU1\nN7Q3+6ByT6im0M32LcAt5eNHgUNG2O9s4Owe7bcDc3q0PwUcP9l8MbpLL13Ek0/2v//Klcu5997+\nXjBjBpx8coa9Itpk0p1CTEynkFy3J59kXLWQ8ey7du2iiUSaEp3CW9skd/Xamn1QubPMRURErJdO\noSZtrSm0Nfd0HyeuWltzQ3uzDyp3OoWIiFgvnUJNmlJTGK+25p7u48RVa2tuaG/21BQiImLg0inU\npK1j823NPd3HiavW1tzQ3uypKURExMClU6hJW8fm25p7uo8TV62tuaG92VNTiIiIgUunUJO2js23\nNfd0HyeuWltzQ3uzp6YQEREDl06hJm0dm29r7uk+Tly1tuaG9mZPTSEiIgYunUJN2jo239bc032c\nuGptzQ3tzZ6aQkREDFw6hZq0dWy+rbmn+zhx1dqaG9qbPTWFiIgYuHQKNWnr2Hxbc0/3ceKqtTU3\ntDd7agoRETFw6RRq0tax+bbmnu7jxFVra25ob/bUFCIiYuDSKdSkrWPzbc093ceJq9bW3NDe7LXW\nFCTtKukmSfdI+rakd5Xt20paImmlpOslzex6zRmSVkm6V9JhXe37S1pePndeV/vmkq4o25dK2m0y\n32hERIxtomcKTwPvsf1y4DXAn0jaG1gILLG9B3BDuY2kfYATgH2Aw4HPSlJ5rM8Bp9meDcyWdHjZ\nfhrw47L9k8DHJpi1kdo6Nt/W3NN9nLhqbc0N7c1ea03B9sO2h8rHPwW+A+wCHAVcXO52MXBM+fho\n4HLbT9teDdwHHChpJ2CG7WXlfpd0vab7WFcBB08ka0RE9G/SNQVJs4BXAd8EdrD9SPnUI8AO5eOd\ngTVdL1tD0YkMb19btlN+fQDA9jPA45K2nWzepmjr2Hxbc0/3ceKqtTU3tDf7oHJvOpkXS9qa4lP8\n/7T95IYRIbBtSZ5kvr7Mnz+fWbNmATBz5kzmzp27/lSq80ZN9XZH55dmZ5hlpO3x7L9u3XLgyCnJ\nv3Llch59dMaYeTvb3//+UF/fX2e7qve/33+fpuTpd3toaKhReTb29/vmm29maGioUXkGsd15vHr1\nasYie2K/tyX9BvCvwLW2P1W23QvMs/1wOTR0k+29JC0EsH1Oud9i4Ezg/nKfvcv2k4A32D693Ocs\n20slbQo8ZHv7Hjk80e9hkD7/+UXsssuRU3LstWsX8fa3T82x25o7IiZOErbV67mJzj4ScAGwotMh\nlK4GTi0fnwp8pav9REmbSdodmA0ss/0w8ISkA8tjngJ8tcexjqMoXEdExBSaaE3htcAfA2+UdGf5\n53DgHOBQSSuBg8ptbK8ArgRWANcCC7o+3i8AzgdWAffZXly2XwBsJ2kV8G7KmUwbi7aOzbc19/Bh\njbZI7uq1Nfugck+opmD764zcoRwywmvOBs7u0X47MKdH+1PA8RPJFxERE5MrmmvS1vn+bc3dKby1\nTXJXr63ZB5U7nUJERKyXTqEmbR2bb2vu6T5OXLW25ob2Zh9U7nQKERGxXjqFmrR1bL6tuaf7OHHV\n2pob2ps9NYWIiBi4dAo1aevYfFtzT/dx4qq1NTe0N3tqChERMXDpFGrS1rH5tuae7uPEVWtrbmhv\n9tQUIiJi4Ca1dHZM3PLlN7fyU3eTcl966SKefLK/fVeuXM4ee/yn1VRGNGMGnHxy/Su83nzzza38\n5NrW3NDe7IPKnU4hWuvJJ+l72e9HH53BLrvM6/vYa9cummCqiHbL8FFNmvJpe7ySu1pt/MQK7c0N\n7c2emkJERAxcOoWatHW+f3JXa7rPma9DW7PnOoWIiBi4dAo1aesYd3JXa7qPb9ehrdlTU4iIiIFL\np1CTto5xJ3e1pvv4dh3amj01hYiIGLh0CjVp6xh3cldruo9v16Gt2QeVO1c0R1RsPMtzjFdTlueI\n9mp8pyDpcOBTwCbA+bY/VnOkgWjSGkLjkdyTN57lOcabuynLc7R1/SBob/ZB5W708JGkTYC/Aw4H\n9gFOkrR3vakG4/vfH6o7woQkd7XamntoqJ25ob3ZB5W70Z0C8GrgPturbT8N/DNwdM2ZBuJnP3us\n7ggTktzVamvuxx5rZ25ob/ZB5W768NEuwANd22uAA2vKEjGtjacWcttt3+Xzn+9/KCu1kOZoeqfg\nugNMlR/+cHXdESYkuavVpNzjqYX84hdX9b0vTG0tZLyF/euuu5Udd+wvz1R2ZlOZezSym/t7V9Jr\ngLNsH15unwE8211sltTcbyAioqFsq1d70zuFTYHvAgcDDwLLgJNsf6fWYBERG6lGDx/ZfkbSO4Dr\nKKakXpAOISJi6jT6TCEiIqrV9CmpERFRoUYPH21MJL3O9teHtb3W9r/XlWk0kv6QYvaX6DELzPaX\nKw/VB0n/0/Z5vd7vppO0H3AS8AZgFsX7fj/wf4DLbN9ZX7re2vpz0k3Sy3nue74auNX2PTXGGlPn\nZ32stnEfN8NH1ZB0p+1XjdXWFJK+QPEf5EXA7wA3lk+9EfiG7SNqijYqSXfZfmWT39teJF0D/AS4\nmmJCxUMUv2h3oriI80hgpu3/WlvIHtr6cwIg6RTgncCPKd7zB3nue/5fgPNs/1NtIUcxwu+UIdtz\nJ3PcnClMMUm/TfGfZXtJ76X4oQOYQYOH72zPB5C0BNjH9kPl9k7AxTVGG8sKSauAXSQtH/acbb+i\njlB9eLPtR3q0f7/888+SXlRxpjG1+OcEYBvgYNs9rwaQ9AJgfqWJ+iDpJOCPgN0ldV+YMIOig5uU\ndApTbzOKf6xNyq8dTwDH1ZJofHYFHu7afgR4SU1ZxmT7JEk7UsxYO4oNnXCjdToESc8Hfmn715L2\nBPYErrX9tO0f1hpydK36OQGw/ekxnn8CGHWfmnyD4kxye+ATbPgZfxK4a7IHz/BRRSTNsr267hzj\nJenvgD2Ayyh++E4AVtl+Z63BRiDpBtsHSzrX9gfqzjNeku4AXkfxKfbfgW8Bv7J9cq3BxtC2n5Nu\nkj4O/CXwc2Ax8ErgPbb/d63BapJOoSLlp74/pShmdc7QbPug2kL1QZKAYykKcQb+j+1/qTfVyCSt\nAN4KXEBxiv2cAqjtO2qK1pfOOLGkdwJb2j63UyepO9toun5OXl82NfrnpFtXHepY4AjgvRSF5kYO\nNUr6KSMvAWTbL5jM8TN8VJ0vAp8Dzgd+XbY1vkd28anhy+WfNjgT+DOKxRT/psfzb6w2zviVdaiT\ngdPKpsbWnjpsW9I3gKfLpm/WmWecOr8HjwC+ZPvxJi+fY3vrqTx+OoXqPG37c3WH6Jekf7f92hE+\nlUz608hUsf1F4IuS/sz2R+vOMwHvBs4A/sX2PZJeBtxUc6YxSToe+DhwS9n0GUnvL/89mm6RpHuB\nXwKnlwX9X9acaUySetZsbP9gUsfN8FE1JJ0F/IjiE/dTnXbbj9aVaWMlaTPgj4GXU3Ro91DM839q\n1Bc2gKQ5tofPmmo8SXcDh3SK4ZK2B25o6hDMcJK2BZ4ol9Z5PjDD9sNjva5Okr7Nhg9sWwC7A9+1\n/fJJHTedQjUkrab3xT27V59m/MpPT1t0tif7aWSqSNqHYq7/N4DbKGoK+wOvBY5qwQVJX6eYsfYF\n4FLbj9ebqD/l9N9XlMONSHoecJftOfUmG5uk24ELKT44/KTuPBNVXvz4J7ZPG3PnUWT4qCK2Z9Wd\nYSIkHUUxNr8z8ENgN+A7FJ/Cm+jvgNNtL+lulHRI+Vyjawq2XydpD+AtwB2SlgEX2b6+5mhjWQxc\nJ6l79tG19Ubq24nAm4FvSboNuAi43i37xGz7DkmTvglZzhQqUp6Svhd4ie23SpoN7Gn7X2uONqpy\nWOAgYEk5K+aNwCm231JztJ4kfdf2niM8d6/tvarONBHlsvHHUMyTf5yi2Pwh21fVGmwE5eyjP6CY\nTmuK2TutmH3UUZ7dHEExIeRZirOH85o6xCvpfV2bzwP2A7a1/XuTOW7OFKpzEXA7xdXNUFxS/yWg\n0Z0CRYF8naTnSdrE9k2SJrW2yhSTpC1s/3JY4xYUFxA2mqRXUlxFewSwBDii/AS4M7AUaGSnUH6q\nvoqG5htL+b6/Gfj/KL6Hyyg6uBuBSS0bMYVmsGFI+hmK3yWTfv/TKVTnZbaPl3QigO2fFR+uGu8n\nkmYAtwKXSvoh8NOaM43mEuBLkt7RuVhQ0u4Un7jbcDHSpymusfiw7Z93Gm0/KOl/1Rert7bOUutW\n1hQep5guvrDrA8VSSa+tL9nobJ81FcfN8FFFyjncB1MsEvaqcqrh5bZfXXO0UZXDXr+g+JR9MvAC\nigLopNcKX1aAAAAP70lEQVRYmSrljZk+ADy/bPoZ8HHbn6kvVTSVpJfZ/l7dOcarnPzxAWAfYMuy\nedIXxKZTqIikw4APU/wDLqGYDTPfdiPnoKu4P/bfA78J3A2cZntFvanGp1zQrLOGTSuUReazKQr5\nndletv3S+lKNrqx/fLst9ZpeJB3Bhl+uBrD9F7WGGkO5COEVFCsl/A+KYccfTXZ5l8ZfKbkxKAtY\n2wB/SDFueRnwW03tEEr/P8UP23bA3wKfrDfO+Nl+ok0dQuki4PMUVwbPo1hp9NI6A43F9jPAdyXt\nVneWiZD098DxwLvKpuMpZtk13Xa2z6dYG+sW22+mmBQyKTlTqIik223vX3eOfg1fq71t9ydoK0l3\n2N5P0vLOHP9OW93ZRiPpVuBVFPcl+FnZbNtH1ZeqP533WtLdtl8haWtgse3X1Z1tNJKW2n6NpOsp\nalEPAl+0/bLJHDeF5uoskfSnFKd7nf80Tb6i+YWS/oANy/J2b9stuKNWS/1S0ibAfWVt5EE21Eaa\n7M96tLXlE+cvyq8/l7QLxT0JdqwxT7/+UtJM4H3AZyjqfe+Z7EFzplCREa5obuxYsTbcUWt9U/d2\nearaOGr57SElvZri4sCZwEcp/qOfa3tprcH6IGkW8Ju2vyZpK2DTNgzfSfpzil+qB1EMmwL8o+1e\nHV3tJH3M9gclHW/7yoEfP53C1CtrCv/N9hV1Z9nYqcW3h2wzSW+jWLJ8W9svKwvmn7N9cM3RxqW8\nnmUL24/VnWUk5ZpHc4A7pmJIN8NHFbD9rKQPUAwdxRRyS28PqefeVrFzptN5TAvG5v+E4r7GSwFs\nr1QDbx/areusstdzTT6rvJbift5bSxp+K9FJXxuSTqE6basptF3bbg/ZuffDsRTj2f9E0TGcRJG9\n6Z6y/VTngsxymmrThyGOZJSzShp6DxHb7wfeL+nqqfiwkOGjirR9ldS2UUtvD9lrllobZq6puKXl\nY8CbgHcAC4AVtj9ca7A+lGeVbxp+Vmn7sHqTja2cBjy7q46zie3hZw/jO2Y6hRhNW5cVLhdoa93t\nISV9h2K9o++V2y8F/s323vUmG11ZNzsN6CzGdh1wfhtWGlVxg529hy37vaLpF+NNVR0nw0cVkXQq\nvc8ULqkhzni0cllh25Z0B/Ck7SWStpI0Y7KfoirwHuAmSf9Rbs8C3lZfnNFJ2gH4EM+98r0V94Do\n8jX+87LfS0Z/SSNMSR0nZwoVKYczOm/2lhTT3+6wfVx9qfrXwmWFWzsbppwBsxfFz8t3h6/42iSS\nrqO4mdGtFD8fW3eK/W1SXoPTtrPKZbZf3bmwtKzj3OFJ3u0unUJNyotOrvAk1z6vwrBlha9jw7LC\nf2y7kcsKS7qL8lNUZ9pe91XCMRiS7rL9yq7tXPlekamq42T4qD4/p7inaqO1dVlh2jkbpo2k4v7G\nUAy9bNK1ndl1U2shRR1nOcWCeNdQ/D+dlJwpVGTYPPTnUazIeKXtD9YUqS+SXmr7+3XnGK82z4Zp\nk5Fm1ZUae8X+xqJTQ7D9w4EdM53C1FJx280deO5Z2TMUn6oesn1fLcHGoOfe6q/7Yioo/rP/bcWR\nxqVcP+g0oDOtsPGzYcq6zauBXSje87XAsiZnjuqVM+vOpPiw07mb4K8plur4i8n+vGT4aOp9CjjD\n9t3djZJeQbEc9ZG1pBpb963+uvVcU6hpbP8a+IfyT+OV99v4LHAfsKZsfjEwW9IC29fVFm4jVdb1\nFlLcC3sHip/rHwJfAc5p8FIX76G4H8sBtv8D1k9d/nz53KQ+sOVMYYpJus32b43w3Ldt71t1pulA\n0nL+8xnO48C3gL90w+4cV86VP9zlLUS72ncHrm36nPk2KpecvoFi+ZNHymnMOwGnAgc19eI1SUPA\nobZ/NKx9e2DJZCd/5Exh6s0c5bktRnmuVpJGu3Wlbb9rlOebYDHFMF1n7vmJwFYUS0Z8geadoW1C\nMVw03Fry/3SqzLL9se6G8qrmcyS9paZM/dh0eIcAYPtH5YSKyR18sgeIMd0m6W22nzOMIemtwO01\nZerH7fznT9odbTi9PGTY1Mi7u+ZzL68t1cgupLhA8HI2DB/tStGZXVhbqnGQ9HqKpbMvKj+1bt0Z\n3mio+8uFKi+2/QiApB0pzhR+UGuy0T09wef6kuGjKVb+kP0L8Cs2dAL7A5sDx3bWW4nBknQ38Fbb\n3yy3X02xRv4rmzqXXtI+wNHAzmXTWuBqt+De2JLOovi53tP2HuXNaq603dhpy+XU2YXAURQ1BSjO\nJK+mqCk0cjqtpF9TTGnvZUvbk/qwn06hAuVsgTcC+1J8yr7H9o2jv6oZJPW6j7RtT/pesFNJ0gEU\nS3JsXTY9STEb6R7gv3oKbk4ynZUXC74KuL3rYsG7J3t1bVQvw0cVKKeI3ciGpXnb5P1dj7cA/pBi\nrL6xyumor7O9bznDhGEzSRrXIUh6IXAGxYyja2xf1vXcZ20vqC1cf55ycd8QACS14RailBdg/sT2\nCknzKM52hmzfUG+y+uRMIcZN0rdsH1B3jtG0IWM3SV8GVgLfBN5CMdx4su1fNnW4q5uk91MsincY\n8NcU38Nltj9da7BRSPprijP4TYCbgDcA/wYcCiyy/fEa49UmnUKMqnvJAoorsX+LYiG8PWuK1BdJ\nnwR+gw03NRLFSdsdtQYbQY81hD4M/D5FjWFJ0zsFWH+txfqLBW03eqVRSSuAVwCbUdQSXmz7cUlb\nAt+crkNfGT6KsdzBhtlGzwCrKcbmm+5VFLn/Ylj7G2vI0o/NJD3P9rMAtv9K0lrgFjbURRqrvJ7i\nVtvXl9tbSpo1/LqLhvmV7WeAZyR9r7Pkt+1fSHq25my1SacQPUl6ie0f2J5Vd5aJsD2v7gzj9K/A\nwXSt42/7C5Iepli+oOm+BPx21/azZVvPCzcb4ilJW9n+ObBfp7GsQ03bTiHDR9FT9zi2pKts/2Hd\nmcZL0hEUCw+uv0jQ9vAzhxgASUPDr6QdPiTWNJK26HWvCkn/BdjJdhOvZ5lyz6s7QLRC61a6lPT3\nwPHAuyjqCccDu9UaaoIkvbnuDH1YJ+nozkb5eF2NecY0QofwNtvrpmuHADlTiBEMO1No/OyX4To3\n1OnMlZe0NbDY9uvqzjZekh6wvWvdOUYj6TeBS9lw4d0a4JSmrgI8kjb+rA9aagoxkldI6tzPeMuu\nx1DM4nlBHaHG4Rfl15+XV9f+GNixxjyjGmPpjUnfd3eqlb/8D5Q0o9j0T+vONEG9lnWZVtIpRE+2\nNxl7r0ZbJGkb4ONsWF7kH2vMM5YXAYcDP+nx3DcqzjIh3TWczkVsLazhHFF3gLqlU4iNku2Plg+v\nkvRvwBYNXh8fioumtrZ95/AnJN1SQ55xKWs4WwIHUXS+/43iQrzGkvQa4DvltQlbUayDtJ+ke4Cz\nO1NUp5vUFGKjVS5hMIsNd6fC9iW1BdqItbGG07l4zfYzkv6R4iLHLwGHlO1/UGvAmuRMITZKkv6J\nYtbUEMWtCjta0yn0WnK9wVpVwympvHgNYH/bnWsVvl4u8DctpVOIjdX+wD4tv7/x6bTkdqK0r4YD\ncI+kt9i+ELhL0gG2vyVpD4q1p6aldAqxsfo2sBPwYN1BNnaSngfcaPsntKeGA/DfgfMk/S/gR8A3\nJK0BHiifm5ZSU4iNiqRF5cOtKdY/WgY8VbbZ9lG1BJsASbvafqDuHP3odUVzW5TLlu9O8SF5je2H\na45Uq3QKsVEp18Tv/FB3zzk3gO3Gz+QZTtKbbV9Ud47RSPoEsBS4quVDdgBI2rrF11pMSjqF2KhI\nmg3sYPvrw9pfBzxk+3v1JJu4llzR/FNgK4qifmf5iDZc5NiTpB/YfkndOeqQmkJsbD5FcQez4Z4o\nnzuy2jj92QiuaG788t7DSXrfKE/PqCxIw6RTiI3NDrbvHt5o++5yzf+mauUVzZI2pbhZ/JPl9mso\nbloDcGenvaH+CvgE8PSwdjGNFwtNpxAbm5mjPLfFKM/Vra1XNH8M+GH5FeByiplfW1DcoOmDNeXq\nx53AV2zfNvwJSW24kdSUSE0hNiqS/plieuQ/DGt/K3CI7RPqSbZxkjQEHGD76XL7TtuvUrH40ddt\nv7behCOTtBfwY9s/6vHcjtN1FlI6hdioSNoR+BeKi486F1HtD2wOHGv7obqyjZek7Wz/uO4co+ks\na9G1fVjXLTkbfZOd6G3ajpvFxqn8dPc7wEco7if9H8BHbL+myR2CpIMk3SdpqaRXS/ousEzS9yQd\nUHe+UfyGpPUzjLo6hBdSdMSNJenC0d5bSQdKavRU4KmQM4WIBpB0OzCf4qK7a4Ejbd8qaT/gPNuv\nrzPfSCS9l2IBudNt31+2zQI+B9xg+xP1pRudpDnA+4HXAN8FHqIoMu8I7ElR4P+E7W/XFrIG6RQi\nGmDYne6+Y3vvXs81kaS3Ax+i6NAAfgr8te3P1Zeqf5I2p7j6fTeKixzvB+7qdbvO6SCdQkQDdI+/\nSzrG9lfKxwKW29631oB96Awj2X6i7iwxcZmSGtEMfy7p+bZ/1ukQSi+lJct9pzPYOORMISIi1svs\no4gGyEyY+pW35Jz2cqYQ0QAbw0yYrtufdoal3Ybbn0r6HeB8YIbtXSXNBd5me0HN0WqRTiGiQdo6\nE2ak25/afmdtofokaRlwHPDVrhlg99h+eb3J6pFCc0SD2H6K4r4ES+vOMk6tvv2p7R8UE73We2ak\nfTd2qSlExCB0bn/aRj8oh76QtJmkPwW+U3Om2uRMISIGYXtgRTkU07bbn54OnAfsAqwFrgf+pNZE\nNUqnENFAkray/fO6c4zDWXUHmIQ9bP9Rd0N55vDvNeWpVQrNEQ2SmTDV67WMSNOXFplKOVOIaJZP\nUdyB7asAtock/W69kUZW3pt5pE+Wjb5Hs6TfplhRd/tyYb9OpXkG07jemk4homHaNBOmjfdm7rIZ\nRQewCc+9J/MTFFNUp6V0ChHN8pyZMMC7mMYzYaaS7VuAWyR9wfbquvM0RWoKEQ0iaXuKmTCHUAxn\nXA+8q+l3YGszSS8CPgDsA2xZNtv2QfWlqs+0HTeLaKg9bP+R7RfZ3t72ycBedYfayF0K3EtxRfZZ\nFHfsu63GPLXKmUJEg2QmTPUk3WF7v+77TUu6zfZv1Z2tDqkpRDRAZsLU6lfl14clHQE8CGxTY55a\npVOIaIbMhKnPX0maCbwP+AzwAuA99UaqT4aPIhpE0qzMhKmfpPfY/mTdOeqQTiGiQTITphkkPWB7\n17pz1CFjlRHNkpkwUat0ChHNsp3t84Ff2b7F9puBnCVEZVJojmiWzISpyBjrNk3b+zWnphDRIJKO\nBG4FdmXDTJizbF9da7CYNtIpRDTcdJ4JE9VLpxDRcNN5JkxUL4XmiIhYL51CRESsl9lHEQ2QmTDR\nFKkpRETEehk+ioiI9dIpRETEeukUIiJivXQKERGxXjqFiIhYL51CRESs9/8AEMEPgMlsFWsAAAAA\nSUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x11b554050>"
]
}
],
"prompt_number": 1031
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#cleaning \"loan_status\"\n",
"loan_2['loan_status_clean'] = loan_2['loan_status'].map({'Current': 2, 'Fully Paid': 1, 'Charged Off':0, 'Late(31-120 days)':0, 'In Grace Period': 0, 'Late(16-30 days)': 0, 'Default': 0})\n",
"loan_2 = loan_2[loan_2.loan_status_clean != 2] \n",
"loan_2[\"loan_status_clean\"] = loan_2[\"loan_status_clean\"].apply(lambda loan_status_clean: 0 if loan_status_clean == 0 else 1)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1032
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_2.loan_status_clean.value_counts().plot(kind='bar',alpha=.30)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1033,
"text": [
"<matplotlib.axes._subplots.AxesSubplot at 0x118721ad0>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD7CAYAAACCEpQdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGzNJREFUeJzt3W+MVfd95/H3x6Z22A31aDY2NWPHg5TxxlR0x7Uaok3l\n4HWCJlENRLJs2JYwq9kqeNok9oNqIVIX1ErUVJsgVyvDA9MOUJc1Wu/ajGITE+q7arXCo1iQTjNh\nAdljMRODJey1nf6xYP3dB/d38clwmX+c8T1nzuclXc0533PO8Dszh+8987nn3qOIwMzMquW6Vg/A\nzMw+fm7+ZmYV5OZvZlZBbv5mZhXk5m9mVkFu/mZmFTSt5i/peknHJQ2m+W2SxlLtuKSvZNbdIum0\npJOSVmXq90gaTsueyNRvlPRMqh+TdEeeO2hmZlea7pn/t4ERoPGmgAC+FxF3p8eLAJKWAQ8Dy4Ae\n4ElJStvsAvoiogvoktST6n3AhVTfCey41p0yM7PJTdn8Jd0GfBV4Cmg0cmWms9YAByLiYkSMAmeA\nFZJuBRZFxFBabx+wNk2vBvam6WeB+2exH2ZmNgPTOfPfCfwB8GGmFsA3Jf1Y0h5Jbam+BBjLrDcG\ndDSpj6c66etZgIi4BLwrqX2mO2JmZtM3afOX9FvAWxFxnF88098FLAW6gTeB787ZCM3MLHcLplj+\nb4HVkr4KfAL4ZUn7IuLrjRUkPQUMptlx4PbM9rdRP+MfT9MT641tPg38TNIC4KaIeHviQCT5Q4jM\nzGYhIq6I6Sc984+I70TE7RGxFFgH/HVEfD1l+A1fA4bT9CFgnaQbJC0FuoChiDgHvCdpRXoBeAPw\nfGabjWn6QeDoJOPxw4/cHlu3bm35GPyYP4+iHk9XM9WZf5b46GqfP5X0b9L868A3UnMekXSQ+pVB\nl4D++Ohf7wcGgIXACxFxONX3APslnQYuUH+SMZtzo6OjrR6CzSNlO56m3fwjogbU0vSGSdbbDmxv\nUn8VWN6k/gHw0HTHYWZm187v8LXK6u3tbfUQbB4p2/GkyTKhIpEUZRmrmVlRSCJm+oKv2XxWq9Va\nPQSbR8p2PLn5m5lVkGMfM7N5zLGPmZld5uZvlVW2jNaKrWzHk5u/mVkFOfM3M5vHnPmbmdllbv5W\nWWXLaK3YynY8ufmbmVWQM3+bc08/Pcj777d6FOWwaBH89m8/0Oph2Dxytcx/Jh/pbDYr778PHR1u\naNMxPj449UpmOXDsY5U1PFxr9RBsHnHmb2ZmhTet5i/peknHJQ2m+XZJRySdkvSSpLbMulsknZZ0\nUtKqTP0eScNp2ROZ+o2Snkn1Y5LuyHMHza5m+fKVrR6CzSMrV65s9RBmZLpn/t+mfmvGxiuum4Ej\nEXEn9XvubgaQtAx4GFgG9ABPpnv2AuwC+iKiC+iS1JPqfcCFVN8J7Li2XTIzs6lM2fwl3QZ8FXiK\n+n18AVYDe9P0XmBtml4DHIiIixExCpwBVqQbvi+KiKG03r7MNtnv9Sxw/6z3xmwGnPlbnuZj5r8T\n+APgw0xtcUScT9PngcVpegkwlllvDOhoUh9PddLXswARcQl4V1L7DPbBzMxmaNJLPSX9FvBWRByX\ntLLZOhERkj6WC/B7e3vp7OwEoK2tje7u7ss5W+NZ1/PFnG+cZTdy9qLMNxRlPO3ptKfVvy/Pz26+\noZXjqdVqDAwMAFzul81M+iYvSduBDcAl4BPALwP/A/gNYGVEnEuRzssR8VlJmwEi4vG0/WFgK/BG\nWueuVF8P3BsRj6R1tkXEMUkLgDcj4uYmY/GbvEpq9+5BX+c/TePjg2za5J+V5WdWH+wWEd+JiNsj\nYimwDvjriNgAHAI2ptU2As+l6UPAOkk3SFoKdAFDEXEOeE/SivQC8Abg+cw2je/1IPUXkM3mnDN/\ny1PZMv+ZvsO3cer9OHBQUh8wCjwEEBEjkg5SvzLoEtCfOV3vBwaAhcALEXE41fcA+yWdBi5Qf5Ix\nM7M55M/2sTnn2Gf6HPtY3vx5/mZmdpmbv1WWM3/LU9kyfzd/M7MKcvO3yvJn+1ie5utn+5iZ2Tzi\n5m+V5czf8uTM38zMCs/N3yrLmb/lyZm/mZkVnpu/VZYzf8uTM38zMys8N3+rLGf+lidn/mZmVnhu\n/lZZzvwtT878zcys8Nz8rbKc+Vue5lXmL+kTkl6RdELSiKQ/SfVtksYkHU+Pr2S22SLptKSTklZl\n6vdIGk7LnsjUb5T0TKofk3THXOyomZl9ZKp7+P4zcF9EdAO/Btwn6Tep387xexFxd3q8CCBpGfAw\nsAzoAZ5M9+wF2AX0RUQX0CWpJ9X7gAupvhPYke8umjXnzN/yNO8y/4j4xzR5A3A98E6av+K2YMAa\n4EBEXIyIUeAMsELSrcCiiBhK6+0D1qbp1cDeNP0scP9Md8LMzGZmyuYv6TpJJ4DzwMsR8ZO06JuS\nfixpj6S2VFsCjGU2HwM6mtTHU5309SxARFwC3pXUPtsdMpsuZ/6Wp7Jl/gumWiEiPgS6Jd0E/EDS\nSuoRzh+lVf4Y+C71+GZO9fb20tnZCUBbWxvd3d2Xf+CNP7k8X8z5RsTSaLiebz7fnk57Wv378nx5\n52u1GgMDAwCX+2UzioirLrxiZekPgX+KiP+SqXUCgxGxXNJmgIh4PC07DGwF3qD+V8Ndqb4euDci\nHknrbIuIY5IWAG9GxM1N/u2YyVitOHbvHqSj44FWD+MKw8O1wp39j48PsmlT8X5WNrVarVbIs39J\nRMQVMf1UV/t8qhHpSFoIfBk4LulXMqt9DRhO04eAdZJukLQU6AKGIuIc8J6kFekF4A3A85ltNqbp\nB4Gjs9pDMzObtqlin1uBvZKuo/5EsT8ijkraJ6mb+lU/rwPfAIiIEUkHgRHgEtCfOV3vBwaAhcAL\nEXE41fcA+yWdBi4A63LbO7NJFO2s38qtiGf9k5m0+UfEMPDrTepfn2Sb7cD2JvVXgeVN6h8AD01n\nsGZmlg+/w9cqy9f5W54aL7qWhZu/mVkFuflbZTnztzyVLfN38zczqyA3f6ssZ/6WJ2f+ZmZWeG7+\nVlnO/C1PzvzNzKzw3Pytspz5W56c+ZuZWeG5+VtlOfO3PDnzNzOzwnPzt8py5m95cuZvZmaF5+Zv\nleXM3/LkzN/MzApvqts4fkLSK5JOSBqR9Cep3i7piKRTkl5q3OoxLdsi6bSkk5JWZer3SBpOy57I\n1G+U9EyqH5N0x1zsqNlEzvwtT/Mq84+Ifwbui4hu4NeA+yT9JrAZOBIRd1K/5+5mAEnLgIeBZUAP\n8GS6Zy/ALqAvIrqALkk9qd4HXEj1ncCOPHfQzMyuNGXsExH/mCZvAK4H3gFWA3tTfS+wNk2vAQ5E\nxMWIGAXOACsk3QosioihtN6+zDbZ7/UscP+s98ZsBpz5W57mXeYv6TpJJ4DzwMsR8RNgcUScT6uc\nBxan6SXAWGbzMaCjSX081UlfzwJExCXgXUnts9sdMzObjklv4A4QER8C3ZJuAn4g6b4Jy0NSzNUA\ns3p7e+ns7ASgra2N7u7uy8+2jbzN88Wcb+TrjbPtIsy/9toJ1qx5tDDjAWhPpz2t/n15fubzJ06c\n4NFHH235eGq1GgMDAwCX+2Uziph+35b0h8A/Af8RWBkR51Kk83JEfFbSZoCIeDytfxjYCryR1rkr\n1dcD90bEI2mdbRFxTNIC4M2IuLnJvx0zGasVx+7dg3R0PNDqYVxheLhWuOhnfHyQTZuK97OyqdVq\ntUJGP5KICE2sT3W1z6caV/JIWgh8GTgOHAI2ptU2As+l6UPAOkk3SFoKdAFDEXEOeE/SivQC8Abg\n+cw2je/1IPUXkM3mXNEav5VbERv/ZKaKfW4F9kq6jvoTxf6IOCrpOHBQUh8wCjwEEBEjkg4CI8Al\noD9zut4PDAALgRci4nCq7wH2SzoNXADW5bVzZmbW3KTNPyKGgV9vUn8b+NJVttkObG9SfxVY3qT+\nAenJw+zjVMTYx8qrqLHP1fgdvmZmFeTmb5Xls37LU5nO+sHN38ysktz8rbL82T6Wp8a19mXh5m9m\nVkFu/lZZzvwtT878zcys8Nz8rbKc+VuenPmbmVnhuflbZTnztzw58zczs8Jz87fKcuZveXLmb2Zm\nhefmb5XlzN/y5MzfzMwKbzo3cL9d0suSfiLp7yV9K9W3SRqTdDw9vpLZZouk05JOSlqVqd8jaTgt\neyJTv1HSM6l+TNIdee+o2UTO/C1P8zHzvwg8FhG/Cnwe+D1JdwEBfC8i7k6PFwEkLQMeBpYBPcCT\n6daNALuAvojoArok9aR6H3Ah1XcCO3LaPzMza2LK5h8R5yLiRJr+OfBToCMtvuKmwMAa4EBEXIyI\nUeAMsCLd6H1RRAyl9fYBa9P0amBvmn4WuH8W+2I2I878LU/zOvOX1AncDRxLpW9K+rGkPY0bvQNL\ngLHMZmPUnywm1sf56EmkAzgLEBGXgHcltc9kbGZmNn3Tbv6SPgn8d+Db6S+AXcBSoBt4E/junIzQ\nbI4487c8lS3zn/QG7g2Sfol6HPOXEfEcQES8lVn+FDCYZseB2zOb30b9jH88TU+sN7b5NPAzSQuA\nm9JN4n9Bb28vnZ2dALS1tdHd3X35T63GD97zxZxvNNpG1FKE+ddeO1Go8QC0p793W/378vzM50+c\nOFGI8dRqNQYGBgAu98tmFBFXXQiQXqzdS/0F2ccy9Vsj4s00/RjwGxHx79MLvn8FfI56nPND4DMR\nEZJeAb4FDAHfB/4sIg5L6geWR8QjktYBayNi3YRxxFRjtWLavXuQjo4HWj2MUhgfH2TTJv+sLD+S\niIgrXp+dzpn/F4DfAf5O0vFU+w6wXlI39at+Xge+ARARI5IOAiPAJaA/07X7gQFgIfBCRBxO9T3A\nfkmngQvALzR+MzPL15TNPyL+luavDbw4yTbbge1N6q8Cy5vUPwAemmosZnkaHq75ih/LTa1WK9UV\nP36Hr5lZBbn5W2X5rN/yVKazfnDzNzOrJDd/qyxf5295alxuWRZu/mZmFeTmb5XlzN/y5MzfzMwK\nz83fKsuZv+XJmb+ZmRWem79VljN/y5MzfzMzKzw3f6ssZ/6WJ2f+ZmZWeG7+VlnO/C1PzvzNzKzw\n3Pytspz5W57mXeYv6XZJL0v6iaS/l/StVG+XdETSKUkvSWrLbLNF0mlJJyWtytTvkTSclj2Rqd8o\n6ZlUPybpjrx31MzMPjKdM/+LwGMR8avA54Hfk3QXsBk4EhF3AkfTPOkevg8Dy4Ae4Ml0H2CAXUBf\nRHQBXZJ6Ur2P+j2Cu4CdwI5c9s5sEs78LU/zLvOPiHMRcSJN/xz4KfUbs6+mfmN30te1aXoNcCAi\nLkbEKHAGWCHpVmBRRAyl9fZltsl+r2eB+69lp8zMbHIzyvwldQJ3A68AiyPifFp0HlicppcAY5nN\nxqg/WUysj6c66etZgIi4BLwrqX0mYzObKWf+lqd5l/k3SPok9bPyb0fE+9llERFA5Dw2MzObIwum\ns5KkX6Le+PdHxHOpfF7Sr0TEuRTpvJXq48Dtmc1vo37GP56mJ9Yb23wa+JmkBcBNEfH2xHH09vbS\n2dkJQFtbG93d3ZdztsazrueLOd84y27k7EWZbyjKeNrT37ut/n15fnbzDa0cT61WY2BgAOByv2xG\n9ZP2q0sv1u6l/oLsY5n6n6baDkmbgbaI2Jxe8P0r4HPU45wfAp+JiJD0CvAtYAj4PvBnEXFYUj+w\nPCIekbQOWBsR6yaMI6YaqxXT7t2DdHQ80OphlML4+CCbNvlnZfmRRERoYn06sc8XgN8B7pN0PD16\ngMeBL0s6Bfy7NE9EjAAHgRHgRaA/07X7gaeA08CZiDic6nuAfyXpNPAo6cohs7nkzN/yVLbMf8rY\nJyL+lqs/SXzpKttsB7Y3qb8KLG9S/wB4aKqxmJlZPvwOX6ssX+dveZp31/mbmdn84+ZvleXM3/JU\ntszfzd/MrILc/K2ynPlbnpz5m5lZ4bn5W2U587c8OfM3M7PCc/O3ynLmb3ly5m9mZoXn5m+V5czf\n8uTM38zMCs/N3yrLmb/lyZm/mZkVnpu/VZYzf8uTM38zMyu8KZu/pD+XdF7ScKa2TdJY5s5eX8ks\n2yLptKSTklZl6vdIGk7LnsjUb5T0TKofk3RHnjtodjXO/C1P8zHz/wugZ0ItgO9FxN3p8SJAun/v\nw8CytM2T6R7AALuAvojoArrSrSAB+qjfC7gL2AnsuKY9MjOzKU3Z/CPib4B3miy64obAwBrgQERc\njIhR4AywQtKtwKKIGErr7QPWpunV1G8QD/AscP/0h282e878LU9Vyvy/KenHkvZIaku1JcBYZp0x\noKNJfTzVSV/PAkTEJeBdSe3XMC4zM5vClDdwv4pdwB+l6T8Gvks9vplTvb29dHZ2AtDW1kZ3d/fl\nnK3xrOv5Ys43zrIbOXtR5huKMp72dNrT6t+X52c339DK8dRqNQYGBgAu98tmFBFXXXh5JakTGIyI\n5ZMtk7QZICIeT8sOA1uBN4CXI+KuVF8P3BsRj6R1tkXEMUkLgDcj4uYm/05MZ6xWPLt3D9LR8UCr\nh1EK4+ODbNrkn5XlRxIRcUVMP6vYJ2X4DV8DGlcCHQLWSbpB0lKgCxiKiHPAe5JWpBeANwDPZ7bZ\nmKYfBI7OZkxmM+XM3/JUtsx/ythH0gHgi8CnJJ2lfia/UlI39at+Xge+ARARI5IOAiPAJaA/c7re\nDwwAC4EXIuJwqu8B9ks6DVwA1uW0b2ZmdhXTin2KwLFPeTn2mT7HPpa3XGMfMzMrNzd/qyxn/pan\nsmX+bv5mZhXk5m+V5c/2sTzNx8/2MTOzecbN3yrLmb/lyZm/mZkVnpu/VZYzf8uTM38zMys8N3+r\nLGf+lidn/mZmVniz/Tx/s9Jz5l9eTz89yPvvt3oUVzp5crDVQ5g2N38zK53338cfFniNHPtYZTnz\ntzyV7Xhy8zczqyA3f6ssZ/6Wp7IdT1M2f0l/Lum8pOFMrV3SEUmnJL0kqS2zbIuk05JOSlqVqd8j\naTgteyJTv1HSM6l+TNIdee6gmZldaTpn/n8B9EyobQaORMSd1O+5uxlA0jLgYWBZ2ubJdM9egF1A\nX0R0AV2SGt+zD7iQ6juBHdewP2bTVraM1oqtbMfTlM0/Iv4GeGdCeTWwN03vBdam6TXAgYi4GBGj\nwBlgRbrh+6KIGErr7ctsk/1ezwL3z2I/zMxsBmab+S+OiPNp+jywOE0vAcYy640BHU3q46lO+noW\nICIuAe9Kap/luMymrWwZrRVb2Y6na77OPyJC0sdyZ/Xe3l46OzsBaGtro7u7+/KHKTXeWu35Ys43\n/iRu/AfxfPP59nTa0+rfV9HnT50a5u23F7X891XE+eHhGkePDgBwyy2dXI0ipu7bkjqBwYhYnuZP\nAisj4lyKdF6OiM9K2gwQEY+n9Q4DW4E30jp3pfp64N6IeCStsy0ijklaALwZETc3GUNMZ6xWPLt3\nDxbyDTnDw7XCna2Njw+yaVPxflZFU8RjqojHE8Dq1SIiNLE+29jnELAxTW8EnsvU10m6QdJSoAsY\niohzwHuSVqQXgDcAzzf5Xg9SfwHZzMzm0JSxj6QDwBeBT0k6C/xn4HHgoKQ+YBR4CCAiRiQdBEaA\nS0B/5nS9HxgAFgIvRMThVN8D7Jd0GrgArMtn18wmV8SzNCuvsh1PUzb/iFh/lUVfusr624HtTeqv\nAsub1D8gPXmYmdnHw+/wtcoq23XZVmxlO57c/M3MKsjN3yqrbBmtFVvZjic3fzOzCnLzt8oqW0Zr\nxVa248nN38ysgtz8rbLKltFasZXteHLzNzOrIDd/q6yyZbRWbGU7ntz8zcwqyM3fKqtsGa0VW9mO\nJzd/M7MKcvO3yipbRmvFVrbjyc3fzKyC3PytssqW0Vqxle14cvM3M6uga2r+kkYl/Z2k45KGUq1d\n0hFJpyS9JKkts/4WSaclnZS0KlO/R9JwWvbEtYzJbLrKltFasZXteLrWM/+gfiP3uyPic6m2GTgS\nEXdSvx/vZgBJy4CHgWVAD/Bkup8vwC6gLyK6gC5JPdc4LjMzm0Qesc/Eu8KvBvam6b3A2jS9BjgQ\nERcjYhQ4A6yQdCuwKCKG0nr7MtuYzZmyZbRWbGU7nvI48/+hpB9J+t1UWxwR59P0eWBxml4CjGW2\nHQM6mtTHU93MzObIlDdwn8IXIuJNSTcDRySdzC6MiJAU1/hvXNbb20tnZycAbW1tdHd3s3LlSgBq\ntRqA5ws638hDG2dHRZh/7bUTrFnzaGHGA9DeDtD631fR50+dGubttxe1/PdVxONpeLjG0aMDANxy\nSydXo4h8erOkrcDPgd+l/jrAuRTpvBwRn5W0GSAiHk/rHwa2Am+kde5K9fXAFyNi04TvH3mN1T5e\nu3cP0tHxQKuHcYXh4Vrh/lQfHx9k06bi/ayKpojHVBGPJ4DVq0VETIznZx/7SPoXkhal6X8JrAKG\ngUPAxrTaRuC5NH0IWCfpBklLgS5gKCLOAe9JWpFeAN6Q2cZszhTxP6qVV9mOp2uJfRYD/zNdsLMA\neDoiXpL0I+CgpD5gFHgIICJGJB0ERoBLQH/mVL4fGAAWAi9ExOFrGJeZmU1h1s0/Il4HupvU3wa+\ndJVttgPbm9RfBZbPdixms1HUP9OtnMp2PPkdvmZmFeTmb5VVprM0K76yHU9u/mZmFeTmb5VVts9i\nsWIr2/Hk5m9mVkFu/lZZZctordjKdjy5+ZuZVZCbv1VW2TJaK7ayHU9u/mZmFeTmb5VVtozWiq1s\nx5Obv5lZBbn5W2WVLaO1Yivb8eTmb2ZWQW7+Vllly2it2Mp2PLn5m5lVUGGav6QeSSclnZb0n1o9\nHpv/ypbRWrGV7XgqRPOXdD3wX4EeYBmwXtJdrR2VzXevvXai1UOweaRsx1Mhmj/wOeBMRIxGxEXg\nvwFrWjwmm+f+4R/+b6uHYPNI2Y6nojT/DuBsZn4s1czMbA4UpfnH1KuY5eutt0ZbPQSbR8p2PCmi\n9X1X0ueBbRHRk+a3AB9GxI7MOq0fqJlZCUWEJtaK0vwXAP8HuB/4GTAErI+In7Z0YGZm89SCVg8A\nICIuSfp94AfA9cAeN34zs7lTiDN/MzP7eBXizN/MrEzS+5DW8NFViWPAoTIlFkW52sesJST9h1aP\nwcolfQLBgTT7SnpcBxxIF6uUgmMfqzRJZyPi9laPw8pD0mlgWXpDarZ+AzASEZ9pzchmxrGPzXuS\nhidZfMvHNhCbL/4f9bhndEJ9SVpWCm7+VgW3UP/cqHeaLPvfH/NYrPweBX4o6QwffTLB7UAX8Pst\nG9UMuflbFXwf+GREHJ+4QNL/asF4rMQi4rCkf039M8k6qH9CwTjwo4i41NLBzYAzfzOzCvLVPmZm\nFeTmb2ZWQW7+ZmYV5OZvZlZBbv5mZhX0/wEWkGpROSVeggAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x122dbead0>"
]
}
],
"prompt_number": 1033
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_2.info()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 53487 entries, 3 to 188121\n",
"Data columns (total 9 columns):\n",
"funded_amnt 53487 non-null float64\n",
"emp_length 53487 non-null object\n",
"annual_inc 53487 non-null float64\n",
"loan_status 53487 non-null object\n",
"home_ownership 53487 non-null object\n",
"addr_state 53487 non-null object\n",
"tax_liens 53487 non-null float64\n",
"grade 53487 non-null object\n",
"loan_status_clean 53487 non-null int64\n",
"dtypes: float64(3), int64(1), object(5)"
]
}
],
"prompt_number": 1034
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###Cleaning Employment Length"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_2['emp_length_clean'] = loan_2.emp_length.str.replace('+','')\n",
"loan_2['emp_length_clean'] = loan_2.emp_length_clean.str.replace('<','')\n",
"loan_2['emp_length_clean'] = loan_2.emp_length_clean.str.replace('years','')\n",
"loan_2['emp_length_clean'] = loan_2.emp_length_clean.str.replace('year','')\n",
"loan_2['emp_length_clean'] = loan_2.emp_length_clean.str.replace('n/a','0')"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1035
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_2.emp_length_clean.unique()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1036,
"text": [
"array(['10 ', '2 ', '1 ', '9 ', '5 ', ' 1 ', '8 ', '0', '7 ', '4 ', '3 ',\n",
" '6 '], dtype=object)"
]
}
],
"prompt_number": 1036
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_2['emp_length_clean'] = loan_2.emp_length_clean.map(float)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1037
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###Cleaning Grade_Clean"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here, we'll be adding a value to letter grade assigned to individual loans. \"A\", the highest rating, will receive the value 7. \"G\", the lowest rating, will receive the value 1.\n",
"\n",
"Using the map function, we assign the values:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_2['grade_clean'] = loan_2['grade'].map({'A':7,'B':6,'C':5,'D':4,'E':3,'F':2,'G':1})"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1038
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###Filling in mean values for NaN values."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"funded_amnt = loan_2.funded_amnt\n",
"mean_funded_amnt = loan_2[loan_2.funded_amnt.notnull()].funded_amnt.mean()\n",
"loan_2.funded_amnt.fillna(mean_funded_amnt, inplace=True)\n",
"\n",
"annual_inc = loan_2.annual_inc\n",
"mean_annual_inc = loan_2[loan_2.annual_inc.notnull()].annual_inc.mean()\n",
"loan_2.annual_inc.fillna(mean_annual_inc, inplace=True)\n",
"\n",
"emp_length = loan_2.emp_length_clean\n",
"mean_emp_length_clean = loan_2[loan_2.emp_length_clean.notnull()].emp_length_clean.mean()\n",
"loan_2.emp_length_clean.fillna(mean_emp_length_clean, inplace=True)\n",
"\n",
"grade = loan_2.grade\n",
"mean_grade_clean = loan_2[loan_2.grade.notnull()].grade_clean.mean()\n",
"loan_2.grade_clean.fillna(mean_grade_clean, inplace=True)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1039
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Describing Data using Logistic Regression"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import statsmodels.api as sm\n",
"from sklearn import linear_model, datasets\n",
"from sklearn.cross_validation import train_test_split"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1040
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###First Logistic Regression (Employment Length & Grade of the Loan)\n",
"Predicting whether a loan will be paid off using Emplyoment Length and Grade of the Loan."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"X_Variables = ['emp_length_clean', 'grade_clean']\n",
"X = loan_2[X_Variables]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1041
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"X = X.values"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1042
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"y = loan_2['loan_status_clean'].values"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1043
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"clf = linear_model.LogisticRegression()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1044
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"model = clf.fit(X,y)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1045
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"model.score(X, y)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1046,
"text": [
"0.77702993250696428"
]
}
],
"prompt_number": 1046
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"pd.DataFrame(zip(X_Variables,model.coef_.T))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> emp_length_clean</td>\n",
" <td> [0.0160344150048]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> grade_clean</td>\n",
" <td> [0.312299443185]</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1047,
"text": [
" 0 1\n",
"0 emp_length_clean [0.0160344150048]\n",
"1 grade_clean [0.312299443185]"
]
}
],
"prompt_number": 1047
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Above we have our coefficients:\n",
"\n",
"0.0160 for the lenght of employment\n",
"\n",
"0.3123 for the grade a loan received. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Lets take a look at the grade a loan receives. For every additional increase in the grade \"G\" to \"F\" or in our case \"1\" to \"2\" the chance of the loan being paid off increases by .3123"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Makes intuitive sense right? Why else would Lending Tree give a high grade to a loan that they think is faulty and as the grade for a loan increases so does the chance of the loan being paid off in this case by a coefficient of .3123"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alright. Well what about the years that someone has been employed? That certainly could be used as a predictor. In this case, it's not the best predictor. For every each additional year that someone is employed the chance of that person paying back their loan increases only by 0.0160"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###Second Logistic Regression (Funded Amount & Annual Income)\n",
"Predicting whether a loan will be paid off using Funded Ammount and Annual Income. "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"X_Variables_2 = ['funded_amnt', 'annual_inc']\n",
"X_2 = loan_2[X_Variables_2]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1048
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"X_2 = X_2.values"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1049
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"y_2 = loan_2['loan_status_clean'].values"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1050
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"model_2 = clf.fit(X_2,y_2)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1051
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"model_2.score(X_2, y)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1052,
"text": [
"0.77809561201787347"
]
}
],
"prompt_number": 1052
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"pd.DataFrame(zip(X_Variables_2,model_2.coef_.T))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> funded_amnt</td>\n",
" <td> [-2.38695184337e-05]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> annual_inc</td>\n",
" <td> [2.2999063003e-05]</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1053,
"text": [
" 0 1\n",
"0 funded_amnt [-2.38695184337e-05]\n",
"1 annual_inc [2.2999063003e-05]"
]
}
],
"prompt_number": 1053
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The reason for such low coefficients, for funded amount and annual income, is that the numbers are in thousands, granted they're in $, and loan status is binary ranging from 0 to 1. \n",
"\n",
"Let's look at the amount funded. As the amount funded increases by $10,000 the chance of it getting paid back decreases by -0.238 = (10,000 x -0.0000238).\n",
"\n",
"Similar, as annual income increases so does the chance of the loan being paid off. Intuitive, right? This is understandable and supported by the positive coefficient 0.0000202. In other words if my annual income increases by $10,000 so does the chance of me paying back the loan by 0.230 (10,000 x 0.0000230)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###Third Logistic Regression (Home Ownership)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Predicting whether a loan will be paid off given the individuals home ownership status. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We currently have a column \"home_ownership\" with five unique values: \"Rent\", \"Mortgage\", \"Own\", \"None\", \"Other\"."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_2.home_ownership.unique().tolist()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1054,
"text": [
"['RENT', 'MORTGAGE', 'OWN', 'NONE', 'OTHER']"
]
}
],
"prompt_number": 1054
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Before running this unique list, using logistic regression, against loan status, we have to create individual columns for each value, referred to as dummy variables. \n",
"\n",
"Each column will have a True or a False value associated with the individual loan that has either \"Rent\", \"Mortgage\", \"Own\", \"None\" or \"Other\"."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"home_ownership = pd.get_dummies(loan_2.home_ownership)\n",
"loan_2 = loan_2.join(home_ownership)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1055
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below are our dummy variables."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_2.head()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>funded_amnt</th>\n",
" <th>emp_length</th>\n",
" <th>annual_inc</th>\n",
" <th>loan_status</th>\n",
" <th>home_ownership</th>\n",
" <th>addr_state</th>\n",
" <th>tax_liens</th>\n",
" <th>grade</th>\n",
" <th>loan_status_clean</th>\n",
" <th>emp_length_clean</th>\n",
" <th>grade_clean</th>\n",
" <th>MORTGAGE</th>\n",
" <th>NONE</th>\n",
" <th>OTHER</th>\n",
" <th>OWN</th>\n",
" <th>RENT</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>3 </th>\n",
" <td> 15000</td>\n",
" <td> 10+ years</td>\n",
" <td> 98000</td>\n",
" <td> Fully Paid</td>\n",
" <td> RENT</td>\n",
" <td> NY</td>\n",
" <td> 0</td>\n",
" <td> C</td>\n",
" <td> 1</td>\n",
" <td> 10</td>\n",
" <td> 5</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td> 3000</td>\n",
" <td> 10+ years</td>\n",
" <td> 25000</td>\n",
" <td> Fully Paid</td>\n",
" <td> RENT</td>\n",
" <td> FL</td>\n",
" <td> 0</td>\n",
" <td> B</td>\n",
" <td> 1</td>\n",
" <td> 10</td>\n",
" <td> 6</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td> 4800</td>\n",
" <td> 2 years</td>\n",
" <td> 39600</td>\n",
" <td> Fully Paid</td>\n",
" <td> MORTGAGE</td>\n",
" <td> TX</td>\n",
" <td> 0</td>\n",
" <td> B</td>\n",
" <td> 1</td>\n",
" <td> 2</td>\n",
" <td> 6</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td> 6000</td>\n",
" <td> 1 year</td>\n",
" <td> 70000</td>\n",
" <td> Fully Paid</td>\n",
" <td> MORTGAGE</td>\n",
" <td> NC</td>\n",
" <td> 0</td>\n",
" <td> B</td>\n",
" <td> 1</td>\n",
" <td> 1</td>\n",
" <td> 6</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td> 10075</td>\n",
" <td> 2 years</td>\n",
" <td> 55000</td>\n",
" <td> Fully Paid</td>\n",
" <td> MORTGAGE</td>\n",
" <td> DE</td>\n",
" <td> 0</td>\n",
" <td> E</td>\n",
" <td> 1</td>\n",
" <td> 2</td>\n",
" <td> 3</td>\n",
" <td> 1</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" <td> 0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1056,
"text": [
" funded_amnt emp_length annual_inc loan_status home_ownership addr_state \\\n",
"3 15000 10+ years 98000 Fully Paid RENT NY \n",
"12 3000 10+ years 25000 Fully Paid RENT FL \n",
"15 4800 2 years 39600 Fully Paid MORTGAGE TX \n",
"22 6000 1 year 70000 Fully Paid MORTGAGE NC \n",
"26 10075 2 years 55000 Fully Paid MORTGAGE DE \n",
"\n",
" tax_liens grade loan_status_clean emp_length_clean grade_clean \\\n",
"3 0 C 1 10 5 \n",
"12 0 B 1 10 6 \n",
"15 0 B 1 2 6 \n",
"22 0 B 1 1 6 \n",
"26 0 E 1 2 3 \n",
"\n",
" MORTGAGE NONE OTHER OWN RENT \n",
"3 0 0 0 0 1 \n",
"12 0 0 0 0 1 \n",
"15 1 0 0 0 0 \n",
"22 1 0 0 0 0 \n",
"26 1 0 0 0 0 "
]
}
],
"prompt_number": 1056
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's run the logistic regression."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"X_Variables_3 = ['RENT', 'MORTGAGE', 'OWN', 'NONE', 'OTHER']\n",
"X_3 = loan_2[X_Variables_3]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1057
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"X_3 = X_3.values"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1058
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"y_3 = loan_2['loan_status_clean'].values"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1059
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"model_3 = clf.fit(X_3,y_3)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1060
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"model_3.score(X_3,y_3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1061,
"text": [
"0.77809561201787347"
]
}
],
"prompt_number": 1061
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"pd.DataFrame(zip(X_Variables_3, model_3.coef_.T))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> RENT</td>\n",
" <td> [0.219178922014]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> MORTGAGE</td>\n",
" <td> [0.553450501195]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> OWN</td>\n",
" <td> [0.317744061658]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> NONE</td>\n",
" <td> [0.434085592491]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> OTHER</td>\n",
" <td> [-0.654472520962]</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1062,
"text": [
" 0 1\n",
"0 RENT [0.219178922014]\n",
"1 MORTGAGE [0.553450501195]\n",
"2 OWN [0.317744061658]\n",
"3 NONE [0.434085592491]\n",
"4 OTHER [-0.654472520962]"
]
}
],
"prompt_number": 1062
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"My understanding for someone putting \u201cOTHER\u201d for home ownership on the loan application is that they either did not want to reveal their home ownership situation, are hiding something, or are bad at filling out applications. \u201cNone\u201d could be an honest answer, from someone that may be living with their parents. \n",
"\n",
"Regardless, it seems that if someone checks off \u201cOTHER\u201d and gets funded, then there\u2019s a very good chance of that individual defaulting on his or her loan.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###Fourth Logistic Regression (Years Employed)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Using our column of years employed, we clreate dummies so that we could easily run the logistic regression. We're trying to see which length of employment is best predictive of someone paying back their loan."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"emp_dummies = pd.get_dummies(loan_2.emp_length)\n",
"loan_2 = loan_2.join(emp_dummies)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1063
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"X_Variables_4 = ['< 1 year','1 year','2 years','3 years','4 years','5 years','6 years','7 years','8 years','9 years','10+ years']\n",
"X_4 = loan_2[X_Variables_4]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1064
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"y_4 = loan_2['loan_status_clean'].values"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1065
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"model_4 = clf.fit(X_4,y_4)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1066
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"model_4.score(X_4, y_4)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1067,
"text": [
"0.77809561201787347"
]
}
],
"prompt_number": 1067
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"pd.DataFrame(zip(X_Variables_4,model_4.coef_.T))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0 </th>\n",
" <td> &lt; 1 year</td>\n",
" <td> [0.391361177492]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1 </th>\n",
" <td> 1 year</td>\n",
" <td> [0.452628193435]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2 </th>\n",
" <td> 2 years</td>\n",
" <td> [0.508271648817]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3 </th>\n",
" <td> 3 years</td>\n",
" <td> [0.475809147392]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4 </th>\n",
" <td> 4 years</td>\n",
" <td> [0.395646588613]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5 </th>\n",
" <td> 5 years</td>\n",
" <td> [0.44917434254]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6 </th>\n",
" <td> 6 years</td>\n",
" <td> [0.405863824014]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7 </th>\n",
" <td> 7 years</td>\n",
" <td> [0.420517485866]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8 </th>\n",
" <td> 8 years</td>\n",
" <td> [0.418944522836]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9 </th>\n",
" <td> 9 years</td>\n",
" <td> [0.414805343335]</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td> 10+ years</td>\n",
" <td> [0.496719497253]</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1068,
"text": [
" 0 1\n",
"0 < 1 year [0.391361177492]\n",
"1 1 year [0.452628193435]\n",
"2 2 years [0.508271648817]\n",
"3 3 years [0.475809147392]\n",
"4 4 years [0.395646588613]\n",
"5 5 years [0.44917434254]\n",
"6 6 years [0.405863824014]\n",
"7 7 years [0.420517485866]\n",
"8 8 years [0.418944522836]\n",
"9 9 years [0.414805343335]\n",
"10 10+ years [0.496719497253]"
]
}
],
"prompt_number": 1068
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There doesn't appear to be too much variance between the generated coefficients of the years employed. It looks like, so long as the person is employed they will be paying back their loan. \n",
"\n",
"However, it holds true, that if someone is unemployed or has less than a year of employment then they'll have a lower chance of repaying their loan. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"####For some graphs and charts refer to my earlier post on this same dataset. Below I'll be going over some mapping using cartodb which is a web mapping tool. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Describing Data using CartoDB"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below we're generating a csv file, with select columns, so that we could pull it into cartodb. Cartodb is a web mapping tool. "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"loan_cartodb2 = loan_2[['addr_state','funded_amnt','emp_length_clean','annual_inc','grade_clean','loan_status_clean']]\n",
"#loan_cartodb2.to_csv('/Users/olehdubno/Desktop/loan_cartodb2.csv', index=False)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1069
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we use www.cartodb.com. A very intuitive and friendly way of generating maps. \n",
"\n",
"Before mapping our data, cartodb uses an intelligent way, in this instance, in converting State acronyms into latitude and longitude.\n",
"\n",
"After selecting the features we want to play with, cartodb generates a map and ways to share it. One of the ways is using IFrame. IFrame uses HTML to embed content from one source into another."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###Mapping Paid and Unpaid Loans"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from IPython.display import HTML\n",
"HTML(\"<iframe width='100%' height='520' frameborder='0' src='http://shortyskater456.cartodb.com/viz/40d16f7e-6d3e-11e4-a898-0e9d821ea90d/embed_map' allowfullscreen webkitallowfullscreen mozallowfullscreen oallowfullscreen msallowfullscreen></iframe>\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<iframe width='100%' height='520' frameborder='0' src='http://shortyskater456.cartodb.com/viz/40d16f7e-6d3e-11e4-a898-0e9d821ea90d/embed_map' allowfullscreen webkitallowfullscreen mozallowfullscreen oallowfullscreen msallowfullscreen></iframe>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1070,
"text": [
"<IPython.core.display.HTML at 0x122d47810>"
]
}
],
"prompt_number": 1070
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above map is referred to as the choropleth map, \"a thematic map in which areas are shade patterned in proportion to the measurement of the statistical variable being displayed.\" (wikipedia)\n",
"\n",
"As the intensity of the color increases (gets closer to 1), on average the majority of the people residing in that state have paid of their loan.\n",
"\n",
"The number near the point references the amount of loans given in that state.\n",
"\n",
"By the looks of the map I wouldn't give loans out to Oregon, Wisconsin, Nevada, Tennessee, Virginia, Indianapolis, maybe a few others.\n",
"\n",
"Of course this an average of individual loans, per state, discounting specific regions of the state, and is not the best estimate for whether a funded individual in that state is likely to repay their loan.\n",
"\n",
"However, maybe the other features could help determine which state is less likelier to pay off a loan. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###Mapping The Amount Funded"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"HTML(\"<iframe width='100%' height='520' frameborder='0' src='http://olehdubno.cartodb.com/viz/0dce85a4-6d10-11e4-98f3-0e9d821ea90d/embed_map' allowfullscreen webkitallowfullscreen mozallowfullscreen oallowfullscreen msallowfullscreen></iframe>\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<iframe width='100%' height='520' frameborder='0' src='http://olehdubno.cartodb.com/viz/0dce85a4-6d10-11e4-98f3-0e9d821ea90d/embed_map' allowfullscreen webkitallowfullscreen mozallowfullscreen oallowfullscreen msallowfullscreen></iframe>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1071,
"text": [
"<IPython.core.display.HTML at 0x121284910>"
]
}
],
"prompt_number": 1071
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Reviewing the map we could see that Oregon, Montana and Mississippi, on average, have taken out higher loans (closer to $35,000).\n",
"\n",
"According to the \"Paid vs Unpaid\" map, Oregon is not only taking out the highest loans, it's also not paying them back.\n",
"\n",
"On average, indivduals receiving a loan in Oregon are much more liklier to default on their loan as they are also liklier to receive bigger loans. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###Mapping Annual Income"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"HTML(\"<iframe width='100%' height='520' frameborder='0' src='http://olehdubno.cartodb.com/viz/c2c9b8a4-6ba6-11e4-aadc-0e4fddd5de28/embed_map' allowfullscreen webkitallowfullscreen mozallowfullscreen oallowfullscreen msallowfullscreen></iframe>\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<iframe width='100%' height='520' frameborder='0' src='http://olehdubno.cartodb.com/viz/c2c9b8a4-6ba6-11e4-aadc-0e4fddd5de28/embed_map' allowfullscreen webkitallowfullscreen mozallowfullscreen oallowfullscreen msallowfullscreen></iframe>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1072,
"text": [
"<IPython.core.display.HTML at 0x122d47d90>"
]
}
],
"prompt_number": 1072
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There's several outliers in the data that have been removed, using cartodb, in terms of annual income. \n",
"\n",
"Before removing the outliers, the income ranges from $33,504.72 to $7,241,778. Which is an obsene amount. I limit it to $500,000.00\n",
"\n",
"Interestingly, Oregon is the state with the highest income, lowest payback rate and on average the state that takes out the highest loans. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###Mapping The Grade Given To Individual Loans"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"HTML(\"<iframe width='100%' height='520' frameborder='0' src='http://olehdubno.cartodb.com/viz/57bfeb6c-6ba8-11e4-a74d-0e4fddd5de28/embed_map' allowfullscreen webkitallowfullscreen mozallowfullscreen oallowfullscreen msallowfullscreen></iframe>\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<iframe width='100%' height='520' frameborder='0' src='http://olehdubno.cartodb.com/viz/57bfeb6c-6ba8-11e4-a74d-0e4fddd5de28/embed_map' allowfullscreen webkitallowfullscreen mozallowfullscreen oallowfullscreen msallowfullscreen></iframe>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1073,
"text": [
"<IPython.core.display.HTML at 0x122d471d0>"
]
}
],
"prompt_number": 1073
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Keeping on track with Oregon, a state I'm not too familiar with, it happens to be a state with a fairly good rating for loans according to the data, not really. At least for the loans given out by Lending Club.\n",
"\n",
"I could understand why Lending Club, on average, would give a pretty good grade to loans in Oregon. The average population there has some of the highest income. We could see that by looking at the income map presented before."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Decision Tree"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"####Train Test Split\n",
"Here, we're using the train test split function from sklearn to split up the features into train and test values. Our test size will be 25% of our actual data."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"X_Variables = ['emp_length_clean', 'grade_clean','emp_length_clean','grade_clean']\n",
"X = loan_2[X_Variables]\n",
"\n",
"X = X.values\n",
"y = loan_2['loan_status_clean'].values"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1074
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from sklearn.cross_validation import train_test_split\n",
"\n",
"X_train, X_test, Y_train, Y_test = train_test_split(X,y,test_size=0.25)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1075
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"clf.fit cretes a classifier object, which is called \"clf', and then this new \"fitted\" object, \"clf\", can do things like score and predict."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"clf = GaussianNB()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1076
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"clf.fit(X_train,Y_train)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1077,
"text": [
"GaussianNB()"
]
}
],
"prompt_number": 1077
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"clf.score(X_train,Y_train)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1078,
"text": [
"0.74403589679670945"
]
}
],
"prompt_number": 1078
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"clf.score(X_test,Y_test)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1079,
"text": [
"0.74012862698175297"
]
}
],
"prompt_number": 1079
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###Time for Decision Tree"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from sklearn.naive_bayes import GaussianNB\n",
"clf = GaussianNB()\n",
"clf.fit(X_train,Y_train)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1080,
"text": [
"GaussianNB()"
]
}
],
"prompt_number": 1080
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from sklearn import metrics\n",
"def measure_performance(X,y,clf, show_accuracy=True, show_classification_report=True, show_confusion_matrix=True):\n",
" y_pred=clf.predict(X) \n",
" if show_accuracy:\n",
" print \"Accuracy:{0:.3f}\".format(metrics.accuracy_score(y,y_pred)),\"\\n\"\n",
"\n",
" if show_classification_report:\n",
" print \"Classification report\"\n",
" print metrics.classification_report(y,y_pred),\"\\n\"\n",
" \n",
" if show_confusion_matrix:\n",
" print \"Confusion matrix\"\n",
" print metrics.confusion_matrix(y,y_pred),\"\\n\"\n",
" \n",
"measure_performance(X_train,Y_train,clf, show_classification_report=True, show_confusion_matrix=True)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Accuracy:0.744 \n",
"\n",
"Classification report\n",
" precision recall f1-score support\n",
"\n",
" 0 0.35 0.19 0.25 8866\n",
" 1 0.80 0.90 0.85 31249\n",
"\n",
"avg / total 0.70 0.74 0.71 40115\n",
"\n",
"\n",
"Confusion matrix\n",
"[[ 1702 7164]\n",
" [ 3104 28145]] \n",
"\n"
]
}
],
"prompt_number": 1081
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from IPython.display import Image\n",
"Image(filename='/Users/olehdubno/Desktop/confusion_matrix.png')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAB6CAIAAAC+3IfUAAAYWGlDQ1BJQ0MgUHJvZmlsZQAAWAmt\nWXVUVF3XP3eSgRm6u7s7pLukG4VhqKGlQRAFRAEVLFRAkRKRUDFARAQkRBEEEREMUFFRVAwUpL4z\nGM+z3vW+/32z1j33d/fZZ99d98QeAPiI5JiYCBQzAJFR8bHOlibCnl7ewvhngAAEAT3gBRxkSlyM\nsaOjHfifv+9jAKF1PlCgyfqfbP+9gyUwKI4CAOIIuwMC4yiREF8GAMNIiYmNBwDbDeliSfExNPwW\nYvZYqCDEKzQcsoFxUHvAHvALi2/wuDqbAoDTBoCOSCbHhgDAaAbpwomUECiHMRD2sUYFUqPgsGSI\nDSihZEjjbYE88pGR0TT8CmLpgH/JCfkXJpMD/sokk0P+4l+2wJHwxWbUuJgIcsrGw/9nExmRAP21\n8ROBLTE01soZ3tmh30rDo21pmAjxhaiAzQ4Qs0LcRoUW/caDoQlWbhDT+KcocabQl4AT4m+BZDNb\niPkBQNEnhLsZ/8aS5FiINvhRJtR4a9ff2D022vm3fFRYVMRmWn5AOai00CDrP/hQUJy5C6RDHVBh\nwVQLa4hhrFBnU0NdPSCGeqJaEqnumyFmhLg7LtyFpgNNzkhqqCmNvsETm+BM01kc0t8Gx1rQbIQ8\naGJkHEQb8tGiFPLGu7ghXT0+1NUK0uFYtF1gkJk5xPC9aM+gKLff+qBDY+JNaHJo/KkxERv5DfVE\nHwqKsKTRRSGuikt0+TO2Nz7WlUaHfkOPhZFtaPkKdUa/i4l3pPmEps8isAOmwAwIgwR4BYBoEAao\ng3PNc/DpV48FIINYEAKCgMJvyp8RHhs9UbB1AangA4iCPHF/x5ls9AaBREhf/Uv9NVYBBG/0Jm6M\nCAev4RsiMbwYA4wexg62RvBSxWhjdP6ME2b6oyfOHGeGs8JZ4GT+UAAFah0Br1hA/S80W9gXBK2L\nhW3UHxv+kYd9jR3GvsA+xE5hHwN38GpDym9L/aiZsX80+CvZHkxBab+8EgQ9FgVm//BgJKHWGhgT\njD7UH+qO4cTwAgWMOrTEGGMIbdOA1D/eo2md8Fe3f3z5x+9/+GhaC//Lxt90RllGjd9aBPyxCkby\njyf+U8o/PVQQCLls/5MTvRd9Cd2H7kT3o9vQzUAYfRPdgh5A36Dh3zpbbHgn5O/bnDc8Gg5toP7h\nUa5TnlVe+fP011YypNA0oMUA5n98UHI8zD9gGh2TEksNCY0XNoazcJCwdRRFUV5YVVlFHQDanE7j\nAeCr88ZcjXAO/UOjjgGgeRHOAeP/0EJgTre+AIBg9w9Noh6mfBQAtwmUhNjEX/IwtBsWrhRM8Mvg\ngWuGGJCGNqkCTaAHjIA5sAEOwBV4ga3Q66EgEmqdBNLALpAD8kEhOAqKQRmoBGdBA2gCzaANdIJe\ncBfcBw/BJMyNGfAezIPvYBlBEDxCQtgQHkQIkUDkEFVEGzFAzBE7xBnxQvyRECQKSUDSkCwkHzmE\nFCPlSC1yEbmGdCL9yDDyGJlGZpEvyE8UGkVEsaMEUJIoJZQ2yhhli3JFbUGFoLahUlHZqAOo46gK\nVD3qKqoTdRf1EDWFeo9aQAM0A5oTLYJWQGujTdEOaG90MDoWvQOdhy5CV6Ab0a0w1g/QU+g59BIG\nh2HDCGMUYH5aYdwwFMw2zA7MPkwx5izmKqYb8wAzjZnHrGFJWH6sHFYXa431xIZgk7A52CLsGewV\nbA/8dmaw33E4HCdOCqcFv00vXBhuO24f7iTuPK4DN4x7iVvA4/E8eDm8Pt4BT8bH43PwJ/D1+Jv4\nEfwMfpGOgU6ITpXOgs6bLoouk66I7hxdO90I3Ru6ZQIzQYKgS3AgBBJSCAWEKkIrYYgwQ1imZ6GX\notend6UPo99Ff5y+kb6H/gn9VwYGBlEGHQYnBirDTobjDBcYbjNMMywRWYmyRFOiLzGBeIBYQ+wg\nPiZ+JZFIkiQjkjcpnnSAVEu6RXpGWmRkY1RktGYMZMxgLGG8yjjC+JGJwCTBZMy0lSmVqYjpEtMQ\n0xwzgVmS2ZSZzLyDuYT5GvMj5gUWNhYVFgeWSJZ9LOdY+lnesuJZJVnNWQNZs1krWW+xvmRDs4mx\nmbJR2LLYqth62GbYcexS7NbsYez57A3sg+zzHKwc6hzuHMkcJRw3OKY40ZySnNacEZwFnE2cY5w/\nuQS4jLmCuHK5GrlGuH5w83EbcQdx53Gf537I/ZNHmMecJ5znIE8zz1NeDK8srxNvEu8p3h7eOT52\nPj0+Cl8eXxPfBD+KX5bfmX87fyX/AP+CgKCApUCMwAmBWwJzgpyCRoJhgkcE2wVnhdiEDISoQkeE\nbgq9E+YQNhaOED4u3C08L8IvYiWSIFIuMiiyLCol6iaaKXpe9KkYvZi2WLDYEbEusXlxIXF78TTx\nOvEJCYKEtkSoxDGJPokfklKSHpJ7JJsl30pxS1lLpUrVST2RJkkbSm+TrpAelcHJaMuEy5yUuS+L\nktWQDZUtkR2SQ8lpylHlTsoNy2PldeSj5CvkHykQFYwVEhXqFKYVORXtFDMVmxU/KokreSsdVOpT\nWlPWUI5QrlKeVGFVsVHJVGlV+aIqq0pRLVEdVSOpWahlqLWofVaXUw9SP6U+rsGmYa+xR6NLY1VT\nSzNWs1FzVktcy1+rVOuRNru2o/Y+7ds6WB0TnQydNp0lXU3deN0m3U96Cnrheuf03m6S2hS0qWrT\nS31RfbJ+uf6UgbCBv8FpgylDEUOyYYXhCyMxo0CjM0ZvjGWMw4zrjT+aKJvEmlwx+WGqa5pu2mGG\nNrM0yzMbNGc1dzMvNn9mIWoRYlFnMW+pYbndssMKa2VrddDqkbWANcW61nreRssm3abblmjrYlts\n+8JO1i7WrtUeZW9jf9j+yWaJzVGbmx2Ag7XDYYenjlKO2xyvO+GcHJ1KnF47qzinOfe5sLn4uZxz\n+e5q4lrgOukm7Zbg1uXO5O7rXuv+w8PM45DHlKeSZ7rnXS9eL6pXizfe2937jPeCj7nPUZ8ZXw3f\nHN+xLVJbkrf0b+XdGrH1hh+TH9nvkj/W38P/nP8K2YFcQV4IsA4oDZinmFKOUd4HGgUeCZwN0g86\nFPQmWD/4UPDbEP2QwyGzoYahRaFzVFNqMfVzmFVYWdiPcIfwmvD1CI+I85F0kf6R16JYo8KjuqMF\no5Ojh2PkYnJiprbpbju6bT7WNvZMHBK3Ja4lnh1ungcSpBN2J0wnGiSWJC4muSddSmZJjkoeSJFN\nyU15k2qRWr0ds52yvStNJG1X2nS6cXr5DmRHwI6uDLGM7IyZnZY7z+6i3xW+616mcuahzG9ZHlmt\n2QLZO7Nf7rbcXZfDmBOb82iP3p6yvZi91L2DuWq5J3LX8gLz7uQr5xflr+yj7LuzX2X/8f3rB4IP\nDBZoFpwqxBVGFY4dNDx49hDLodRDLw/bH756RPhI3pFvR/2O9hepF5Udoz+WcGzquN3xlhPiJwpP\nrBSHFj8sMSk5X8pfmlv642TgyZFTRqcaywTK8st+nqaeHi+3LL9aIVlRVImrTKx8XeVe1VetXV17\nhvdM/pnVmqiaqbPOZ7trtWprz/GfK6hD1SXUzdb71t9vMGtoaVRoLD/PeT7/AriQcOHdRf+LY022\nTV2XtC81Xpa4XHqF7UreVeRqytX55tDmqRavluFrNte6WvVar1xXvF7TJtJWcoPjRkE7fXt2+/rN\n1JsLHTEdc50hnS+7/Lomb3neGu126h7sse253WvRe6vPuO/mbf3bbf26/dfuaN9pvqt59+qAxsCV\nexr3rgxqDl4d0hpqua9zv3V403D7iOFI5wOzB72j1qN3H25+ODzmNjb+yPfR1Hjg+NvHEY8/TyRO\nLE/ufIJ9kveU+WnRM/5nFc9lnp+f0py6MW02PfDC5cXkS8rL96/iXq3MZL8mvS56I/Sm9q3q27ZZ\ni9n773zezbyPeb88l/OB5UPpR+mPlz8ZfRqY95yf+Rz7ef3Lvq88X2u+qX/rWnBcePY98vvyj7xF\nnsWzS9pLfT89fr5ZTlrBrxxflVltXbNde7Ieub4eQ44lb+wF0LBFBQcD8KUGAJIXAGz3AaBn/HXm\n2uCAW2QE8kDsjigi71Hd6DiMBOYdthznhxfBT9JVEMLoVelXGIaIZaR4xs1MMsw45hcsPaxn2HLZ\nozncOc25PLgjeXJ4T/O18o8IzAkRhMVFjEX9xdLFSySuSU5I/ZThkzWQC5DPUqhVHFL6qsKtaqhG\nUc/XuKg5rPVRh6Qrq2exKUB/h0Gx4WWjQeM3Jmtm3OaKFmaWHlbh1mk2B2xP2TXa39g84DDh+Nrp\nmwviSnTjcuf3EPIU85LylvdR9dXdYrrV1s/Nn0KODthB2R9YFnQxuCdkInQ+jC5cOEIn0iUqOjov\npnpbZ+yzuOUE7kSNJNfkbSmFqee3D6V92sGcobbTbVdyZmlWZ/brHOIetb3euZl5tfkP9q0ckCxw\nKEw5WHXo3uFPR5mKVI65HU8+UVrcWfLmJOmURpnv6azycxXDlT+q+c8Y1wSd3VN79lxf3av69Ubu\n88oXLC/6NsVeyr186sqFq23Nt1p6r91qvX69oa34xq52yk2jDq6Od53XunbdsuwmdN/pyek17l3u\nu3w7vF+0f+LOwbt2A8SB4XtFg95DgkMv7lcNB49Ij8w+ODca9lD24fuxukfh4/LjHx6fn9g2qT65\n+KTt6a5nFs9Jz0eniqe3vhB9Mfvyyqs9M36v9d+IvWWexb5Dvaef4/ug9dHn05751s/fvqp/S15o\n/4FfdFoq/fl6RXE1Ya11fX0j/mLIBZQXmgXdhPHB0mMbcJ5wV3OejkzgJtylz2YwIWKJt0i7Ga2Z\nGJnGmStYIli12PBsT9kHOHo5O7hucLfwXOK9wFfPXyNQJVgpVClcIVIuWiFWJV4jUSvZIHVR+rJM\nq2ynXI/8HYURxXGlp8rPVJ6qPlGbUH+k8VDzgdaQ9h2dHt1OveubLus3GFQZFhsVGGeZJJmGmW0x\n32xhZKliJWzNbANs5m2f2PXY128+7LDdMcDJ2lnZhccVcZ11G3G/7lHtWeCV6h3k4+C7aYvUVjY/\nxO+j/yS5P6CZUh14OCg7eFdIZmgWNSssMzwrIjMyKyorOjMmc1tmbGZcZvyuhJ2JO5MykjNSdqSm\nb09LS0vfviM1I2VnMsyOgqzq7Lbdoznv96JzefNU8632+e9POrCvoKqw9eD9Q68PrxxlKZI6pn/c\n6URwcVrJwdKqk62nhspenv5RQawUqdKstjmztSYWZkjJuca6zvrRhjeNPy8QLwo2KV0yvux8hXI1\nrjm75ci1ajiDdbc9uPGy/d3N+x0NnXldIbfMuoW7V3rGey/1HbhN7Te9I3Dn+92hgZp7GYPuQwr3\nMfcnhi+O5DzwHVV5iH04OXbxUd449bHthOqk0BO2p0zP2J6LTOlN+784/HJ0Rvr1vrdgNve96Ny9\nj7nzTl+kvzEsLP74tPRu+cPq1434y4FuxBYZR/mgPqDD0YuYTCw3tgKngbsLd7SrdCUEA8IU/R4G\nVYbnxHzSJtIc40kmZ2YG5h6WA6x+bCrsGPZRjmrOZC57biHuBZ47vOV8yfwOAtKCiOCE0CXhApEw\nUQsxMbE1uI9qkSySipd2lJGWWZEdlquWT1GwVxRR/KzUqXxQxV9VUXVJrQvODy6a3JqTWmXaZB1R\nnWndMr2tm/g2PdI/bOBgSDIcMSo2ppjIm3w1vW6WbW5nwW4xaVkJ5wtV6yWbDts9dg72nHA/UeFA\ndVR0/ObU6pzhYu5K7zrodtDd1YPLY8LzlFeAt7T3R5+rvju32Gzl3PoK7gOyyR4B8hQUZSLwclBh\ncGSIbagclYH6Iex++OWIosikKM9o3Ri+mNVtz2M74yrjcxKoifZJKsmcycspL1LvbG9KK0nfvSMm\nw3en9S7NTLEs1mwk+/Pu1zkze2b3fsz9kvc9/+e+tQOoAlwh4SDpEPNh9iNcR3mLBI+JHBc/IVUs\nW6JQqnJS/ZRWmd5pg3LjCttKStWu6rIz7TUTZxfPcdap1zs1RDbmna+50H1xqmnlMtcVtasOzWEt\nu6+Vt7ZdH2v73E68Kdlh1Lmla/utY92NPb29T/u+9TPdUbrrNrD7XvsQ7r7fcN8D29EXY6XjSROp\nT848J0zXvzr2Zvh9wqeCb0ZL9bT4/6q90dYEnCYA1YZwQYDrhksFAJVtAEhow/WjGgBHEgCuOgDl\nmgqQZy0A8Trxd/1AAAbQwZoOD5AAarDi4g7CQSY8S14Bw+ATwoSoIK5IKjwD3kEWUHwoE1QY6jCq\nHfUOzY22RCeha9FPMMwYC0w6PJPNw3NYKDx7zeAkcKG4OtwnvAY+Hd9Lx0znS1dL94NgRSglfKG3\npq+gX2XwZmghchNTic9IZqR6Rk7GXYyfmPyYRpgtmG+waLJcZFVkbWRTYrvErsPexWHLMc4ZwrnI\nVcgty93DE8CLwCw14ZvhzxNQFhgTzBCSFnogvENETuSx6F4xHbF34iclnCTxku1SidLK0nMytbIh\nclJy7+QbFOIUdZRQSgPKx1UCVdXU0Gqj6mc0UjUdtSS11rQf6TTpHtAL32SjL2tANPho+MCoxfi0\nSa5pvJm/ub2FqaWBlY61uo2KrbKdsr3KZlUHTUc9J2NnaxcXVz+3SPd0j0LPaq8270c+C1s4t+r6\nUfwPkNsDvgRKB1GCT4c8pwqGUcIbIkGUT/TNbQqx1fGyCdeTvFJwqbfSCndE7PTN9MkOycneW5/3\ndD93gfvBksMjRxePCxc7lOac6i6nq3Sqrqj5cc6lvuk8x8W0Sy+vOrRcvy5z40QHfVda90Lfjv71\ngW2DI8NiD8gPCx7VP742eflpxfOd064vBV89f1381mF2/X39B89PmPnGL57fMAsXf5CX2H/2r2St\nGW/MHwisOTDAioMwUALGMPqRYA+sInSCFwgW1gacYR2gFnmEwqFU4Nk+H9WKmkMLoV3R+ehu9BpG\nF5OEacYsYvWwGdgeHAnnjquAUdfH78dP0anT5dJNE/QIJwhL9D70HQxSDAUMP4mhxHGSDamdUZPx\nPJM8Ux2zAnMTiy5LN6sT6zRbHDsdezmHHox2Mjxh3uZO5JHgGefdz2fOt8Z/XSBVUE9wTahbeJ+I\nu6iY6GexW+JFEuGSplICUj+lH8tclz0llyTvoCCriFd8q9Sv3KhyRDVdjaruoWGpqaOlqC2pI6zL\nr8e7iU9fyEDCUMFIy9jMxNU02CzVvMCi0PKI1XHrUzY1thft2u0HNj91+OyEdeZ30XJ1cotxL/Ro\n8hzzWvWR8nXakrH1vN80mSPAlrI78GbQcoheaBr1Zjgmwi7yaNR0jPK2XbEP4qXhijSZrJVSlLqY\n5pt+K0N+5/FMXFZS9vsc8p7Hua55w/sc948WeBVOHaIe0S+SPM5WjC5ZOvml7FP5l8qlM5izHOdk\n680aAy/sabpw+XkzyzWr69k3ejoYuly7T/U+7+e8a34vdCh9OPtBxsPQR6aPSRP9TxKesT+vmBZ/\nUfIKPxP8uv0tadbl3dH3gx8wHzU/Bczv+3zhy+jXrwus3xV+WC6Sl7b/PLRcu3JzdWzt3Ub8UfDr\nZwUi8Nu3gRW4TFABq0ZzCAdijMQgFcgYrPEYohJQDai3aEl0EPoseg6jhknD3MZyYoOx13CMuCDc\nTTwfPhXuOQ3oqggkwnbCR3oK/RMGT4ZHRB/iC1IkaYWxkEmGqZeZysLCcoM1mk2SbZq9giOEU5Vz\nlauLO4/HjVeCd5FvkL9WYI8gVchBWFtEUpRLjCiOk0BLYqXopdllRGTV5GzlqQq5ig1Ko8orqpJq\nTuo7NOo0H2vT6WjpBukd3dSjv2AoaeRpnG/SYfrdXN4i1PKc1QcbNdt0u/7N3A5hju3O7C6Rrn3u\n4h6ZntPepj7VWwhbo/3GyAYBtYGcQVnBX0ODqH3hIhHpkZPRm2LKY/Fx0fGTidZJrSkKqZVpfOlF\nGWw7D2dyZBXvFs2p36uV25vvvu/dgZ2FPAebDhsfuV6kcazphHLxpVLNk21lpqfvVXhXzlan1pDO\nVp7TqxtriDvPeuFSk8eltStnmh1bVlsb2ra2s97s78y8tan7W2/97Yg7mgPIvcGhk8PUB2qjC2ON\n41smMJOlTyWfVU1xTSe9GHjFPeP4OutN9dubs3ffDb2/PXfjQ/nHnE+e89Lz3z5f/BL1VeLr/W/b\nF8QXbnx3/z7/Y9ciYfHgEu9SyU/Wn3nLyHLK8syK/cqVVYHV3auza8ZrxWtf1+3Xz9DiHxespkpb\nPQBCNIHlx2fr618lAcAfAmD14Pr6csX6+molPGw8AaAj4tf/OTRm2v9EpX001NvdvJN2//fv/wCm\nY83QBQu0OAAAAZ1pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0i\nYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDUuNC4wIj4KICAgPHJkZjpSREYgeG1s\nbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAg\nICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0i\naHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1l\nbnNpb24+NTIzPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGlt\nZW5zaW9uPjEyMjwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9u\nPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgoioYFUAAA470lEQVR4Ae19D1Rb15nn8x5RC58V\nicCyXXtmbJemi9siarw+0E5JK3m3x55OLU5DkoktdkxyVmCfHJDaiYk4NU1F14yctCCfjEeQSXHH\ngk4iNovIOqKZChzwZOT1EZ2IJnBiqMVmoI0IYiJ1kTxP53jvu/e9p/ekp38gkITvOza67/75vu/+\nPul+9/+37cqVKwR+MAIYAYxAbiDw/vvv54YgD7oUX/rSlwAEIvD/7NmzDzoYuP4YAYL49a9/ffjw\nYYwERgAjwP4W/gPGAiOAEcAIYAQwAoIIYAshCAuOxAhgBDACGAECWwj8JcAIYAQwAhgBYQSwhRDG\nBcdiBDACQgiEhtvqKyqUHcNzTGo4EFgJhMLM6yZ/xsqzNgECgzrltm0VnHqtjc5WK0WtVOMHI4AR\nyD8EwvNX27vfC7KCFxZ/dk9p2eFvfqtmr5iNzHiA/N0HFrebKPF8egHSnrraIG+wEITK5R+qlGSc\nXVKC0fLELxCYGnnzF//L7nS6l4mSkoP7qr92TPWYqqpUioos3x0DgTGmXvHpPFgp2EI8WPrGtd0y\nCASmRxo6u4WqI+933zhVTjd8QhnWFbcdli5iaJD+ABNM6XNlZvT1t39D7P36X9ZVZsSQRckjLMTK\npO6bR7rdnEQ3MWazdLYSarPzWmMVSEiJDofAAxLEs0wPiKJxNbcsAgpDn91us/abtSo5rKT7tLx5\nMr12e+3g7Dlcq1GrNfraksKUiNx9+8dNLS1NHTcjg5+Uyq0jU2imsZgxD3K12QqGEeNWs0EBSVqu\n3FpZB+0tXxSPIba8inEFtzgCT9b+xfFyqjted+qZ73R861g7mC2x9PzyhZ660o2o+T0+0b01Z3pq\nzvDjEr3tKNpHJR8sSs2gJCKF0qLkiS1w6/K5Xhgr11pvdNWhsVVVVU3dM03DP/1e9+/2ZkqSWNZb\nIAaPIbaAEnEVHmgE7pFsd1yk1P4IdY1X/7AKQAnNDTfW1up6JpbmR3W1ym0V28Aa80yIgSswN3i5\nrVZZAR9lve7S6Ex0fzowN3FJB5amqUdZ3zY6493OX2yALOrrdVcXOWvV4aWpqx2AISylrG27PDgf\nIELzo226xnPUogVB2Lpa2tradDpdG6/g3MRgW2Mt5FahVNZfujoaJVBSeZi6MZ8rtzpbqQUGgtC+\nwZgHOk0kO3n+2mhXXbzJrsWp0ctULRBAytrGtuHJRbos+gjMD1zSsem6jqtTSxEU5icGdPV0XWoB\nQCMzkTQeldx+Abdu3McPRgAjcP/+5ORkHsHgd5tR02Jy+SJi+8fRTJO6zw0i2TycRggsKVPZyQWH\nihPLBg0OD0vN5+pj46MCKpMLZfO7kBgKJyQLIv3T/UgGfhHte//HyI9Bb/JxuiDpMApJpDB6SFqi\nVORhhafFY1BS901HJfFf/X2QOVuv6X6NkLSEcdxLFySntTE55EYnSp21xiZGIOKzzsU39reAxxAx\nSsYRGIG8RWDp9j+j5didxexaMlMZhbYPrFVovrajAMQs/fTEMRuVIjfaXD6/3+Oyoua5/dgPpuhB\nxvyLRxpQYW2ffXraadai8QmKY/5S1MBTRH8S852HTiMZtH0Oj2d2vN8IDcZo8I+eHB9nrIBcYwMv\n4Bm3fAUOSlYmfnqsFUqkNrk8Xr/PYzVAicZaW16dgixSkwdmZf8suCZRWFVzgI1MJbD6yR2QTaU3\njbtnvd4Fl92EzF7rT66jJZ75t3rQPgGDzeX1eWfdDoNKLn9oB0U8PPfy4zBRZQR18S7MOvoNcmIf\nA1Eq/HMmDx5D5KIFxzJlAwG235QN5mnzZMcHRic1hiBJ/7TDjFoxglCMw3EFm4dQGBc4HJiOP2Fw\nRKLJ2X7ULJkgQbas2kwNR9Dj6qN71mxfm8lGD00WHAZERGudZQrdv++btVmRRPen+9RUBlVfMJIM\nQj4zMlA8OUkr4qYwgdowjMDuo0Ty8Kjev+82Q3aE2sXnF5UNkI8aQwS9ntkFZlgEczuN0EDKDWiQ\n5TJBieVGzgiOoep3otog1TCx+fTJ/hbwGAJ9n/FfjEC+ItBaXbxt27aCgqJDx5rozrv1Sg1vs6vc\nbjm/l1O/Ozft6K2itDCwsgSflWBRGZoZGb11F6R63kV5FJonytmilWdeMgsNJNgMv/+NC4Y1T/85\nZ51cWnqyjpaIRCvL/nskWwYEAnftcPxAVMsLQwFaoEDwP30DSjQ2ejewRnkYJgGCx4+Jjv8plu0v\n3UsvuYTD1IHAnWXVVHa36/dwEFFy4CB8bf1m4+WpRf7WscKdMI1orf7m5ZEpflp8ljmZgi1ETqoF\nC4URWBMCcoXG6lroqivjlz64i27r6OgCZrlZdaC4qHgXfIqLdh1B0yb+EGpNUZlqpp2ky24v4tPm\nv9GUVZUH4q3/8vPTbwUELWDnieLCIkagIvlpWiIo0FrkIQm6ff5/oI1P81mcHOkAy+aU9S0s2Lbt\n86pORABNFu0/qQUzR+Bx97bI9xVV1LeNTC3RHESlz9nRWMrdckJetK2irWeEs4ZN58qLD7zbNS/U\nhIXECMRFQG9zP/fVkiBZUCiRSCVpNcyESq2RENSup8gTII5943ORV8We4s1sJOQqTbVklSdRgNhZ\n+8cSYhnJlKY8JZ/9Itg4Bf7d+M1STY0sUq9koZkB3SHaPoHFGrmipGR5eQwcJuc8+y+4vBVXLqpa\nKDPmtnSesHRqrdPIPO89fsHrrrh4QdVNjY3cnU0nOpu008GusvT0w+GWpeBmKj9LVcRsMQJbGoH9\nBw9IZRLerFLy+qKetf7KtYvc2SduObr3Tc3wNEvpHj5IT2219a4XMIgU4tJF4aiBCNPV13Zc6Top\nLNHv0WggTXl2f+ELiGF77z8+V3Mq1fY5NPk8Mg8Kvcuir4TDqNBMT+GhJl5VwH7Z5q7759on33ql\nQdUKzEf348//hX+oCtZcVn6ya+h++/ytV36gabVQied660ebK3kUcv4FzzLlvIqwgBiBhAjcI9Oe\nQNkh2Q1Jdr4Z/+z1QyVoLt1284MVlv/SRG8DWjBgowQD7vZBHuXAzOTUChSTvAeNk+2mh94xBcsX\n7kACdf/sTXpWKIbs2uQRl30LzQURltOGyG2DNPWlyeHLVye4grBskXkzmdqReQDxPs88m8oLiKSV\nJ8/fdJlg5G64VSySLt1fdf7aTZOCitlXBHc6RRLzIIQtRB4oCYuIEcgsAqXfeRo2WUTTkXPDzCmv\nUABMvF/V6S7PwSaz9Nh30M6olurnR+cD4XBgcrBj16MtiSUp/85puhSgPLMUDoeXZibaaosOHbnw\nr9BC/PGXj0AKlnffWwwHFqem5iiTICprRFuDbE31l4aX0E2x4dDi3CQ4eXcJtuxrk4cg9jZ1oSUB\nolP1+fqOgcm5xaWVpbnJ0UuNyl1HVC1DHwnUiCSRoRr6xdswEJ4ZvrTvBL0OAfOHBhsrlLoeeo06\nvDR2fRTG31klidDMQMW22h6wRg2rvDLzy1F4aG/B+6kArxyPwrtd82kPGpZ1IxFgd/htJJOM0WZ3\nf/JOzPHJM3lU7HE2Np1/IkyOmnXYWHGOsNF3Fwm0YbG7XVkW48KlVGi/Kemx8slpptGBuKCbe0RN\nzpGIOYZGOoQpU/RYedgKcgNOes8rnzN6U1vhPtio3a5e1OuHWeQKDjqAFaypP5KBIyqhoaj56fEE\nVZqb2D/N2z7LlTDXwuxvAY8h0NcE/8UI5BkCBQX0PP/2gqSridFTH6CqZad6Zh1m+q4/glmClasM\nfS+jI2ygY6+8YLMZ1Rxc5CbHtAsdNkZXoUbSIixqLrw1boa7VJlUuUprc7+CrnIV7a9z9XFS5X9E\nX4skLu/xz4LbB1EhNyORSmN4+TGw2gyetORBZOi/VY3XFpxWrQoNnOhIsO/LbHP5r/Fu3ZDQJ/9k\nzbZpoxpZBvcYWESQa/rt/VA4VFPJUy9Z1YgeI6raYPX+DUVNIn/KaqBxoxPlaqvLe6os0dIMT+Kc\nedkGxhBnz57NGXmwIBiBrCHAem/PmgTpMgYb9QlCLEpkIZJmCa2sBIJBoqBQLCmUiIWWcsEBBV+A\nLCgolslgcjTJ6HdUi3BoacVHQroCO6wAzUCIEImlUkm09GEoEUkUForB7ixxdDK4bSqJPAlQDIcC\nAci3EFCPIg2qESaiIkPAOVKAAkcqkwJBYmtKZQgFQTUlYLdAlKh0RahNZjLOWn8C8XInif0tRNUp\ndyTEkmAEMALJEBCJhFp0XqmkWUAjDf7xykS9iCUy3pmIaJLR76i4SCyTCe9KotIBTXGcDjUwGzJx\nIoGSyRMlPvdVJJZI4/IVRZkMKCbIHpEltqaQXiQDlxdl/xJXhJc7R1/wLFOOKgaLhRHACGAEso4A\nthBZVwEWACOAEcAI5CgC2ELkqGKwWBgBjABGIOsIYAuRdRVgATACGAGMQI4igC1EjioGi4URwAhg\nBLKOALYQWVcBFgAjgBHACOQoAni3a44qBouVFQTANvCs8MVMMQK5hgD6LWALkWt6wfJkE4HDhw9n\nkz3mTRDsWS0MRhYRYLWAZ5myqAXMGiOAEcAI5DQC2ELktHqwcBgBjABGIIsIYAuRRfAxa4wARgAj\nkNMIYAuR0+rBwmEE0kcgHKCuk4OuCeIWDg231VdUKDtinOrELYETwM198Ca/JMjODddWKJW1HTOC\nnonyDUZsIfJNY1jeHEAgPD/aWAuexpH52GYgNHKJSuwYnsmKpFNXG4qKiosK63hO3qJFIX/3gcXt\nHhvzfBqdsu73uYkBXX1txTbqqaio1V0ahE6C1k13PQTC81fbdJynrePS5YHhicVY7SXgEppqKATI\nFtX1TCXIRa7+zgaAtbk+JRPkWnvS0tQwgFdZUTswg7wcrZ1UKiXxXqZUUMJ5MAI8BILLv+m12UCU\nsv2vj++Pul+VnB/ptY0RfmX7BV6hTXoh/Sk1HMi/Q1GGhQpPXKp7tJVCBj1utw38625Vu3zXKqVM\n7KZ/BqZHGjq7hdjK+903TpWnJhnjeI64l1Lbn5pHbyGh4sWFFwc7zz3eTsNbu5p4MBOPSnrx2EKk\nhxfOjRGgECiIdqDDhWU7bHcz3fhyOSQK7zlcq1FLiD8+VkK75kmUObNpK7d+SpsHudbW2/ilHUvX\nX362pRf437EceV4V7OH56sks6xSpKQx9548W/8H3u396/Uq3DQjmPi1vLvNfq4xzEzmPbGFJrV4j\n+Yj4+uESXvymvARmBlWHHofOTDeFH8MEWwgGCfyJEdgSCOytOdNTcyZpVe4lzZF2hoD95VZYSO28\n2VVFtbllzT03iI+LW0Cvt9fy3kt1MDJtuhks8GTtXxwvp8Z8daee+U7Ht461gybX0vPLF3rqSpNz\nEe0/c7HnTLJ8mR86UBxDv/wfyDyo+61fNz7eBIzb5jx4HWJzcMZcHlwEQnPDYF1C1zMRCMxd7WhU\nVlCPslY3eGuRCwqT7VYotDh4SQdmmmG2xp6RKd5sQmBxdOAynImGGZS1bZeHFzk5IJ36et1VbmRg\nbuKSDixNwyL1baMz3u2p9Jq58iUNB+68bqEyqUw6jiWQ1n/fCIva/sWT0vRXUj7ryXCPDDLFRUrt\nj5AX0dU/rKLIxanRyx0AeUZFjW3Dk1wdwRWm+vqeCW5kYGLgUj1TpO3qxAKZaHzJcE/3U/xllVFv\nsnvJa6dqv4aco6ZLYm358RhibbjhUhiBVBEAS5fUooXN1t3EKQKWiW3dxnHv+RoZiiU/jZet125y\nDjVXUdnCM41Fh3o5ZMA8CVgV7RwyekfPI0KQDmiqF541nEGu4VYmrxYfaYgUAqwtnZFXoVBgfvL2\n3L8VFAh0iEmSfLj0aOX+aAsT8NxGE+TKrx/kkpSW/WfQEIO++k3XQmN5GTcp6+FljgQzA42HTvOg\npVTU28nREbPCdFTXWIPc561crS9ugHYRUXI3jCVBlghMTtz+N0IIWYIkiYeP1gjPeJXVnb+IeIRS\nWgXh1GxdQTyGWBd8uDBGID0EVAaHy+3o06NSrT/8xRJbntsaK/Q2p9tpN6Heoq1FM4JGBMFPnSC/\nXGWyjs8ueBdmXSY1zDLW+sYU00On6RQx9OZfZMyDts8+Pe00a1HXmWUsELjzWsOxY8ceFXpAvGFs\nQaAMGxXVgkke3geTAn66q85mzG5g6fY/o7mancXUmtHqJ3fAX5XeNO6e9XoXXAz4rT+5ziBLRK0w\nLY68SJsHhdbumnbazcmRDXzQ8GgcZKn4Lk9a26s2HkE8hth4jDEHjABEADT7tosnqb53Zbn9w+sn\nOt3E2OhvA80yfndcru2/0XUKbq8p/9V4aNejYHLf3X9j9vipMkJSMTzrKS5lO/Cy5iu9Q5Zq0EOf\nX/AR5XxCkGlgagT1atVmd9eZchBX1jV6tKLxSAOvvwzzRv6UyE+rVPLdu3dEopjQ6urH5XsY68NE\ncj4VX/4cXwxmC5CEtVmc3JscRP3vcDgwOz7w5DG0aqL4bs1+IMYXn+qbrSsuZTxyy4439xqHqlvH\niLsf+QiCXyUkdeBtMw2t662uSmp1o2zU95XG4upEyBbuPK1Wy3fsEECWWP2YKBeK32SQeOywheDB\ngV8wAhuGgOqldmgeIIM/feoc0UnNOsW0tapeAzIPVD7ZVx/TEq1gn2bgE9QBF+8vpZoz6gmHwak4\nUcFD1XAOx/nhMnGcSUIZ4F/Pu3b4qdA8QZkH9FSeecn8971NwLDEefYfPz90PE5akuh9D0v4rUpo\nBc0+7fhMTF2TkMp8cmt1MTILLGmt9UoNtMZi2X52tRpAS4jEO8sgtG7X7wMEa5PZgkTgzhCsmML4\nLDQPMEVa9ZLL1HukJZItKiQqPX/tWlRcLr/iWaZc1g6WbWshEDX9EqdyvHZUtKtMReWzvf9bevoh\ntDjS0wHWsbcVFBQWgv+HUD+WmigRflD3t5rpHNOZ0ISJcIl1xVpmoiZKJPvUkOAd2siti3oGC8sV\nGqtroauujKW5ODnS0Uid9QOwFmzb9nkVvabA0wibu4AeWFSU7WHjqEDCndC8nPnwwrf2+SAxlhEj\nkH0EmLZ+O7HRv6CwF/XAUZ1DU7pCOXv0S65QlBDLY2MpbH1U7ClOR9KZwbZDHU5AXeBZXq6+8NpF\nTsMaleeTVYAONedCP+Qqmsd/ZGf2Z1D0NvdzXy0JkgWFEolUwhGSIGYGdIdOM9DK5YqSkuXlMXcK\n0H52d3zrzGAQ+QzNtP3Zk05CEFlimah+7a2LZTy5IkWzEkrnW5MVATFTjEDuISB55CugZw+a7nkv\naP34c9QhjwO26f41ii3hb3PxE3KwDEGovvQ50G5M/fwCasP0/S79E5VwOid0tbawgWtF+HxJArbP\nY6N3A83SiKTC3WK26Oqik9okxb7zA0V/4L/Dt4IdNPX3ZxaIyjI2x8oH7yDpKsv3sZHZCuw/eEAq\nk0hj2Ycmn0fmQaF3WfSVcMAVmukpPNQUm5eOoZEl3r11l6iKkEyCLPnp9UR2Zx/T94jLdpMTsIXY\nZMAxuy2BANOKd5548Rmyq5TzM5p542ULrKLiy/zJh1TrbRm68UL5cXpKHKwzt8NuLLPMC1thhbn9\nFDv1/fFHdxORfqgE7T213fxgpZJpyJYmehMYFUAOLNu6FXFtXNGeA7EsxaVVWoIABqz3797+61Nl\nTJMZsv8Mzfyrjx6IGKjY4psTc4/knBzhs0TCmUztlXvpPrzPM8/Pwn8rfIhGduj2SjN7pchi74X4\nRgUQAHsNpt3+eHagoOgRmjmfF++NtUGcrx0vQ0Zfrly5ch8/GAGMwP37k5OTqcPgNDI7GxV6h9vj\nDwb9Xo/DDBpJ9Og9DC2/2wyjVC4/E3X/fmwkHSMHQwZC2zfuI0m/x6GhqcntCyQo7DLBRQlCYZ2m\naJE+txFFUOfUXIh6NGWfg6JIPRqHxw+ouqwG9A7+sqUikq0j5DDQrFRGuzcIDk74xvuYGmjtVAVS\neNLSQgr0qCwMJoTJ5RMu4nfSyOptUEvktA0d9KNAYhTn74OZWNDGDfR3QG0ap5BdcDIR3FLCDNON\nJYM+L/X4vLM2xNVgn/bDOF8wRWjT4MlqgcAWIg3YcNYtjQD7q0iplsFZPdP0sg0uG+hzR1oipnlS\nOVOxECwJTkBhcCCRfE4TGy1X8NizzVYMO9LBabfY4ijAlkqpykkz+Z1oUTqKCzBOTCOblER6djo5\nOZiDwSS+hbjvNTEWH5w3iYKWUVy0hbjvdUQKRdeZp+4U5UyQzcWRL4qVyuxOUHBtSexvAe9likIb\nv2IEUkNAXHrR5bWZtLx2GnQ4NUbnQvCMwHWhu3ew0wMUh+1x2CiMfbzGQGt2vHVBiTJLq5pB3xZx\ndMMFarWxv99A9WyZaSiWKstOpLxgsxm5Tbfc5Jh29cPefTwpWDJpBSRVfaAfjQ7xMQUVGpPb9zfC\nB4WZPBv9WVBAT3BtL4g3MyNrtk0backhtHJNv70fjhlYJGkxI1DLlLZpG7e6co152uNE4yaettdd\nQzD/FI/GbklmWfH4bANjiLNnz/Li8AtG4IFEgPXenmbtwysrK0GwP6agUCyVRh0GQKSo/fWEWMRv\nncJhak5cxMQGpnqK5GAKW+Umh8pFoaWlALiEQbJLJkAwHFpZCQRJorBYKhUDouFQiBBTAfoRZEeE\nAku+AJCyWCaDc93CuRga6/qEjnaAgAWMhGlQW6sWkrFIrbpIciC4VCalkI1SHHgP86BGXANQW6C2\nMikFLdQsq9hkguVkOquFyLcqJ+XEQmEEch8BkRQ0J8zKrKC4IpHA+mO8JoS6XE4ipptxYXJiqUzM\nYSgS88kLsiPEEhnvTIRwLkGG6UaKJVLwL91SG5s/tepGSR5dCLwLNZkSGe9cfDzNbmwFN4Y6nmXa\nGFwxVYwARgAjkP8IYAuR/zrENdgaCJDIZUPcPaZbo5a4FvmFgNCQKb9qgKXFCGwJBCTyBo9HRewo\nFrgCaEtUEFciHxHAFiIftYZl3ooIiCT7sXHYiorN6zrhWaa8Vh8WHiOAEcAIbCAC2EJsILiYNEYA\nI4ARyGsEqPMQ1dXVeV0HLDxGACOAEcAIbAQC1DrE4cOHN4I0ppk6Auz5lNSL4JwZRwBrIeOQroEg\n1sIaQMt4EVYLeJYp49highgBjABGYIsggC3EFlEkrgZGACOAEcg4AthCZBxSTBAjgBHACGwRBLCF\n2CKKzI1qhAOBlQC42yzRExpuq6+oUHYMzyXKhdMwAhiBHEAAW4gcUEI6IoTnRxtrwdM4Mg+uC416\nQiOXqMSO4ZmohM15nbraUFRUXFRYN4kcEwtzJX/3gcUNPFx6PhVOX0fs3MSArp7yRA+eiopa3aXB\nuUSSrINTNorOj1yura0Hqh+ei1b9rZ42oPf6tmFedcNLw5d1tUplrW6QF58N4bcMz9S1EFicGrjc\nVq9UVoBvJPg61usGJ+bzDwfsQWhtHjYyW4r115GUrN9lQl8yIW9ZfjN0aKJg3I0lpZbZDIwHNNYn\nlyD5GDcsgrnSjiTHWXdrvF+hOp5XsVgOqWshtuwmxPhdZrpmCnPEPxHwNDdrpePV/UFGjgWXFTlN\no5L4+ZksOfq5NbTgsRtopfA/1H20K8AcRZ8Ri9UCHkPwFZj7bwWJfL5sL6IqAP9koSZ7Dtdq1GqN\nvrakcLO5r9z66aOtNoqrXGtzTs+6x00a5GjHcuT5wegu92ZLlxl+kspnbMhf0VjTiyOLDNGA5fuP\nw7Dc9uMn4C3gK4Ntyn1HHodw0Lnw7ToMXOv9TFELyx+OQU4qY7/d6XSYNLQzOktDw8hi4mnY9UqY\n4fJ4DMFYzWx+shY7qRAJ/SluUPc8qVBpZfCb+c5+0yocJ7O/n3ahpmYcRoKMPtqpM5GqP8jUtRBH\njI2Pjri91E5D58TecdqdssLoROzJ2X7URgD3c2ZkURRmjv/TjRdyfRy2hhYWxvuMwNl4BAp/H/0V\nJUxOTnQkQ26FWC3gMUSGLW5OkQvNDYN1CV3PRCAwd7WjEUyIgoealr7F9kApeZlst0KhxcFLYOYa\nZWvsGZni9XYCi6MDl8FEP01HWdt2eZjbH4J06ut1V7mRgbmJSzqwNA1p1reNzni30x4hMwdV4M7r\nFoqayqSrihCX1n8ftZ62f/FslXl4mdJEtzTdz786RRCLXY+2Qhw1puYqBKhoX6VBo7e7vdfOn/pG\nBRpIoRT8N0MIpKCFvTVnzp+pkUYYSr6toW05sYE+QyP8MhbCY4hcsN2sxU4qTFpjCDZz7NfFOO5l\neUUmuGPyqUx0z/Q+OY2870ZnURhZQgwdBduR97n6ovMz76o4iyV+j8vhcIwLPSDe5RHoDbPVjF6b\nYXrc6r5ptrIJAqlrIQGRjU+a1dMYKrRaeq1Bb/cI8nWbYccVjyEE0VlXZBpaQHxmkWNwgoj+lq5L\njI0qzP4W8BiCabG2/KfK4HC5HX1089L6w18ssVXmdmoUepvT7bSbUOfT1qKhp02DnzpBfrnKZB2f\nXfAuzLpMyIP7WOsbU0wPnaZTxNCbf/FIA2Ki7bNPTzvNWno2luUcG7jzWsOxY8ceFXpAvGFsIbZI\nJIaMBKmQ5OF9MCLgX+Un5PVbqY6eWRrr7oZrDQrTc8f353WV8lD4dLWw8qvXe2E1FYcPcoYWOV9z\nvIKV8yrKhICg2bddPElNwFSW2z+8fqLTTYyN/jbQzPOuS63y9t/oOgW/v+W/Gg/tomYw3P03Zo+f\nKiMkFcOznuJS1oOBrPlK75ClGqzHzS/4iPLI5A4rb2BqpBO+qM3urjPlIFjWNXq0ovFIA/qpsBl5\ngRL5aZVKvnv3Dl4sfFld/bh8D2N9YpMJxZc/xxeDJJHtkrA2S6BU/kXJas72q1tPw4k1IH3/K5p8\nanLyD29hidPSwtLEK03QmhOac0fzSlvYQgirf2vFql5qh+YB1upPnzpHdDaBYExbq+o1IPNA5ZN9\n9TEt0dpNEIFPUAdcvL+U6aiGw+BUnKjgoWqCABbC+eEyIdSH9bxrhwwVmico84CeyjMvmf++twkU\ni/PsP35+6HictCTR+x6W8L/PoRX0q9zxmZi6JiGV48m86vz7Khg6wU1MOS71VhMvZS0Ebn2PXi5S\n2H9Ym1+qwrNMW+1rK1yfqOkX4Ux8myHaVQZnuW3v/5beLRpaHOnpAOvU2woKCgvB/0NoiBB/cy3q\n0Vfv5ffs0ZbcOCKsJ9oy4+Hva5XsQ/tH7tBGbj3Ec6js0sRldgABxGpQ/21kwjCHxNzioqSshcVL\nqmo03tPb+o7v5Xdich6kPBM35/HceAGZtn47sdG6C3tRDxzVKTSlK5SDIQV65ApFCbE8NuZmIuJ/\nKvYUpyPpzGDboQ4noC7wLC9XX3jtYl2ZQBKM+iSqN02uolmmR3YKzFnFI5Lr8eG5i6hDKtea6j5p\nabcQ7taLg4911ZXmuuRbSb5UtbDUU7+vFY6YwaaPiyeZUXj+QJHObzd/arWFJZU88hXQswdN97wX\ntH78znnI44Btun+N9ZcU8MbNfgKsVrsJ1Zc+B8bFUz+/gMyDvt+lf6ISTueErtYWNnCtCJ8vScD2\neWz0bqBZGpGUx4NfgnpbXXQS4E6O2AQYU/QHgYSCHTT192cWiMqI/Vj54B0kXWU5WrEWKJt3UZOv\nvoAUYehqa1b632+3gFWd7sdfqA9eq8yv+Yu8g54jcGpaCAw0/pcmC1VMrrf/A7MdmUMmD4J4likP\nlMQTkWnFO0+8OMc7rUDMvPEy/DaCFds9vCKpvliGbkRu0wPrzO1whMAs88JWWGFuP4XMAyD68Ud3\nE5F+qOQgTLbd/GCFzbc00ZvAqIBsX3yqzx3/MX37AEuKDYhLq7Twpffv3o5wIkL2n6GzAuqjByIG\nii2Vl4GlkQbU5ChMzyplBFHaZkOb0yx/9eJE3BrFnweMWwQnJEAgJS2AGyq/frqX+gmBfSK3Lh7P\nV/ONz0Ns1I7idOiyu49TKeQ0MntGFXqH2+MPBv1ej8OMGknwhdSze+OZgwK8i5JiI+kYObXBVQsO\ngpKk3+NgTj/I7QvU4V3mziWFdZo6kUD63Ow1SOzJhmjKPgdFkXo0Do8fUHVZDegd/GVLpVLlpHkc\nBpqVymj3BkmS9I33MTXQ2uHp46Q07qelheTkMp8jaGXq1Ae1ADl4jQzK1ll0LRPp81KPz++1G+BX\nRWGc9dFxKUKRedlTprg1tOBkDvQThNrpWfDMch6PN4+0QGALkfJXdwMzpverCM7qmUaBbXDZQJ87\ncqafbbLZI2ygDmykizl8xsSwNCIBhcGBqu1zmthYuYLHnm3rGTrsLRekA7VQbElOgC2VGVj9TrQo\nzeGAghq2mkkZpaeFpOQynSGiAq2N28SwlzkSqj5K934X04OIAYNQudm7/TItXqbobQkt+NAdmrEK\ngDHqPNLCVphlCs0MKMH1usqOqFmXOOqJFx0Y1FFk8sBvgbj0ostrM6E7dyLVUWmMzoXgmXJpJIoO\n7d7Bm/yPd/efwthn4jYuWrPjrQtKRENa1Txto3urbrhADa796TdQu52YaSiWLctOpLxgsxm5Tbfc\n5Jh2ocOl8aRgyaQVkFT1LTgN6BAfU1ChMbl9f1O5VWaY7t4ahTVTOdpOctcPJZUaK7qm0Db0IVj6\nKSh4hEEg5nN3TAyOSA+B1LQgkiRa+drJ+zmmx3/Tc6c4hgCtg0qlVqvU5vGFTHUWMkUnpusal7B/\nwdVv0qsVCjl4FApwDWmfzemj+2P0jXJZuTp7rf0mEkweLCwsUDMK3F4lBwCSBHMunHcYBLMw4GFj\nWQDdVFwQTFAAksIEySCYrQCpviAqTgbpAE1MkN19MA0GpWT6r8K5WHnWEwj6ISIRCdMgtlYtpMFi\nfVkBbgLaRDQTJK2P6WaXxlrYbMSF+LFa4PZFElin+R4VuluZsPiPPjHaHNtNTVCYIFZGr77+Gz9R\nVfeXVXs3cMEmsWWevKo70oC2gdDCgi0zll6wp1/t9F2rkhKoU1uUsCY5liiSSmXShMoQiQQAF4mE\n9U4GwYhALJMJFKErLhJLZWIOQ5GYn1eQHSGWyHhnIoRzZQRbsUQK/mWEVO4RAbgJKw6IGq2J3JN+\nq0j0YGkhpVkmsK0l0rKOvToxz99Dk1TzgQ9/3NDU0tL0zkegBcrOMzMALnugK6HWm+3jznG71aBG\ncyqWdz7kbIHJjoCYK0YAI4ARyDkE4nZJuJLe/sUVzqv7ZyPuk42VnJhkwcIdaFLuoR2b7lkGibYy\nce40ugtI3u++cYqeqa+qOV7XdH74e+ruP3ooJRyS1TNv08l7UPS1nqPI23pjwTECGIHECKTQMoam\n+sBFb2AfpNV59B+rQUtra7o+31gZdTowvDRlMf9sCByPWiZKSg5W16obG+r2S0Kjl1987faYBUpx\n5ULL/BdLgsvBCvVzZ2r2zo/2/KDv5o4vPG66cJKdqwjNj7T8oH91x9EXTM2lKBa4JXhz8E376Htu\nQBsRf/rZcydTP75+69pP0AksrfUNxjzQsMjKT1577yR8Qcdv6Xj0sTg1Ojj05ujYe3eXKc4Hq6uf\nbnz2ZOXeSKbA/MDfdv/dyChKVypqn25Sl8toVOcnBrp7Xx91U6cGDsqVtacb1cfLUkA8Qn5zQhJ5\ng8ejInYUs9fybQ5fzAUjgBHIdQSSrlR7x9EedrnDd99rp++ONruZnZJwlcM/3c/b/0hXWjtL+kyC\nABgorwP0Fnu+E13GxwCzYzIVtwRuM2TC2/XPWX2hvTeDXfkJN5lFO2ibZu5zj6pBxLMCOc2eQWDz\nyBlXX7PW2MSI4wSOeFSQXReKisevm4kA1sJmoh2PF9ZCPGQ2M57VQtJ1iNA/9rZTzZ+KurRWVnUC\nzdxfGbrNtongAojOQ6epUQZ13srh8cyO96NtkaOfBKUql9NhpZ0raUy28XGHw+5w/7cvgswFjLMx\nXreaWW6mP1NxSwBZx/0T8txEIwjNfz3EDlXi5o4krH5yB7yo9KZx9yzYv+NiXCa0/uQ6Gm7Mv9WD\nVjYMNpfX5511OwwqufwheAVQeO7lx2GiyujygNKzjn5wpmsfU7kIFxzCCGAEMAK5i0CSMYRvHJkE\nrXUWWjD2VKdmmtm6uOBAgwwwDYXywIy+WZuVcdNKutGWeDO/Dy/oAIvdeckcdAp6Zvl+xfxOJBLr\nVyumCN/WBl3Upn3Q1pvd/ISot+gxRNDrmV3gDZXow8xyAzq0TI+B5MbIETWWpN+JmBpT80nLWmyW\nAA5sPgJYC5uPeSxHrIVYTDY/htUCr/sea8fmHG/A/rfqu8fQzZHib6gNBDWq6B2+/eOyGnAzDPH7\n37hgQc3Tf865XVJaepK9bDJMIsr3qN2U6XTjqWJpuyVAvLh/6SNT92gxuEkJwmLZfrY+wCEC2E64\ns6yacojgdv0+QIAp+5IDB6ni7tZvNootP2wo527oLNwJ04jW6m+K7ZaG40Iedvi8f/3rX/Mj8FsW\nEMBayALoMSyxFmIgyUIE0kJiC7HyqytoHuXIn4gCKytgk6tI/CdHkbCtlne+V1MHytOTRarKA+k2\n/inWGrgl+Pmr5tcGbfy7plM9uEBfMUr4Q+lZCCDd4uTIqz3mwV4bmkNj5UWTRftPag3ybnC9nbu3\nRQ7+qfXG87rj5ZTVJESlz9kN3SeAKXW3nJC3gLsdzUbdM8eZNWyWUiRw+PDhyAsOZQMB8JPAWsgG\n8DyeWAs8OLL0wmoh0TpEeHHiCprBJ9oPFBUVU09R0YETtMy9FldGThEUJbx+gXJLsO9EUzsyD+Ag\nNDgQnR5ohQ9Rix6g89//TlqOVmYGdPuOnGhH5oE6gg1OYkdx3n8B3n6BYt2WzhPyXbrBGfS69/gF\nr9vGuJp3dzad2FWgmwlFUcCvGAGMAEYgdxFIZCGm37RG9Z359bD9w8R8JOYu5a8grYfu3NveW+Cc\nwGMut6Ypcd0SgHsg3hsFz60+NMefIjPRvi+g/O7W66m30KHJ50/D8ZNC7wKrEe9RnG+9hjZNcRiL\nZCebu8BNpy7mzqLux5+/xQABttJ2Dd33eZxG+r6g7nO9k5zCOIgRwAhgBHIagQQWYnHoioWSHV0Y\nyV0r8bvQynP3z0aYxhDMprQPTkbegHvjmckpal4KPMw8z+jtf4Xv9J+Sz6K5+vcWI2ORpZ//D+7p\nPJATLiKk45aAywKGxd9uptfSG56M9qlAhBeHey6Pzgv07dHqhcnUXsksMPg8HIvIZSOSVp48f9OF\ndvay99bROaT7q85fu4muxNtXBHc6ccviMEYAI4ARyFUE4lqI0MzbyIGM9mlF9DU3EvlpdP207co/\nLYbLv3Mazb60HDk3PLMUDoeXZibaaosOHbnwr8hCSPZ8Deaw3Xx3MRRampuaWaRsye4vVEBYxo79\n4Op8KBxamrpUu6vJwhu3kPeg1Rl77X/PUIHwCshzAAmWOqQy5TO0+wB3++cL6gdGJxeXlpYW50YH\nLikL9qmaWv5vMGaJgiSRuRv6xdswEJ4ZvrTvBLjEiX1Cg40VSl3PFKwLEV4au46u3rwDXGGC62Yr\nttX2jEwFIAIrM78chfN1C95P2fL5EgiHAisBVI+4IofmhmsrlMrajtQHaXFp4QSMAEYgdxCIt9uV\nudlfwWxZ5Q4iwBX0qL9MqPuoLaTjwm4AVC56RyxpYzyfoIqr+9G+2AW6by8AB31iLnInPvDkx1+B\nYB0MsLtduV4QeOKCF288/wEU735q627Ublcv5yLsaM6QkT+SgbtAobFStBh8AHFuYn/E8QtPQHZv\nGS92nS+kp0+v5Tx6g9HUbxtfYLYpp0Q+SO9UTrxXOCUVpMRPOBO1oqNWKeSqeAAKF0szdkO0kKYM\nCbJ77CZwv7JKpbHRnoIieZ1mvQqk6W1od7bf4+oz6lVo5Qwsoam1/Q7OTvRIuVwMbRktcMD1WQ0a\nNXxMDta/Fyc994KsFuJ5EKKvwiZgeycgPzlLn65W98MGJzge8XFGtblyldbm9kYK+pxcbwYGOw0T\n6XVqFVR+9Mg1pmmPE1oTNXMe4j7rlgDlYd0SIOMEWDDNU+Ij0+Baa4/VxOUG6Mk1ejO1zEA9tIVg\nyd73TzPrB5CzXNNv74crGjQjr8tKX/2HJAOXxBqstPso0gvuBWSiUXG11cUBBLJk/7D6YGPWH2Bg\n4UmBROnneBlKwsjPnCYxuRLkZHjFO9aeoGiyJHLBCr1QoGqYXAKHT5KRSDV9I7SQKu8U8jHXDQC3\nlmYuCuSsldYx/DF6mIsPohSvNifSYAr8NynL1tACFyzu9QpZcS7AFSbFMKuFeBYC0Im++j+GdMyN\n9CRwLYCcFQh3U8HV/eDx8z0KALLoSn/gcwCxEPAesDa3BDESwwjST3lk9Plj5YDX70cVQv4GQH7a\nH0KMuwUqA6y1gEMFWmzgrIB38i6KBXhl9RGbtOYYptUmFIY+u91m7TdrVexmrIgBTkKfGoiA7o/G\nPJ6o78PwyrCF8E9bOf0HqsV7kC0E+EnamH6W3s66aaF7NqC7Y/NQX1IXGtsqwLjBNTs7bTOx4/c8\ncG0G5N+I30KSL3l6ySlpIUKS6WMhg83OfEQy5GSI1UICC5GTgm9RoVh9ZLB+TKtNcI6yR9yCargH\n4NfNNZjkaqy1MQha6WGYut9qRsbtwbYQYLLUwZhM7TTss3jH6SttFMyFYAsuW78DJdKwO/R0oT7+\ndWpr08pGl9qI30KGZU5BCyxHZrqenmzOOwsRd6U6aoiKX/MXAXiUHYkvUmp/hFqL1T+soihwf+3l\nDl2tUllBPcraxrbhyUVOZUMjlxpr6+t7JriRgYmBS/VMkbarEwtkwkMtHHLpBMVfVhn1JruXvHaq\nFu11SKf0lswrU5r6kNnsfv7VKXCms+vRVlhRjam5CtV4b+XJU0reFcJlj1ajJH/MhowtCdKGVyoF\nLSAZQnMDx9qpPSrGcUsrO5bbcPkyySDxmepMcsK0cgSBZY4cwLHSIdpzBh3rdo/ZejvB/bXn4ZUq\nYKvy/EivbYzwH9U11qBrz1eu1hc3wI3QqIy7YYy7x4tDng0GJidu/xtwoMxGRAIkSTx8tEbYmXRZ\n3fmLKGf65+EjHLZWqPzMC/oGCwDc1tSimylCdx7o7W3lcW80CLzdj/Sj+voj9AU0WwuSLNQmNS2s\n9P7305RwKnNzzSP/8JMsyLl+lthCrB/DfKKwdPuf0W7incVFQG72/trvP/Xtsj2FH7kGG060gAzg\n/tqzNWdQc7KdykjAP1RgceRF2jwotPaXGqXed/Qnmuij91S60BP4oOHRY7xdzLxcYH78WvwGjpcV\nvxBEqW7c2EkNHca6kX1QmJ47vp+PTHhlhdqkHfR9OHhJ02IBU3Ruub5Jjg0EH6Z1vCXXwvzwiy3w\nh2H9yTNiIoi8dK2DY3aKYguRHdw3kyvqf4fDgdnxgSePoUkJxXdrqDbli0/1zdYVlzJHAmXHm3uN\nQ9WtY8Tdj3z0YcUoSQNvm1GHVO16q6uS6reWjfq+0lhcjXz4ReWmXwt3nlar5Tt2CB0XXP2YKBeK\nF6aEYwECspqz/erW08wwrv8VTdSJpZmrDYe4ozwKNdONi8fxrz2D358kWghN/UBF/VIUhvG6Ugr4\n7RnkvYmk8HdmE8HOEqvW6mJkFlj+WuuVGtioJL2/li1CBwJ3hmxUUGF8FpoHGC2tesll6j3SQueJ\n/RCVnr92LTYax6wVAd503b+DI5r8K5ML/uPOGMotj+l2/s+uU1G2JCYbjkgdgURamLjcAi24+qXn\nahDFPB1D4JXq1L8QWyGnXKGxuha66srYyoD7azsaayu2bSsoKCzYtu3zsOMDUnlffzZ3AboFhago\n28PGUYGCPO0h8SqRLy9LE5fZAQSQuUH9t1FXUpbWdZHwCQZ90056R9hY9+mGy7fypY65L2cCLYTm\nBh8FA3GCMDh+ynSkCulfyHbhH1bO1hePIXJWNRkTTG9zP/fVkiBZUCiRSCW8BU1wf+0hdEEh4AYO\n35aULC+PueOvGLAyfXY3uzDBxsUPhGba/uxJJ1EimGOZqH7trYtlPLkEM+JIiEB47iLavyTXmuo+\naWm3AA8lFwcf62LdscBcIhH10xaJpGVVdde844Fdj4Kxn23o1kpzFR5GZOCblFALH1yH4weCGHyz\nK/grxG35Ohx8w/0FFZ9VNJ4/GemlZUCeDSOBLcSGQZszhPcfPCCVSQTaBe79tRY9uqAwNNNTeKgp\nruzMJYzv3rpLcJqaJP0i8tPriezOPrwJMy7gMQmTr76A1qcNXW3NSv/77RawAtT9+Av1wWtMdzWm\njOzoE2rCBlqtoiL8g49BZy0RybTgR0Td3Z0x3S2wv2BMXvxdbCHWgjsusxEI3CPD8ciivS3w/lq6\nDx/3/lpEovChgzBgG7q90lzJWJ3F3gvxjQrIL6kYnnbH3YxfUPQIzTyemCCetUEPdhO3NNLQBFp6\nsBBkelYJfFXJ2mz6Xmpi0PJXL2pGL4Ap7/DKUkAik/JgCt15BxYi/P64X4UE2OOkKASSaeHgt35k\ntZ77zGc+wynns6rg5gGFwao9VHywjJOU28F4N/exZwJxYBMQ2IhzpOyZ6rjnkBln2gr6xjcSXIHF\nfFvZ+zOiLjSM3NKoNo37SdK/4ORc28iWygxm8NYScFGLzztrQwf9DPZpdHeLL+bulvWz3AgtrF8q\nDgXWSzzRF7kC0msEe1nhYwU3+gVdFFDUlRtu6n4bkgTuSdh7reQGB4dajga3ghYEoA0irzaJb8AU\nKJelKFYL+NaNLGmAz5bVBz96XW/JLcT9pPfXAgGiLQTn4ge6YeJ80DfyrktuTmH6iiEOAza4Eb+0\njdACpzbrDUbuOdba0C1hiGLkImHgyiXohpdLsjhxA1rqCuOcf7aCFgRAjvkdCeTJoShWC3gvE/cn\ntKXCBQX0+ajtBbwpB04lZc029v5aN+UFPHJ/bbQfJEkRM88jU9qmbbTTPEhLrjEzN/JGJoM4XNYe\nBPNP8QrvljDyxMux5eLv3kIOSFSOtpNcjUoqNVYNHEfYhj4ky19x2/XqKDMh1xj6PcEuvB1g/V+K\nlLQAXcoI88q3vUzbwCzT2bNnhSuDYzcLAdZveIYZhsPAeZ4YbmtJQBm6CAoSBYVSOH8dXQi8hwmx\nmNsoUcQCS0sBEmyQKpZJqWUE4DmK2jsTnSsB25xL2igtZKyiUBMiYX2GQyGCmxQOUX6fgGsssIVN\nKo3RXsZkyjihLaUFLjpxfkfcLLkTZrWQzz/o3IEzZyURiZKvAQMTIpGCf2wloguBd6GviUQm417i\nkN/Gga18TgfiaALKLBLzVS0SA7tARLSa0xXLK+HS0QK3YonKcfPlVhjPMuWWPrA0GAGMAEYgdxDA\nFiJ3dIElwQhgBDACuYUAthC5pQ8sDUYAI4ARyB0EsIXIHV1gSTACGAGMQG4hgC1EbukDS4MRwAhg\nBHIHAWwhckcXWBKMAEYAI5BbCFDnIaqraTe2uSUalgYjgBHACGAEsooAtdH98OHDWZUBMyfY8ykY\niywigLWQRfBZ1lgLLBRZDLBa+P8HaKI5Ccm59AAAAABJRU5ErkJggg==\n",
"prompt_number": 1082,
"text": [
"<IPython.core.display.Image at 0x11ea9a3d0>"
]
}
],
"prompt_number": 1082
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Confusion Matrix allows for more detailed analysis than mere proportion of correct guesses.\n",
"\n",
"For instance 2,528 loans from paid loans were incorrecly predicted as unpaid. \n",
"\n",
"Based on the entries in the confusion matrix, the total number of correct predictions made by the model is (1,364 loans + 28,709 loans) and the total number of incorrect predictions is (2,528 loans + 7,514 loans).\n",
"\n",
"The confusion matrix provides the information needed to determine how well a classification model performs. The perforamnce metric, accuracy, summarizes this information with a single number .777 \n",
"\n",
"Accuracy takes the total number of correct predictions and divides it by the total number of all predictions made. "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"predictions = [p[1] for p in clf.predict_proba(X_train)]\n",
"fpr_p, tpr_p, thresholds_p = metrics.roc_curve(Y_train,predictions)\n",
"\n",
"fig = plt.figure()\n",
"fig.set_figwidth(10)\n",
"fig.suptitle('AUC for Decision Tree Classifier Predicting Loans Paid')\n",
"\n",
"ax1 = plt.subplot(1, 2, 1)\n",
"ax1.set_xlabel('false positive rate')\n",
"ax1.set_ylabel('true positive rate')\n",
"ax1.plot(fpr_p, tpr_p)\n",
"\n",
"fpr, tpr, thresholds = metrics.roc_curve(Y_train,clf.predict(X_train))\n",
"ax2 = plt.subplot(1, 2, 2)\n",
"ax2.set_xlabel('false positive rate')\n",
"ax2.set_ylabel('true positive rate')\n",
"ax2.plot(fpr, tpr)\n",
"\n",
"\n",
"print \"False-positive rate:\", fpr\n",
"print \"True-positive rate: \", tpr\n",
"print \"Thresholds: \", thresholds\n",
"\n",
"print fig"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"False-positive rate: [ 0. 0.80803068 1. ]\n",
"True-positive rate: [ 0. 0.90066882 1. ]\n",
"Thresholds: [2 1 0]\n",
"Figure(800x320)\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAEhCAYAAAA+rtfAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFFXWx/HvETEg5rSuiTWHVVddA6suo6BiwiyCumJ+\ndRGzrGnBnDCCi2IWEQVEBUWQ4CgiIoqSDaioYEIQRREJc94/bo20w4SeoWuquvv3eZ55pkN11anu\nnjOnbt2619wdEREREUnWCkkHICIiIiIqykRERERSQUWZiIiISAqoKBMRERFJARVlIiIiIimgokxE\nREQkBVSUSUExs6PMrMzMts14rMTMBlZY7jEzOza63dDMbjGzj8zsXTN708xaVrLu/cxsspmNM7NV\n6hjfdDObEP1MNrPrzWzlOq7rHDM7pZrnjzCzjnVZd8Y61jWz96Kfr81sRnR7nJmtuDzrrrCdPc3s\ndTP7IFr3g2a2qpm1M7OuOdzOS2a2RnS7g5lNMbOey/temVkTM/s1em8mm1l3M7PlWF+pme1WMeYq\nlj3SzLbPuH+tmTWv67YrrHu6ma2Ti3XVcfuPmdmn0fv6rpntXcPyo6pZz7HxRCmSOzlLqiIp0QZ4\nMfrduZrlPPoBuB7YENjR3ReZ2QZAs0pecxJwk7v3yiYQM1vR3RdXst0Sd59jZqsBPYAHgHbZrPMP\nK3J/oIbnBwIDq1smi23MBnYFMLNOwDx3vzNzGTNr4O5L6roNM9sQ6AO0dvcx0WPHAquz9DPKCXc/\nLOPuuUBzd/8qup/1e1XFZzvN3Xc1swbACOAo4LkaXlNlqFXEXJmjCbFPjZbvlOU2ahVHQhy41N37\nm9mBhL+VXapc2H2fataT9L6I1EgtZVIwzKwxsBfQHmid5WsaAWcC57v7IgB3/87d+1ZY7kzgeOB6\nM+sZPXa7mU2MWr1OiB4rMbORZvYCMLm6bbv7L8D/AUeZ2VrR6y8zs7fNbLyZdc7Y/r+ix943s8ej\nxzqb2SXR7Q5RC814M3sqeuz3VqaoJWdE9PwwM9s0evwxM7vHzEaZ2SdZtCZYxuvuN7O3gFvNbEsz\ne9nM3olavLaNllvfzPpF+/S2mf2jknX+G3isvCCL3ptn3f27Cp/BEWb2VtSSNjQqnjGzZhmteePM\nbDUz2yiK473oM9onWnZ61Pp3P7AFMNjMLqzwXlUac/R+9zSzN4DHq/lclwBvAluZ2almNsDMhgND\nzayRmT1iZmOiWFtF617VzJ620HLXH1g1Y79/b62q8D14wsyaAkcAt0fr28L+2Ao8PYr73eh7mvm5\nDDWzSRZaJbNuEavmu1TV59M52udXo+/Y+dHjq1loBXw/+oxOqGqT0e+R0Xu6WrTd8n1qlRHbz9Fv\nM7NuFlpehwIbZKxHJLXUUiaF5EhgsLt/YWazzGw3dx9XzfIGbAV84e4/V7did38o+sc+MDpqP5Zw\nxL4zsD4w1sxejxbfldDq9nlNAbv7PDP7DNjGQmG2lbvvaWYrAC+Y2X7AHOAqoGnUwrZW+ctZevTf\nEWgStfStkfF8ua7Ao+7e08xOA+4ltLAA/Mnd97FwCmwA8GxNcUf+HMXkUdFxjrtPM7O9gP8BzYF7\ngLvcfZSZbQYMBnaosJ4dgcey2N5Id98bfi+SLwcuBS4BznP30RaK7N+AcwjfhZui97JRxnvi7v5/\nZnYwS1stT83YTnUxbwfs6+6/VRVkFENz4BpgI8L3YSd3n2tmNwHD3f306HMcY2bDCMX5z+6+g5nt\nBGR+bz1a745U+B5E6xxA9L2Mlsv8Xjgwy913N7Nzo/frLKATMMzdb43ehzOyeP/LVfVdqurzAdgG\n2B9YA/jQzLoDLYGZ5S2BVs0p2sgRwATgV+Do6G9nPWA04Xv7+3sVxbMNsD3wJ2AK8HAt9lEkESrK\npJC0Ae6KbveN7o+j6tMWZdU8V5N9gKc8zFP2nZm9BuwB/AS8nU1BlqH8CP4g4CAzey+6vxqhaFwN\n6OPucwDcfW4l65gAPGVmzwPPV/L83oTTaQBPArdFt718eXefauFUYjYc6BsVZI2BpkBfW9qNaqXo\ndwtg+4zHVzezRu4+v8L6smnF2NTM+hD+ya4EfBo9Pgq4y8x6Af3dfaaZjQUeMbOGwPPuPj7L/aoq\n5tWifR5QTUG2ZfTZebTNIWbWDhia8ZkdBBxhZuXFysrAZsB+hGIQd59oZhMqrNuAA6j6e1Dd+9c/\n+j0OOCa6vQ/R9yGK84dqXl9RVd+lqj4fB16KWqJnm9l3hJarCUAXM7sFeNHd36hkW0ZoBbwa+I5Q\nPDYAbo4OWMqAP5vZBhVaVv/J0r/Pr81sRC32TyQxKsqkIESnXvYH/hq1FDQg/DO4DJgNrF3hJesA\n3wOfAJuZ2eruPq+2m61wv7zA+6UWca8ONAE+ih662d17VFimfSXbqhjDYYR/REcAV0WtLRVfU9U6\nFmaxTLnMIra8sFoBmOvuu1YR317uvrCS58pNBnZnaWtHVboCXdz9RTNrRtRnMGrteZHwHowys4Pd\nfWT0T/tw4DEzu9Pde9aw/mpjjoq0isVkpk8qeQ+cZb8Px7j7x5WsO5v3vqplqju4KC8il/DHnL88\np/Mqe22ln08k871cAqzo7h+b2a6Ez+0GMxvu7tdXWOfvfcp+33AodNcDdnP3JVFLc8ULb6p7r0RS\nS33KpFAcBzzh7k3c/S/uvhnwWfSP+SPC0fR2AGa2OeHU4/tRi83DwD1Rq0p5f5vjqthOZv+W1ma2\ngpmtTyiI3ia7fwTl/bIaE07zPRe1egwBTo9aZTCzjaN1jwCOt6X9iv5QYFr4j76Zu5cC/wHWBBpX\n2OabwInR7ZOA16mbZfbP3X8ivNfHlcdjZjtHT78CdMiI9W+VrLMbcKqZ7Zmx3NEW+iRlbm8NoLxT\nfruMZbd098nufhswFtg2Ou04y90fIny+lRWMVe1XxZir7FiehYrv15AK6y6P63WgbfTYXwmnxTM5\nVX8P5hHem9oYBZT3gzyIZQ9aqtuHqr5LlX4+lbyeaLsbAQuiC2e6ALtluf01gO+igmx/YPNKXvM6\nS/8+NyIcsImknooyKRQnknGlW+RZ4MSoxeNk4NHo9FJf4IyMlrGrgVnAFDObSLiS7ccqtuMA7v4c\n4fTLeGA4cFl0+iSbq7xejbYzBphO6P+Euw8FngJGR6ev+gCN3X0KcCPwmpm9D9xRIZ4GQM/oNeOA\ne9z9xwqxnA+cZmbjCf9IL6i4T5XcrnL/K7l9EnBGFN8koLzzdQfg7xY6hU8Gzl5mheF9O5FwKusD\nM5tCOM03r8I+dCacIn2H8HmVP36BhY7i4wktMoOBEuB9MxtHuEDjniz2pfx+xZjPqeI11a2vsvVC\nuNK3oYUO6pOAa6PHuwONo32/FnhnmRVV/T14GrjMQsf3LWqIrzyWawmnyicSDmi+IbzflZlgZl9G\nP12o+rvUmco/n6r+JnYi9Kl7j9D/rmIrWWbcmXoRPp8JwClEV51mLhv9fX5M6Ev2OKGQFEk9C6fc\nRUSkWJjZSsCSqLWpKXCfu1fVUiUi9UR9ykREis9mQB8LV6YuJFyRKSIJU0uZiIiISAqoT5mIiIhI\nCqgoExEREUkBFWUiIiIiKaCiTERERCQFVJSJiIiIpICKMhEREZEUUFEmIiIikgKxFmVm9oiZfRtN\n5VHVMvea2cfRlCY1zU8nIlIvlL9EpL7F3VL2KNCyqifN7FBgK3ffmjAnXveY4xERyZbyl4jUq1iL\nMncfCfxQzSKtCJPF4u5jgLXMbMM4YxIRyYbyl4jUt6T7lG0MfJlxfwawSUKxiIjUhvKXiORU0kUZ\ngFW4r8k4RSRfKH+JSM6smPD2ZwKbZtzfJHrsD8xMiU6kCLl7xaInTZS/RKRKdclfSbeUDQD+BWBm\newNz3f3byhZ094L46dSpU+IxaD+0L0n/LFjg9OvntGrlrL22c/bZzksvOYsXL10mDyh/5fFPoexL\noexHPu7LnDnOTTc5G23ktGzpDBvmlJWF5+oq1pYyM+sNNAPWM7MvgU5AQwB3f8DdB5nZoWY2DfgF\nOC3OeEQkWZ9+Ck88AT16wLbbwsknQ69e0Lhx0pEtS/lLRCrz+edw110hlx1xBAwZAjvtlJt1x1qU\nuXubLJZpH2cMIpKshQvh5Zfh/vvhnXegTRsYPBh23jnpyKqn/CUimcaNg9tvh1degTPOgAkTYJMc\nX9qTdJ+yolNSUpJ0CDlRKPsB2pc4lJXB0KHw7LPQrx/suCOceSb07w+rrpp0dFJXafl+5UKh7Euh\n7Aekc1/cw0Fkly7w0Udw4YXwwAOwxhrxbM+W59xnfTEzz4c4RYpdeQK76qpQmLVtG37qcjRpZni6\nO/pnRflLJP8sXAhPPQV33AENGsCll0Lr1tCwYXavr2v+UkuZiOTEa6+FYmzOHLj+ejjmGLC8L6lE\npJjMnRtawu69N7Tw33kntGhRf7lMRZmI1Jk7vPhi6PQ6fTp07gwnnRSOLEVE8sUXX8Ddd8Njj8Fh\nh8GgQbDLLvUfh4oyEak1dxg4MBRh7nDZZXDccbDSSklHJiKSvfffD/3FXn4ZTjsNxo+HTTet+XVx\nUVEmIlkrKwvF2HXXwZIloSg78kidphSR/OEeLkS6/XaYOhUuuADuuw/WXDPpyFSUiUgWliyBvn3h\npptgxRXh6qvhqKNghaSHnxYRydLChfDMM6FlzD103j/xxHS18KsoE5Eq/fZbGNz1lltgvfXC70MO\nUcuYiOSPH38MA1bfcw9stx3cdhscdFA685iKMhFZxuzZ4eqjBx4InV179IBmzdKZxEREKjNjRijE\nHnkEWraEAQNgt92Sjqp6OvkgIr+bMyecmtxmG/j6a3j11TCFSEmJCjIRyQ8TJsC//hVmDVmyJIzE\n36tX+gsyUFEmIsDMmXDJJbDVVvDtt/Duu6F1bPvtk45MRKRm7jBsGBx8cOhiseOO8MknYZyxzTdP\nOrrs6fSlSBH76KPQv6J//3BkmfTl4CIitbFoEfTpEzrvL1oUOu+3aQMrr5x0ZHWjokykCE2YADfe\nCCNGwL//DR9/DOuum3RUIiLZ+ekneOihMODrVluFfFYIFyHp9KVIEZk8GY4/PjTx77EHfPZZGGtM\nBZmI5IOZM6FjR9hiCxg7NrTyjxgBhx6a/wUZqCgTKQoffhia9A84APbcE6ZNC838jRsnHZmISM0m\nTYJ27WCnnWDBAnjnHejdG/7+96Qjyy0VZSIFbNo0OPVU2HffkMymTQtTIq22WtKRiYhUzz20gh1y\nCBx4YLgqfNq0MMxFkyZJRxcP9SkTKUDTp8MNN8Dzz0OHDiGRpWEKERGRmixeHGYQ6dIF5s8PrfrP\nP5+/nfdrQ0WZSAGZOjVcAt6/P5x3XujAv/baSUclIpKdN96Ak08OLWHXXhv6ihXTdG4qykQKwNtv\nhwT2zjuhGPvwwzAtkohIvnjttXAh0mOPhWKsGKkoE8ljn34KV14JI0fCNddAv36w6qpJRyUiUjvD\nh4eLkfr0CTOIFKsiahQUKRyzZ8NFF4VhLXbcMQwC+3//p4JMRPLPkCGhIHv22eIuyEBFmUhe+fXX\nMAL/dtvBb7/BlCmhhUxXU4pIPho0CE45JXTk32+/pKNJnk5fiuSBsrIwoe7VV4dJdd94A7bdNumo\nRETqbsAAOOssGDgQ9tor6WjSQUWZSMqNHQvnnBMuB+/VK4w5JiKSz/r3h3PPhZdeKrwBYJeHijKR\nlJo/H/77X3jySbjjDmjbtjCmERGR4tanTxg/cfBg2HXXpKNJF/UpE0mhESPCCPxffw0TJ8JJJ6kg\nE5H899RTcMEF8MorKsgqo5YykRSZNw8uuSRcjfS//8FhhyUdkYhIbjzxBFxxBQwbFq4al2WppUwk\nJV5/HXbZJcz3NnGiCjIRKRyPPBLGVBw+XAVZddRSJpKwBQvCsBa9esEDD8ARRyQdkYhI7jzwANx4\nI7z6Kmy9ddLRpJtaykQS9PLL8Le/wSefwPjxKshEpLDcdx/cfLMKsmyppUwkAR9+CBdfHCYMv+uu\nMM+bOvKLSCG5+264914oLQ0TjEvN1FImUo8WLYLOncNYY82bw6RJoe+YCjIRKSS33w7duqkgqy21\nlInUk8mT4V//gg02CKcq//znpCMSEcm9m26Cxx+H116DjTdOOpr8opYykZgtWRIGfy0pCSPzDxqk\ngkxECtN110HPnqGFTAVZ7amlTCRGr78Ol14Kq6wCY8bAFlskHZGISO65hxlInnsuFGQbbph0RPlJ\nRZlIDD76CDp2hHHjwpVHJ54IK6hdWkQKkHsYFPbll8NVluuvn3RE+SvWfxNm1tLMPjCzj82sYyXP\nr2dmg83sfTObZGbt4oxHJG4//xyuqvzHP6Bp03CVZdu2KsjylXKYSPXcw9mAV14J08OpIFs+sf2r\nMLMGQDegJbAD0MbMtq+wWHvgPXf/G1AC3GFmar2TvPTii2Gk6jlzYOpUuPzycNpS8pNymEj13OHC\nC0M3jeHDYd11k44o/8WZPPYEprn7dAAzexo4EpiasczXwM7R7TWA2e6+OMaYRHLum2+gQ4dwqvKR\nR8JQF1IQlMNEqlBWBu3bh7w3dCistVbSERWGOE+qbAx8mXF/RvRYpgeBHc3sK2A8cEGM8YjklDs8\n+ijsvDNsuWWYr1IFWUFRDhOpRFlZuJJ8woRw2lIFWe7E2VLmWSxzJfC+u5eY2ZbAUDPbxd3nVVyw\nc+fOv98uKSmhpKQkV3GK1Nq4caF1bMGCkJT+9rekI8p/paWllJaWJh1GppzlMOUvKRRLlsCZZ8Kn\nn8LgwdC4cdIRpUOu8pe5Z5N36rBis72Bzu7eMrp/BVDm7rdmLDMIuNHdR0X3hwMd3f2dCuvyuOIU\nqY3vv4crr4SBA+H66+G006BBg6SjKkxmhrsnNtdBrnKY8pcUisWLQ8776isYMABWWy3piNKrrvkr\nztOX7wBbm1kTM1sJaA0MqLDMB0ALADPbENgW+DTGmETqpKwMevQIHflXXTV05D/zTBVkBU45TCSy\neDGccgp8+204KFVBFo/YTl+6+2Izaw8MARoAD7v7VDM7J3r+AeAm4FEzG08oEC939zlxxSRSF2PH\nwr//DQ0bhlOVu+ySdERSH5TDRIJFi6BNG5g/P7SQ6ary+MR2+jKX1PwvSZg9G666Cl54AW65JRwl\naryx+pP06ctcUf6SfLZwIbRuHfqS9e0LK6+cdET5IY2nL0XyUlkZPPxwOFXZsGE4VXnqqSrIRKS4\n/PYbHHssmEG/firI6oMGORTJMG4cnHdeSEIvvwy77pp0RCIi9e/XX+GYY2D11aFXr3CAKvHTsb8I\n8MMPod/YoYfC2WfDqFEqyESkOM2fD61awdprw1NPqSCrTyrKpKiVlYUBYLffPgwGO2UKnH66TlWK\nSHH65Rc4/HDYaCPo2RNW1Pm0eqW3W4rWe++F1rElS+Cll2D33ZOOSEQkOfPmwWGHwVZbwYMPasif\nJKg9QIrO3Llw/vnQsmVoFRs9WgWZiBS3n34KOXH77eGhh1SQJUVFmRSNX36BLl1gu+3CZd5TpoQB\nYHWqUkSK2dy5cOCBYbq47t2VE5Okt14K3vz5oRjbcksYMyYMAPvAA7DuuklHJiKSrDlzoEULaNoU\nunVTQZY09SmTgvbBB2GcnW23haFDYaedko5IRCQdvv8+tJC1aAG33RaGApJkqSaWgtWvH+y3H1x0\nEfTvr4JMRKTcd9/BAQfAIYeoIEsTtZRJwVm0CK64Ap59FgYPVid+EZFM33wDzZvDccdB584qyNJE\nRZkUlK+/DvO0rbYavPsurLNO0hGJiKTHV1+FFrKTToJrrkk6GqlIpy+lYIwcCX//ezgCfOklFWQi\nIplmzICSEmjXTgVZWqmlTPKeO9x9N9xyCzz+eBhrR0RElvr889BCdt55cMklSUcjVVFRJnlt3jw4\n4wz49NMw3EWTJklHJCKSLp99FgqyCy+ECy5IOhqpjk5fSt6aOhX23BPWWgveeEMFmYhIRdOmhVOW\nl12mgiwfqCiTvPTii9CsWUg0PXrAKqskHZGISLp89BHsvz9cdVU4bSnpp9OXklfcw5g6994LAwbA\n3nsnHZGISPpMnRoGhr3+ejjttKSjkWypKJO8sWBBmKvygw9C/7FNNkk6IhGR9Jk0CQ46CG69FU45\nJelopDZ0+lLywldfhdOVixfD66+rIBMRqcz48aGF7I47VJDlIxVlknpjx8Jee0GrVtC7NzRqlHRE\nIiLpM24cHHxw6N7Rpk3S0Uhd1FiUmdkKZnaKmf03ur+Zme0Zf2giod/YoYdC166hs6qmA5HaUg6T\nYjB2bJjHsnt3OP74pKORusqmpex/QFOgbXT/5+gxkVg9/DCccw4MGgRHHZV0NJLHlMOkoL31Fhx2\nGDz0EBx9dNLRyPLIpqP/Xu6+q5m9B+Duc8ysYcxxSRFzh5tuCkXZa6/BNtskHZHkOeUwKVijRoVC\n7PHHQ0uZ5LdsirKFZtag/I6ZrQ+UxReSFLMlS8IAh2+8EZLNRhslHZEUAOUwKUivvRZOVT75ZLja\nUvJfNqcvuwLPARuY2U3AKODmWKOSojRvHpxwAkyeHJKNCjLJEeUwKTgjRoSC7OmnVZAVEnP3mhcy\n2x5oHt0d7u5TY41q2e17NnFK/po0CY47Dv75z3DlkEboFzPD3XNyaUeSOUz5S3LtlVfg5JOhX7+Q\nMyV96pq/aizKzKynu59S02NxUlIrbE8+CRddBF26wKmnJh2NpEWuirKkc5jyl+TSoEHQrh089xzs\ns0/S0UhV6pq/sulT9tcKG1oR2L22GxKpaMECuPDC0Aw/YgTstFPSEUmBUg6TgjBwYJjVRFPMFa4q\n+5SZ2ZVmNg/Yyczmlf8A3wED6i1CKUiffw777Qfffw/vvKOCTHJPOUwKyXPPhYLspZdUkBWybE5f\n3uLu/6mneKqKQc3/BeSVV+Bf/4LLLw+nLTUgrFQmh6cvE81hyl+yvPr2hfPPh5dfhl13TToayUZs\nfcqila8NbA383v3a3V+v7cbqSkmtMJSVwc03w333hemSmjVLOiJJsxx39E8shyl/yfLo3RsuvhgG\nD4Zddkk6GslWbH3KzOwsoAOwKfAesDcwGjigthuT4jV3bmgdmz07TAey8cZJRyTFQjlM8lXPntCx\nIwwdCn/9a83LS/7LZpyyC4A9genuvj+wK/BjrFFJQZk4EfbYA5o0gVdfVUEm9U45TPLOI4/AFVfA\n8OEqyIpJNldfLnD3X80MM1vF3T8ws21jj0wKwqBBYZiLu+4K4+qIJEA5TPJKjx5w/fXhqnRNM1dc\nsinKZkT9MZ4HhprZD8D0WKOSgtCtG9x4Y7h8u2nTpKORIqYcJnnjvvvgttugtBS23DLpaKS+ZdXR\n//eFzUqANYDB7r4wi+VbAncDDYCH3P3WKtZ5F9AQ+N7dSypZRh1l88iSJaFj6iuvhMu3t9gi6Ygk\nH+Wyo3/GOkuo5xym/CXZuuceuPvu0EL2l78kHY0sj1iuvowGWZzk7tvVIaAGwIdAC2AmMBZokzm9\niZmtRZiH7mB3n2Fm67n795WsS0ktT/z8M7RtC7/8As8+C2utlXREkq9yUZSlIYcpf0k2unSB++8P\nBdlmmyUdjSyvuuavajv6u/ti4EMz27wOMe0JTHP36e6+CHgaOLLCMm2BZ919RrS9ZQoyyR8zZoQB\nYddfP4yno4JMkqYcJvng5ptDP7LSUhVkxS6bPmXrAJPN7G3gl+gxd/dWNbxuY+DLjPszgL0qLLM1\n0NDMXgVWB+5x955ZxCQp8+67cOSR0KEDXHaZBoSVVFEOk9S67rowFllpKfz5z0lHI0nLpii7ppLH\nsmmLz2aZhsBuQHOgETDazN5y948rLti5c+ffb5eUlFBSUpLF6qU+PP88nHVWaHo/9tiko5F8VVpa\nSmlpaRyrTjyHKX9JRe7QqVPo5lFaChtumHREsjxylb9q1dG/Vis22xvo7O4to/tXAGWZHWXNrCOw\nqrt3ju4/ROiA26/CutQnI4XKysJVQl27hsJsjz2SjkgKSRwd/Wu5/ZzkMOUvqcgdrrwyXAg1fHjo\n8iGFJZY+ZcvpHWBrM2tiZisBrVl2EuAXgH3NrIGZNSKcGpgSY0ySI7NmweGHh+Eu3npLBZkUJOUw\nyTn30MVj8ODQqV8FmWSKrSiLOti2B4YQktQz7j7VzM4xs3OiZT4ABgMTgDHAg+6uhJZyI0fCbrvB\nTjvBa6/BppsmHZFI7imHSa65w0UXhdOVw4fDeuslHZGkTbYTkjcCNnX3D+MPqdLtq/k/BdzDyPy3\n3RamADn00KQjkkKW4wnJE8thyl8CobvH+efDO+/AkCG6Or3QxXb60sxaESbxHRLd39XMKjbhS4Fb\nsADatQsT5L79tgoyyR/KYZK0sjL4v/+D994Lg2qrIJOqZHP6sjOhn8QPAO7+HqAx2ovIrFmw//7w\n66/wxhsaR0fyTmeUwyQhS5bAmWfCBx+EFrI110w6IkmzbIqyRe4+t8JjZXEEI+kzfTrsuy8ccAA8\n8wystlrSEYnUmnKYJGLJEjjtNPjsszCg9uqrJx2RpF02RdlkMzsJWNHMtjazrsCbMcclKTBhQijI\n2rcPE4trQFjJU8phUu8WL4aTT4avvw5DX+iAVrKRTVF2PrAj8BvQG/gJuDDOoCR5r78OLVrAHXeE\nzqkieUw5TOrVokXQpg3MnRuGDWrUKOmIJF/UePWlme3m7uPqKZ6qYtDVS/Xo+efh7LPhqadCYSaS\nhFxdfZl0DlP+Ki4LF8KJJ4bf/frBKqskHZEkIc7BY+80sw/M7Hoz+2sdYpM80qMHnHde6P+ggkwK\nhHKY1IvffoPjjgtXW/bvr4JMai/bcco2Ak6IftYA+rj79THHlrl9HWnGzB1uuAEeeyxcIbTVVklH\nJMUux+OUJZbDlL+Kw4IFcMwx4VRl797QsGHSEUmS6pq/ajX3pZntBHQEWrt7vX3llNTitWQJdOgA\no0aFqT/+9KekIxKJZ+7LJHKY8lfhmz8fjjoK1lknjOWogkziHDx2BzPrbGaTgG6Eq5Y2rkOMkkK/\n/Rb6P0ybQHLnAAAez0lEQVSZEqZMUkEmhUY5TOL0yy9hHuANNoAnn1RBJstnxSyWeQR4GjjY3WfG\nHI/Uo59+Ckd3664b+pCp/4MUKOUwicW8eaEg22ILeOghaNAg6Ygk39Xq9GVS1Pyfe998A4ccAk2b\nQteuSiaSPnGcvkyC8ldh+umnkEN32AEeeABWyOayOSkadc1fVbaUmVlfdz/ezCZW8rS7+8613Zik\nw7RpcPDBYS7Lq6/WoLBSmJTDJC5z50LLlrDbbtCtmwoyyZ0qW8rM7M/u/pWZbQ5U/Lft7v557NEt\njUVHmjkyblxobu/cOYxFJpJWy9tSlpYcpvxVWObMCQe1TZvCPffooFYql/OO/u7+VXTzPHefnvkD\nnFfHOCVBw4eHo7tu3VSQSeFTDpNcmz0bmjeHf/5TBZnEI5tG14MqeezQXAci8erTJ0z70bdvGEtH\npIgoh8lymzUL9t8/tJJ16aKCTOJRXZ+ycwlHk1tW6JOxOjAq7sAkd7p1g1tugWHDYGf1opEioRwm\nufLtt6GF7Oij4brrVJBJfKrrU7YmsDZwC2GwxfKv4Tx3n10/4f0ei/pk1IE7XHNNaCUbMgT+8pek\nIxLJXg76lKUihyl/5bevv4YDDghnGv7736SjkXyR8xH9zWwNd//JzNYFllnI3efUPsy6UVKrvZ9/\nDqP0T5wIgwbB+usnHZFI7eSgKEtFDlP+yl8zZoSCrF07uPLKpKORfJLzITGA3sBhwLtUktAAtbuk\n1Msvw7nnQrNm8Oqr0Lhx0hGJJEI5TOrsiy9CQXbOOXDZZUlHI8VCg8cWkNmz4fzzYcwYuP9+OPDA\npCMSqTsNHitJmT49dOrv0AEuuijpaCQfxTn35T5m1ji6fYqZ3RmN+yMpsmABHHEErLlmOGWpgkwk\nUA6T2vjkk3CW4ZJLVJBJ/ctmSIz7gflmtgtwMfAp8ESsUUmtuMOZZ8Imm8B990GjRklHJJIqymGS\nlY8/Di1kV14J7dsnHY0Uo2yKssXuXgYcBdzn7t0Il5RLStx0E3z4ITz2mKb7EKmEcpjU6IMPQkHW\nqVPoRyaShOo6+pebZ2ZXAicD+5lZA6BhvGFJtvr1C/3HxoxRC5lIFZTDpFqTJ8NBB4UD3FNPTToa\nKWbZtKu0Bn4DTnf3b4CNgdtjjUqy8u674SrLF16AP/856WhEUks5TKo0YQK0aAG3366CTJKX1dWX\nZvYnYA/CZeVvu/t3cQdWYfu6eqmCmTNh773D/GuaNkkKUS6vvkwyhyl/pdf778Mhh4Q8esIJSUcj\nhSTOqy9PAMYAxwMnAG+b2fG1D1FyZf58OPJIOO88FWQiNVEOk8q8+26Yx7JbNxVkkh41tpSZ2QSg\nRfmRpZmtDwx393qbRVFHmkuVlYUE0qgRPP645mCTwpWrlrKkc5jyV/qMGQOtWkGPHuEAVyTX4hjR\n//d1A7My7s9m6RxyUs86dQpzsY0YoYJMJEvKYfK7N9+Eo46CRx+Fww5LOhqRP8qmKBsMDDGzpwiJ\nrDXwcqxRSaV69YInnwxHeSuvnHQ0InlDOUwAGDkSjj0WevYMpy5F0iab05cGHAPsEz000t2fizuw\nCjEUffP/e++FJDJiBPz1r0lHIxK/HJ6+TDSHKX+lw6uvQuvW0Ls3NG+edDRS6GI7fenubmZvAouJ\nrlyqQ3yyHBYsgJNPhrvuUkEmUlvKYTJsGLRtC336QElJ0tGIVC2bqy/PJFy5dAxwLDDGzM6IOzBZ\n6qqrYMcdQ1IRkdpRDitugweH3Nm/vwoySb9sTl9+BDR199nR/XWB0e6+TT3EVx5D0Tb/l5bCSSeF\nAQ7XXTfpaETqTw5PXyaaw4o5fyXtxRfh9NPDANtNmyYdjRST2MYpA74Hfs64/3P0WDZBtTSzD8zs\nYzPrWM1ye5jZYjPTqFsZfvwR2rWDhx5SQSayHJTDitDzz8MZZ4TCTAWZ5ItsWsp6An8FXogeOhKY\nEP24u99ZxesaAB8CLYCZwFigjbtPrWS5ocB84FF3f7aSdRXlkWa7drDKKmFuS5Fik8OWskRzWLHm\nryT16wft28OgQbDbbklHI8UoznHKPol+yrPKC9HtxjW8bk9gmrtPjwJ8mpAMp1ZY7nygH2EKFIk8\n9xy88UaYBkRElotyWBF55hm48EIYMgR22SXpaERqJ5urLzvXcd0bA19m3J8B7JW5gJltTEhyB7B0\nXrqi98UXYaLx556DxjX92xCRaimHFY8nn4TLL4dXXoGddko6GpHay6ZPWV1lk5zuBv4Tte0bGmWb\nWbPgoIOgY0f1gxBJmHJYHnnssZA3hw1TQSb5K5vTl3U1E9g04/6mhCPNTLsDT4exHVkPOMTMFrn7\ngIor69y58++3S0pKKCnAa5t/+gkOOSSMOH3RRUlHI1K/SktLKS0tTTqMTDnLYcWQv5L00ENw7bVh\ncO1tt006GilGucpfNXb0r/OKzVYkdJJtDnxFGLBxmU6yGcs/Cgx09/6VPFfwHWUXLIBDD4VttoHu\n3TWvpUiuOvovx/ZzksOKIX8lqXt3uOUWGD4cttoq6WhEgtiGxDCzbc1suJlNju7vbGZX1/Q6d18M\ntAeGAFOAZ9x9qpmdY2bn1DbQQrZ4MbRpA+uvD/fdp4JMJJeUwwpX165w661hCiUVZFIIshkS43Xg\nMuB+d981mkdukrvvWB8BRjEU7JGmexhLZ+ZMGDgQVlop6YhE0iGHQ2IkmsMKOX8l6c47w0HsiBGw\n+eZJRyPyR3EOidHI3cdEfSbK55FbVNsNSeU6dYLJk0PTuwoykVgohxWYW28N/chKS2HTTWtcXCRv\nZFOUzTKz3xuGzew44Ov4Qioejz4KvXrB6NEa+kIkRsphBeSGG8LQF6WlsPHGSUcjklvZnL7cEugB\n/AP4AfgMOKl8QMX6UIjN/8OGhTktX3sNttsu6WhE0ieHpy8TzWGFmL+S4B6usOzTJ5yy/NOfko5I\npGp1zV9ZX31pZqsBK7j7vNpuZHkVWlKbNAkOOCBMBfLPfyYdjUg65frqy6RyWKHlryS4w9VXw4AB\noavHBhskHZFI9WLrU2ZmnQiDKBrgGf0yrqvtxgS+/hoOOwzuvlsFmUh9UA7Lb+5hUNhXXglXWa63\nXtIRicQnmz5lv7B0ZOtVgcMJl4dLLf36Kxx5JJx5JrRtm3Q0IkVDOSxPucPFF8Prr4dTluusk3RE\nIvGq9eCxZrYy8Iq7N4snpEq3mffN/+5hLLIGDUInVY1FJlK9uAaPre8cVgj5Kwnu0KEDjBkTJhdf\ne+2kIxLJXpxDYlS0GmGiXqmF666D6dPDFUMqyEQSpRyWcmVlcN55MGECDB0Ka66ZdEQi9SObPmWT\nWNr0vwKwAaC+GLXwzDPwyCPhiG+VVZKORqS4KIfll7IyOPts+PDD0EK2+upJRyRSf7IZEmNzQgdZ\ngMXAt+5erwMv5nPz/9ixYU7LYcNgl12SjkYkf+RwSIxEc1g+56/6tmQJnH46fPFFmOFE4zdKvorl\n9GU0Ie8Qd9dIWnUwYwYcfTQ8+KAKMpEkKIflj8WL4dRT4dtv4aWXoFGjpCMSqX/VTkgeTcj7YXSk\nKbUwd24Y+uL88+Goo5KORqQ4KYflh0WLwmDas2eHFjIVZFKssunovw4w2czeJlxaDmH6uFbxhZXf\nyoe+aNYMLr886WhEip5yWIotXBiuTP/tN3j+efW7leKWTZ+yZiztj1HO3f212KJaNoa86ZOxeDEc\nf3xILL16wQrVtkWKSFVy2Kcs0RyWT/mrvv32G5xwQrgi/ZlnYOWVk45IJDfiHBLjMHf/Q3uPmd0K\n1FtRli/c4dxz4ZdfQoJRQSaSCsphKbRgARx7bDiA7d0bVlop6YhEkpdN2XBgJY8dmutACsF//wvv\nvw/PPqsEI5IiymEpU97Fo3FjePpp5UuRclW2lJnZucB5wJZmNjHjqdWBUXEHlm+6dw+tY6NGaVwd\nkTRQDkun+fOhVSvYcEN4/HFYsS5DmIsUqCr7lJnZmsDawC1AR5b2yZjn7rPrJ7zfY0l1n4zhw8OV\nQ6NGwZZbJh2NSGFY3j5laclhac9f9ennn+Hww6FJE3j44TDtnEghqmv+qvXcl0lIc1L7+GPYd9/Q\nSlZSknQ0IoUjrrkv61ua81d9mjcvDKS97bbQo4f63Ephq2v+0p/Fcpg7NzTDX3+9CjIRkar8+CMc\ndBDsuKMKMpHqqKWsjhYvDs3w22wD996bdDQihUctZYXhhx/g4INhzz2ha9cw/IVIoVNLWT275ppQ\nmN15Z9KRiIik0+zZ0KIF7LOPCjKRbOi6lzp44YUwMOy77+rKIRGRysyaBQceGE5b3nqrCjKRbKil\nrJY+/hjOOgv69oX11086GhGR9PnuOzjggDD/rwoykeypKKuFefPCCNSdOsFeeyUdjYhI+nz9dbjw\n6dhj4YYbVJCJ1IY6+mdpyRI45hjYYINw9ZASjUi81NE//8ycGVrITjkFrr466WhEkhPn3JcCXHFF\nuKy7b18VZCIiFX35ZSjIzjwTOnZMOhqR/KSiLAu9e4f5LN9+W3O0iYhUNH16KMjat4eLL046GpH8\npdOXNZg8OfSPGDYMdtklkRBEipJOX+aHTz8NBdnFF0OHDklHI5IOGqcsBj/9FPqRdemigkxEpKKP\nPw4HrR07qiATyQW1lFXBHY4/HtZbD+6/v143LSKopSztPvwQmjcPV6OfdVbS0Yikizr659hdd8Hn\nn8OTTyYdiYhIukyZEgaGvfFGaNcu6WhECoeKskqMHBkGPBwzBlZZJeloRETSY+LEMJflbbfByScn\nHY1IYVFRVsE338CJJ8Ljj0OTJklHIyKSHu+/D4ccEs4knHhi0tGIFB4VZRkWLYLWreHss6Fly6Sj\nERFJj3ffDdMmdesGxx2XdDQihUkd/TNcdhlMmgQvvQQr6LpUkUSpo396vP02HHEEPPAAHHVU0tGI\npF9qh8Qws5Zm9oGZfWxmy4zzbGYnmdl4M5tgZqPMbOe4Y6pM//5htP4nn1RBJiJBvuSvOI0eDYcf\nDg8/rIJMJG6xtpSZWQPgQ6AFMBMYC7Rx96kZyzQFprj7j2bWEujs7ntXWE+sR5offQT77htayPbY\nI7bNiEgtJN1Sli/5K04jR4aJxZ94Ql06RGojrS1lewLT3H26uy8CngaOzFzA3Ue7+4/R3THAJjHH\n9Ae//BKSzg03qCATkT9Iff6KU2lpGDy7Vy8VZCL1Je6ibGPgy4z7M6LHqnIGMCjWiDK4h079u++u\nwQ9FZBmpzl9xGjYsDJ7dp08Yj0xE6kfcV19m3WZvZvsDpwP7VPZ8586df79dUlJCSUnJcoYG3buH\njv2jR4PlfXdikfxWWlpKaWlp0mFkSnX+isuQIXDKKfDss/DPfyYdjUh+yFX+irtP2d6EPhYto/tX\nAGXufmuF5XYG+gMt3X1aJevJeZ+Mt96CVq3gzTdhq61yumoRyYEU9ClLbf6Ky0svwWmnwfPPwz/+\nkXQ0IvkrrX3K3gG2NrMmZrYS0BoYkLmAmW1GSGgnV5bQ4jBrFpxwAjz4oAoyEalSKvNXXF54IRRk\nAweqIBNJSqynL919sZm1B4YADYCH3X2qmZ0TPf8A8F9gbaC7hXOIi9x9z7hiWrIE2raFk06CI4+s\neXkRKU5pzF9xefZZOO88GDQI/v73pKMRKV5FN3jsNdfAqFHwyiuwouYzEEmtpE9f5kraT18+8wxc\ncAG8/DLsumvS0YgUhrrmr6IqS158ER57LEwXooJMRIpdr15w6aXhIHXnghv2ViT/FE1p8umncPrp\noQPrBhskHY2ISLIefxyuuCIMf7HjjklHIyJQD9MspcGvv4YJdK++Wh1YRUQefhiuugpGjFBBJpIm\nBd+nzB3OPBPmz4enntJ4ZCL5Qn3K4nH//XDTTTB8OGy9ddLRiBQm9SmrQteuMGZMGJdMBZmIFLNu\n3aBLF3j1Vdhyy6SjEZGKCrqlbPJkOOCAUJQ1aZL7uEQkPmopy6277goHqSNGKB+KxE0tZZX43//g\n3HOVgESkuN12G/ToESYZ32yzpKMRkaoUbEvZvHmw+eYwcSJsXN0UwiKSSmopy40bbwxXWr76qnKh\nSH1RS1kFvXrB/vsrCYlIcXKH666Dp5+G116DjTZKOiIRqUlBDonhDt27h2lDRESKjXuYvaRv33DK\nUgWZSH4oyJayN9+EBQtCJ38RkWLiDv/5DwweHE5Zrr9+0hGJSLYKsii7997QSqYhMESkmLjDJZeE\n1rERI2DddZOOSERqo+A6+n/xRZhUd/p0WH31eOMSkfioo3/tuIeJxUePDnNZrr127JsUkSqoo3/k\nvvvg1FNVkIlI8Sgrg3//G957D4YOhbXWSjoiEamLgmopW7AANtkE3n4bttiiHgITkdiopSw7ZWVw\nzjkwdSoMGgRrrBHbpkQkS2opA/r3h913V0EmIsVhyRI44wz47LPQsb9x46QjEpHlUVBDYjz0UJh8\nXESk0C1eHLpqfPllaCFTQSaS/wqmpWzkSJg2DVq1SjoSEZF4LVoEp5wCc+bAwIHQqFHSEYlILhRE\nUbZkSbjq6NZbYeWVk45GRCQ+CxdC27Ywfz4MGACrrJJ0RCKSKwVRlD3zTCjGTjwx6UhEROLz22/Q\nunXo3P/cczoIFSk0eV+UlZXBzTfD7bdrsFgRKVwLFsBxx8FKK0GfPuG3iBSWvO/oP3BgSE4HH5x0\nJCIi8fj1VzjqqNB37JlnVJCJFKq8Lsrc4frr4cor1UomIoVp/vxwAdM668BTT0HDhklHJCJxyeui\n7IUXwmXhRx+ddCQiIrn3889w2GGw0UbQsyesmPcdTkSkOnlblLlD585w7bWwQt7uhYhI5ebNg0MO\ngb/8BR59FBo0SDoiEYlb3pYzw4eHsXo0LpmIFJoffwz9ZHfYIQyKrYJMpDjkbVHWtStceKH6kolI\nYZk7Fw46CHbdFbp315kAkWKSlxOSf/stbLddmF5EU4uIFKZinJB8zhw48EDYbz+46y4ddIrkq7rm\nr7w8Bnv4YTj2WBVkIlI4vv8eDjgg/KggEylOeddStnBh6Pg6aBDsskvCgYlIbIqppey776BFCzj8\ncLjxRhVkIvmuaFrKeveGHXdUQSYiheGbb2D//cPQPirIRIpbXhVl7tClC1x6adKRiIgsv6++gpKS\nMG/vtdeqIBMpdnlVlA0ZEq5EOvDApCMREVk+X34JzZpBu3ZwzTVJRyMiaZBX40PffntoJdPRpIjk\ns88/Dx36zzsPLrkk6WhEJC3ypqVs3Dj46CNo3TrpSERE6u7TT8Mpyw4dVJCJyB/FWpSZWUsz+8DM\nPjazjlUsc2/0/Hgz27WqdXXpAhdcACutFF+8IiKZcpnDAKZNC536L7ss5DMRkUyxFWVm1gDoBrQE\ndgDamNn2FZY5FNjK3bcGzga6V7W+wYPhrLPiirb+lJaWJh1CThTKfoD2RSqX6xz20UehILvqqnDa\nMh8V0verUPalUPYDCmtf6irOlrI9gWnuPt3dFwFPA0dWWKYV8DiAu48B1jKzDStb2emnw5prxhht\nPSmUL12h7AdoX6RKOcthU6eGPmTXXQdnnx132PEppO9XoexLoewHFNa+1FWcRdnGwJcZ92dEj9W0\nzCaVrUxN/SJSz3KWw5o3h5tvhtNOy3mMIlJA4rz6MtupAipeS1np6zbddPmCERGppZzlsDvugDZt\nlj8gESlssU2zZGZ7A53dvWV0/wqgzN1vzVjmfqDU3Z+O7n8ANHP3byusK/1zQYlIziU5zVKucpjy\nl0hxqkv+irOl7B1gazNrAnwFtAYqHisOANoDT0cJcG7FggySTcwiUrRyksOUv0QkW7EVZe6+2Mza\nA0OABsDD7j7VzM6Jnn/A3QeZ2aFmNg34BVCPCxFJBeUwEalvsZ2+FBEREZHspWpE/1wP1JiUmvbD\nzE6K4p9gZqPMbOck4sxGNp9JtNweZrbYzI6pz/hqI8vvV4mZvWdmk8ystJ5DzFoW37H1zGywmb0f\n7Uu7BMKskZk9YmbfmtnEapZJ/d88FE7+gsLJYcpf6aT8VQ13T8UP4fTANKAJ0BB4H9i+wjKHAoOi\n23sBbyUddx33oymwZnS7ZRr3I9t9yVhuBPAicGzScS/H57IWMBnYJLq/XtJxL8e+dAZuLt8PYDaw\nYtKxV7Iv+wG7AhOreD71f/O1+EwKaV9Sn8OUv5S/6mFfcp6/0tRSltPBZhNU4364+2h3/zG6O4Yq\nxmZLgWw+E4DzgX7ArPoMrpay2Ze2wLPuPgPA3b+v5xizlc2+fA2sEd1eA5jt7ovrMcasuPtI4Idq\nFsmHv3konPwFhZPDlL/SSfmrGmkqynI62GyCstmPTGcAg2KNqO5q3Bcz25jwB1U+vUxaOylm87ls\nDaxjZq+a2Ttmdkq9RVc72ezLg8COZvYVMB7I1+GX8+FvHgonf0Hh5DDlr3RS/qpGnENi1FZOB5tN\nUNbxmNn+wOnAPvGFs1yy2Ze7gf+4u5uZseznkxbZ7EtDYDegOdAIGG1mb7n7x7FGVnvZ7MuVwPvu\nXmJmWwJDzWwXd58Xc2xxSPvfPBRO/oLCyWHKX8pfaVCrv/k0FWUzgcxx+zclVJXVLbNJ9FiaZLMf\nRB1jHwRaunt1zZ9JymZfdieM0QTh3P8hZrbI3QfUT4hZy2ZfvgS+d/dfgV/N7HVgFyBtSS2bffkH\ncCOAu39iZp8B2xLG3son+fA3D4WTv6Bwcpjyl/JX0mr/N590R7mMDnErAp8QOv+tRM0dZfcmnZ1L\ns9mPzQgdHfdOOt7l3ZcKyz8KHJN03MvxuWwHDCN0RG0ETAR2SDr2Ou7LnUCn6PaGhKS3TtKxV7E/\nTciuo2wq/+Zr8ZkU0r6kPocpfyl/1dP+5DR/paalzAtkoMZs9gP4L7A20D06Qlvk7nsmFXNVstyX\nvJDl9+sDMxsMTADKgAfdfUpyUVcuy8/lJuBRMxtP6Dt6ubvPSSzoKphZb6AZsJ6ZfQl0IpyGyZu/\neSic/AWFk8OUv5S/4hZH/tLgsSIiIiIpkKarL0VERESKlooyERERkRRQUSYiIiKSAirKRERERFJA\nRZmIiIhICqgoExEREUkBFWVFxsw6mNkUM+tZzTIlZjawPuOqipkdYWYdo9tHmdn2Gc9da2bN6zGW\nZmbWtL62JyLLUg5brliUw1IuNYPHSr05F2ju7l8lHUg23H0gUJ5cj4puT42e65Tr7ZlZA3dfUsXT\n+wPzgNG53q6IZE05rBrKYflNLWVFxMzuB7YABpvZhWa2h5m9aWbjzGyUmW1TyWuamdl70c84M1st\nevwyM3vbzMabWecqtvezmd1pZpPMbJiZrRc9/jczeyt6bX8zWyt6vIOZTY4efyp6rJ2ZdY2O7o4A\nbo/i2MLMHjOzY83sYDPrk7Hd34+SzeygaB/fNbM+5fFXiLPUzO4ys7HABWZ2eBTfODMbamYbmFkT\n4Bzgoui92MfM1jezftH78LaZ/aPun46I1EQ5TDms4CU9b5R+6vcH+IxoDjFgdaBBdLsF0C+6XQIM\njG4PAJpGtxsRpsU4CHggemwFwpHffpVsqwxoE92+Buga3Z5QvjxwLXBXdHsm0DC6vUb0+9SM1/1h\nbrry+1FMnwOrRo93B9oSJhh+LePxjsA1lcT5KtAt4/5aGbfPBLpEtzsBF2c89xSwT3R7M2BK0p+v\nfvRT6D/KYcphhfyj05fFbS3gCTPbCnCiObsqGAXcZWa9gP7uPtPMDgIOMrP3omVWA7YCRlZ4bRnw\nTHT7SaC/ma0BrOnu5cs+DvSNbk8AnjKz54Hnq4jZKj7g7ksszPnWysyeJUwCeymhqX4H4E0L8/Ot\nBLxZxXqfybi9aXTU+qfoNZ9Wsf0WwPbRugFWN7NG7j6/im2ISG4phy2lHFYAVJQVt+uB4e5+tJlt\nDpRWXMDdbzWzF4HDgFFmdnD01M3u3qMW2zJC0qzs8XKHAf8kNPFfZWY7sWwCq2qy1qeB9sAcYKy7\n/xIlmqHu3jaL+H7JuN2VcGT5opk1AzpX8RoD9nL3hVmsX0RyTzlsKeWwAqA+ZcVtDaC8s2yls9eb\n2ZbuPtndbwPGAtsCQ4DTM/pmbGxm61fy8hWA46PbbYGR7v4T8IOZ7Rs9fgpQaiH7bObupcB/gDWB\nxhXWNy+K+Q8hRr9fB3YDziIkN4AxwD5mtmUU52pmtnWl78QfE2fm+9KuwvZXz7j/CtDh9xWY/a2K\ndYtIPJTDll0PKIflLRVlxSfzKO024GYzG0fo0+CVLHeBmU00s/HAQuBldx9K6Isw2swmAH1YNvlA\nOHLb08wmEvp4XBc9fiqhs+t4YOfo8RWBntH6xgH3uPuPURzlsTwNXBZ1eN0iM04PVxu9CLSMfuPu\nswgJqXe0rTcJCbmm96Uz0NfM3gFmZTw3EDi6vJMsIZn9PerUOxk4u4p1i0juKIfV/L50RjksL5l7\nVS2pIsvHzOa5++o1Lykikj7KYVLf1FImcVLFLyL5TDlM6pVaykRERERSQC1lIiIiIimgokxEREQk\nBVSUiYiIiKSAijIRERGRFFBRJiIiIpICKspEREREUuD/AcCnQVFwF7NAAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x121228a90>"
]
}
],
"prompt_number": 1083
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#OLS on funded amount and annual income"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import statsmodels.formula.api as smf\n",
"# OLS, or ordinary least squares, takes a y (dependent variable) and X (independent variables) (formula = y ~ X)\n",
"# Below, we copy the data frame and remove the na variables, and create a single variable linear model\n",
"# to return a test statistic and p-value, to see how strong of a relationship bodyweight and brainweight have.\n",
"\n",
"loan_limit_by_inc['log_annual_inc'] = np.log(loan_limit_by_inc['annual_inc'])\n",
"loan_limit_by_inc['log_funded_amnt'] = np.log(loan_limit_by_inc['funded_amnt'])\n",
"\n",
"fig, axes = plt.subplots(nrows=1,ncols=2)\n",
"\n",
"axes[0].plot(loan_limit_by_inc.annual_inc, loan_limit_by_inc.funded_amnt, 'go')\n",
"\n",
"model = smf.ols(formula='funded_amnt ~ annual_inc', data=loan_limit_by_inc)\n",
"results = model.fit()\n",
"print 'NORMAL FIT SUMMARY'\n",
"print(results.summary())\n",
"print\n",
"\n",
"axes[1].plot(loan_limit_by_inc.log_annual_inc, loan_limit_by_inc.log_funded_amnt, 'mo')\n",
"\n",
"log_model = smf.ols(formula='log_funded_amnt ~ log_annual_inc', data=loan_limit_by_inc)\n",
"log_results = log_model.fit()\n",
"print 'LOG-LOG FIT SUMMARY'\n",
"print(log_results.summary())\n",
"\n",
"print fig"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"NORMAL FIT SUMMARY\n",
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: funded_amnt R-squared: 0.195\n",
"Model: OLS Adj. R-squared: 0.195\n",
"Method: Least Squares F-statistic: 4040.\n",
"Date: Wed, 19 Nov 2014 Prob (F-statistic): 0.00\n",
"Time: 18:25:21 Log-Likelihood: -1.6346e+05\n",
"No. Observations: 16683 AIC: 3.269e+05\n",
"Df Residuals: 16681 BIC: 3.269e+05\n",
"Df Model: 1 \n",
"==============================================================================\n",
" coef std err t P>|t| [95.0% Conf. Int.]\n",
"------------------------------------------------------------------------------\n",
"Intercept -200.1427 154.417 -1.296 0.195 -502.817 102.531\n",
"annual_inc 0.2582 0.004 63.561 0.000 0.250 0.266\n",
"==============================================================================\n",
"Omnibus: 270.723 Durbin-Watson: 1.973\n",
"Prob(Omnibus): 0.000 Jarque-Bera (JB): 191.620\n",
"Skew: 0.155 Prob(JB): 2.46e-42\n",
"Kurtosis: 2.577 Cond. No. 1.74e+05\n",
"==============================================================================\n",
"\n",
"Warnings:\n",
"[1] The condition number is large, 1.74e+05. This might indicate that there are\n",
"strong multicollinearity or other numerical problems.\n",
"\n",
"LOG-LOG FIT SUMMARY\n",
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: log_funded_amnt R-squared: 0.181\n",
"Model: OLS Adj. R-squared: 0.181\n",
"Method: Least Squares F-statistic: 3677.\n",
"Date: Wed, 19 Nov 2014 Prob (F-statistic): 0.00\n",
"Time: 18:25:21 Log-Likelihood: -13854.\n",
"No. Observations: 16683 AIC: 2.771e+04\n",
"Df Residuals: 16681 BIC: 2.773e+04\n",
"Df Model: 1 \n",
"==================================================================================\n",
" coef std err t P>|t| [95.0% Conf. Int.]\n",
"----------------------------------------------------------------------------------\n",
"Intercept -1.3227 0.170 -7.778 0.000 -1.656 -0.989\n",
"log_annual_inc 0.9827 0.016 60.635 0.000 0.951 1.014\n",
"==============================================================================\n",
"Omnibus: 2667.027 Durbin-Watson: 1.986\n",
"Prob(Omnibus): 0.000 Jarque-Bera (JB): 4344.710\n",
"Skew: -1.088 Prob(JB): 0.00\n",
"Kurtosis: 4.231 Cond. No. 419.\n",
"=============================================================================="
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Figure(480x320)\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEACAYAAABGYoqtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXl8VdW58P99MifMBBnEIRKx1mtNkUHbvm0Br2jFSrQq\nSieE3Lf3VQFFEVDBgAOEADeC/O7tDaS0VVCpJVhjZQpoJ2UQg+KcEOYwBEImMp71+2PtvbP3OfuE\nKUGG9c2Hzzl77bX2EHbWs5/1TKKUwmAwGAwGPyK+6QswGAwGw9mLERIGg8FgCIsREgaDwWAIixES\nBoPBYAiLERIGg8FgCIsREgaDwWAIS7NCQkTiROQDEflIRD4VkRlWe2cRWS0iX4rIKhHp6BozWUS+\nEpHPRWSIq72viHxs7XvR1R4rIq9Z7e+LyOWtcaMGw6kgIjkisl9EPna1hX3+g8YWi8hWEdkiIhvO\n3FUbDC1Hs0JCKVUDDFJKfRe4DhgkIv8HmASsVkpdBay1thGRa4DhwDXArcD/JyJiHe6/gdFKqd5A\nbxG51WofDZRa7f8FZLTkDRoMp8nv0M+yG9/n3wcFDFRK9VFKDWjFazQYWo3jLjcppaqtrzFAJHAE\nuAP4vdX+eyDV+j4MWKqUqldKFQNfAzeISA+gnVLKfpv6g2uM+1hvADed8t0YDC2MUupv6GfeTbjn\n3w9pZp/BcNZzXCEhIhEi8hGwH1inlNoGdFNK7be67Ae6Wd8vBna7hu8Gevq077HasT53ASilGoCj\nItL51G7HYDgjhHv+g1HAGhHZJCL/cWYuzWBoWaKO10EpFQC+KyIdgJUiMihovxIRk9vDcEFynOf/\nB0qpfSJyEbBaRD63NBOD4ZzhuELCRil1VETygL7AfhHprpQqsZaSDljd9gCXuoZdgtYg9ljfg9vt\nMZcBe0UkCuiglDocfH4jiAytjVLqRJeGwj3/wcfbZ30eFJHlwADAIyTMc21obU7iufbleN5NXWzP\nDRGJB24GtgBvAr+2uv0ayLW+vwncJyIxInIF0BvYoJQqAcpF5AbLkP1LYIVrjH2su9GGQF+UUmf8\n3zPPPHNBnfdCveeTJNzz7/7bSRCRdtb3NsAQ4OPgfmfquT4Tv9vz5Rzn0720BMfTJHoAvxeRCLRA\n+aNSaq2IbAFeF5HRQDFwr/WwfyoirwOfAg3Ag6rpSh8EFgPxwNtKqXes9kXAH0XkK6AUuK9F7sxg\naAFEZCnwY6CLiOwCpgIz8Xn+ReRiIFspNRToDvzZcu6LAl5RSq0683dgMJwezQoJpdTHwPU+7YeB\nfw8z5gXgBZ/2zcB3fNprsf7IDIazDaXU/WF2hTz/Sqm9wFDrexHw3Va8NIPhjGAiro/DwIEDL6jz\nfpPn/ibv+XznTPxuz5dznKnznCvPu7TUulVrIyLqXLlWw7mHiKBO08B3iuc1z7Wh1WiJ59poEgaD\nwWAIixESBoPBYAiLERIGg8FgCIsREgaDwWAIixESBoPBYAjLCaflMBjOZfJW5zFvyTxqVS2xEsvY\nEWMZevPQb/qyDIYTJj8vn9x5uUitoGIVqWNTGTx0cKuf1wgJw3lP3uo8xi0YR2GfQqetcIH+bgSF\n4VwgPy+fpeOW8vPCnzttrxS+AtDqgsIsNxnOe+YtmecREACFfQqZv3T+N3RFBsPJkTsv1yMgAH5e\n+HNWzF8RZkTLYYSE4bynVtX6ttcEas7wlRgMp4bUhomHOwOPsBEShvOeWIn1bY+LiDvDV2IwnBoq\nNkxU/hl4hI2QMJz3jB0xluQtyZ625A+TGXP/mG/oigyGkyN1bCqvJL/iaXs5+WWGjRnW6uc2uZsM\nFwR5q/OYv3Q+NYEa4iLiGHP/GI/R2uRuMpyt2F5NB/Yc4HDJYXr06EHHnh0ZNmbYcY3WLfFcGyFh\nMGCEhOHsJNirqYAC/hz1Z1RAEZAAKl5xz2P38Ej6I77jW+K5Ni6wBoPBcJbi9moqoICNbGRawzRn\n/4LKBax4Vns4hRMUp4vRJAwGjCZhODsZN3Acd757J7nk8h7vEU88kURSTz2d6cwQhrCOdRxLPMbK\nQytDxhtNwmAwGM4DwkVTq1hFLrl8xEd0pzuJJBJJJI00soc9rGQlBzlI14aurXZtRkgYDAbDN0hz\n0dSpY1N5atVTdKYznejEaEY7fRaykCMcIYIIGqIaWu36jAuswdAMIpIjIvtF5GNXW2cRWS0iX4rI\nKhHpGGbsrSLyuYh8JSITz9xVG84lTiSauowy0kjz9EkjjTLKaKSRnzz8k1a7PiMkDIbm+R1wa1Db\nJGC1UuoqYK217UFEIoGXrLHXAPeLyLdb+VoN5yDhoqkLPy8k4/YMZjCDtrT17RNDDF3ownX9r2u1\n6zNCwmBoBqXU34AjQc13AL+3vv8eSPUZOgD4WilVrJSqB14FWj/yyXDOES6aev+O/dzGbSxiEY00\nsohFFFDg6VNLLT/hJ/xu6u9a7fqMTcJgOHm6KaX2W9/3A918+vQEdrm2dwM3tPaFGc49Usem8krh\nK54lpxnMoJFG/s7feYiHnPaFLAQghRQWsIDhDGczmyn6sKjVrs8ICYPhNFBKKRHxexU0fq2GE8KO\nml4+fzl/W/c3ouuiiSOOKKI8AgKgP/15lVd5m7eJJx5AG65pPcO1ERIGw8mzX0S6K6VKRKQHcMCn\nzx7gUtf2pWhtIoT09HTn+8CBAxk4cGDLXanhnGDw0MFMfXAqF9ddzOM8DsBiFnv62MF0M5jhtC1k\nIZ/xGRGW5WD9+vWsX7++Ra/NBNMZDDQfdCQiScBflFLfsbZnAaVKqQwRmQR0VEpNChoTBXwB3ATs\nBTYA9yulPgvqZ55rAwADZACzmOVsL2KRx+U1eNvmcR4nkkg+UB+E7DPBdAZDKyMiS4EfA11EZBcw\nFZgJvC4io4Fi4F6r78VAtlJqqFKqQUQeBlYCkcCiYAFhuDDxC5wbdfsoutGNmcykllpSSKEf/ZjC\nFKKIIpZYasIUj4ghhiqqWu16jSZhMGDSchjODH6Bc2mk8S2+xQQmUEABm9jEXvZSQw1RRDENnaup\nOU3iGMfYpraF7GuJ57pZF1gRuVRE1onINhH5RETGWu3pIrJbRLZY/37iGjPZCh76XESGuNr7isjH\n1r4XXe2xIvKa1f6+iFx+OjdkMBgMZyvBgXMFFJBIIhdxEVlksZKVjGY0U5jC8zzPpVzquL32o5/j\n3WQzl7kECDhG7NbgeMtN9cCjSqmPRKQtsFlEVqM9N+Yqpea6O4vINcBwdPBQT2CNiPS2XpX+Gxit\nlNogIm+LyK1KqXeA0ej13d4iMhzIAO5r0bs0GAyGswB34FwuuRRRRAYZTttCFlJAASmkAFrLyCGH\nFOsHYDKTaU974olHoehIx1b1bmpWk1BKlSilPrK+VwKfoSd/AD8VZhiwVClVr5QqBr4GbrA8QNop\npTZY/f5AUwCSOzDpDbShz2A4KfJW53HLA7cwcORAbnngFvJW553QmOvvuJ5ON3Y6A1doON/Jz8tn\n7C1jGTdwHGNvGUt+Xn5IHztwrsD6Gc94z/400tjMZk9bhGuaTiEFhWIyk2lLWwIEqKGGeupb4Y40\nJ2y4tjw8+gDvAz8AxojIr4BNwGNKqTLgYmu/zW60UKnH6/63hyZh4wQdWca+oyLSWSl1+FRuyHDh\nkbc6j3ELxlHYp9BpK1ygv7urzwWPSctMo+QHJboh1DHEYDhh8vPyyUnLIa2kKb/Swq0LYSGe6nGp\nY1N58Z8v0rayLYkk+h4rIujdPUDA+Z5JJo00AlqgTGYytdQ6ba3BCQkJa6npT8A4pVSliPw3MN3a\n/SwwB3wsKgbDGWDeknkeAQFQ2KeQ+UvnhxUS85bMaxIQBsNpkjPFKyAA0krSyBqX5fFk6vW9Xmyt\n3EoXuoQIAxu3UMgiixJKeJqnqaeeSCKJIYZMMhnCECKIoA1tKKe81e7tuEJCRKLRy0AvK6VyAZRS\nB1z7FwJ/sTaDA4guQWsQe6zvwe32mMuAvZZveYdwWoQJOjL4UatqfdtrAv4ug3mr8/jnP/8J69DW\nNbPaZDhNjmwPTu+lOVp0lLsK7wK0DeIPq/7A5VxOT3qSSCILWejJ7ppFFvvYx0xmUk45l3EZ93M/\na1nrWZpawAJWspJqqmlDG6oiW88FtlkhISICLAI+VUpludp7KKX2WZt3AnYa5TeBJSIyF72M1BvY\nYKUuKBeRG9BBRb8E5rnG/Bq9THU3OqumL24hYTDYxEqsb3tcRFxIW97qPH753C+pHFHZ1PhOa12Z\n4UKhXvxtAmJ5n9pG6rk0+fosZCFd6EIOOexkJx3pSB11HkN2BhksYYmnDeAhHiKHHA5xiOd4jomN\nrZeJ/nhZYH8A/AIYFOTumiEiW0WkAB1o9CiAUupT4HXgU+CvwIMuJ/AHgYXAV+jsmPaf5iIgUUS+\nAh7BJ+2ywdAcY0eMJXlLsqct+cNkxtw/JrTvC2M5MjjorS84EbjBcJJ0SuoU4p6aTTZVVDVrpD7M\nYUYxijjiaEc7nuAJT5+JTKQNbXzPGUEEcegXIfuzNWhWk1BK/R1/QfLXZsa8ALzg074Z+I5Pey1W\nxKrBcCrYdof5S+dTE6ghLiKOMQ+P8bVH7Dy080xfnuEC4DfP/ob5afPJKckhgggCBDjAAbrQhbd5\nO6xh2bZL1FJLJJG+faKJ9m0PEOAYxwCoproF7sIfE3FtOG9Jn5XOS8teoiGygbqyOhpVI3URdTpJ\nRgyQAiTZnTER14bTIj8vn5m/nsnFpRdTRhl11DmaQbho6RxyKKWUdrRjJzu5iqtopJF+9HPiIiYx\nia50ZTzjnYjsEkqooILDHOZKrmQXu/hYfRxyfJO7yWAIQ/qsdJ5/43kabm/Q2ZUK8UbgrAWnfsvX\nZ/rqDOcjK15ZQXlpOQ00UE01SSSxiEVEEske9pBJJhOY4PTPIIO97KWKKq7iKl5wLcDYS1cb2MD9\n3A/AYzxGV7oykSb7wwu8QCONdGpF7wujSRjOS7r070Lp7aV6Yy3+IZr5QKlW+QPbAkaTMJwy40aM\no3BpoZPmu4ACVrPa2QaYxSxn2akb3ehLX1JIYTazuZmbHc3BZipT+Rk/c9rDaSOP8RjVVPOZT/7I\nVs/dZDCcqzREutIUhHvKBWiA4T8YfiYuyXAes/H1jR6BsIlNnm2AJ3iCOuqYzGRGMcqZ/B/n8ZAo\na9AvL1vY4pQtDWezaEMb2tGuBe/Gi1luMnzj5K3OY96SedSqWmIllrEjxoYNgjtRohpdj3YgTCcF\nRMGG/RvCdDAYToyYxhjPdrgJPRZ/d22/wLoIIhjJSEAvP1VSGdIHoIEGEkg4ias9OYwmYfhGsVNq\nrEpaxbtXvMuqpFWMWzDuhHIvNceQ64foCByAZEKjb9ag68nFEhKtbTCcCPl5+Qy/fjhDOg9xvIxA\nLzXtYIfvmFr8Az+D+2eT7cnsmkYau9jFAhZ4+s1kJtVUe87f0hibhOEb5ZYHbmFV0qrQ9h238E7O\nqUe5XX/H9Wxp3AI70BpDFdqjKQadSSwCrWF0BwZjvJsMJ0V+Xj7z0+bTpqQNaaTxf/m/9KY3QxjC\nRjbSn/5sZKMnmjqDDKqooiMdPTETGWRQSilXc7XjPnuQg9zKrR47xUu8xA/5IZvZ7PT7kA+po45G\nGilUoS87xrvJcM5zsik1TpTtB7bDT4ABaI0ikVDvpv1Ar9M6jeECJXdeLm1L2jKa0RRQQDva0UAD\nb/AGl6NL4vSnPznouIkv+ZLhDCeFFAoocNp3spM66vg5P3fsErvYRSqpHgFRQAF72cvbvE088Qxi\nECmksJ3tJJPM53zeavdqhIThG+VkUmqcDNLoenmqRSekd3MT8CqQpKOzCzFLToYTR2rFsTusYhU9\n6enRDhaykP70ZxSjAL0sZE/67toQL/ESFVR42gooYCMbPdtrWetxkbWXnRpoIEAgbMBdS2CEhOEb\nZeyIsRQuKPTYBZI/TGbMw6EpNcLhZ/hO6prEkdePaA0ijLKdEJ/AD3f8kDEPj+H2N28/zTsxnO+4\na1N/9slnzsR8jGNMZaqnr7tYEIS3RZRSyiWe3Kc4Y6YznQYaiCSSZ3jG0+chHmIKU6imms505gu+\naJF79MMICcM3ysmk1PDDr5bEqgmroJSmJaa3/Mf26NADpRSZr2Se0rWLyDggDS2GspVSLwbtHwis\nAIqspjeUUs+d0skM3yjBtanv5E5mR85mVuOssG/xtsdSNtmkkBISTJdJJvXUO2VJ3faLlaykggqi\nrJ/FLA6JxBaEaKLZyEYiolrPB8kICcM3ztCbh56yy6tfLQnuBJZZnwCNhAbUrYFdh3ZROPDUlplE\n5Fq0gOiPNoW/IyJvKRViPXxXKRW82GU4xwiuTQ3weOPjTGBC2LoQX/AFT/IkEUSwj31EE81EJjoV\n5VJJZR3rnEk/iywOcYgAASKIQBA60IFJrpyndiR2Cil0pjNRRNFII3EdvqEEfwbD2U44w7fnyY5B\nu8Hmo9/5FXAl1EXWnc6prwY+UErVAIjIu8BdQLBacsY9pgwtj7s2tZvLuZxqqn1TbtzADaQ6VZo1\ni1lMH/qwnOWOcMggg1u5lTrqSCLJ0Sj8IqztZay/8lcEIZ54DnOYOx++k9bCCAnDOUve6jw+2fYJ\nXOGz010XvhKdyC/J2i5G53IqR2sY3izjJ8onwPMi0hmoAYaia6W4UcD3rZT6e4DHrXT6hnMMuza1\njTvRXj31VFDBFKaQTDJllBFBBNvYxvu87xiWG2ggllhGMpJccgGtEeSQw2u8RjLJHqEQLiBvBzso\np5x2tKOaak8lu9bACAnDOYltiyitK9Uuru4FnRXoTK/2ElOs63sx/sn+ThKl1OcikgGsQkdhbCE0\ntvtD4FKlVLVVhyUXuCr4WKbi4tlP6thUFm5dSFpJmuN95LYhzGUuN1kPVfA+29NpLWvZy14e4zF+\nyA/JIMNZfupN75BzhksvXkcd0UQTIIBC8SN+xOszXueR9EdYv34969evb9F7N8F0hnMSJwhvCfB9\ntGnYXkrqBWwELkcH09Why2cVoQ3a9/gcMP30gulE5AVgp1Lqf5rpsx3o6y7Pa57rc4NxI8bx/tL3\niSeeYxxjBCNCEvLlkINCOdqArW1EEskOdpBKKpvZzAEOcIQjRBLppOmwPZzcmoSfMMogg2/xLWcZ\nay5zaaSRCip4T70Xct0mmM5wweLYIuzHX9EkJECbkvehBUIxTdrDupa7BhHpqpQ6ICKXoc3kNwTt\n7wYcsMr3DkC/lPnWbzecvYwbMY6vl37tKSHqNiDbuA3YfhP8QhZylKNMYhLTmOYEzE1jGv3ox3KW\ne7ycUkjhLd5ylrE+4zO60IUyyljEIvrRj/GM5xmeoYbTCz5tDqNJGM4p8lbnMSVrCgWfFxCID2h7\nw2WELh/tBB5wtRWjNYn9YKXn95J+8pqEiLyHdrStBx5VSq0Tkd8AKKV+KyIPAf8PbSGpBsYrpd4P\nOoZ5rs9istKzWDJtCddwTYgLag45TrAc6JTd0URzNVc7moNbiOSSy7/4F7HEUkMNtdQ6mkkttbSn\nPY00EkUUMcRQRx0HOUgXuhBPPDXUUEEFbWhDFFFUU823+Ta72U0llXykPgq5fqNJGC4o8lbnkfZc\nGiUVJdATLRheJrRWxE3AH4Pakqx/bxLqDvuXU7sepdSPfNp+6/q+AIIyshnOGbLSs1jz3BpmMctp\nc2sQbs1hKlNDCgK5++aSSxFFHm1kLnPpRS/2sIf97Odn/CxE+8gkkyEMcYTNXOZyhCPczd1sZCPF\nFFNGGVGRrTeVmyywhnOGeUvmUaJKoC1Nk3y4bATh2qvQ2kceeulpGT6V1w0GWD53OY83emtCpJHm\n5Fj6ki9ZzGImMYljHPMIiOC+BRR40nYAjGc8m9hEHHHEE08uuR4BATCBCZ5aE+MZTzTRbGYzaaTR\ni160pS2xjf7pbVoCIyQM5wy1qlY/se6ntj5cZ4h6O+jtagXa3XUY2mG1ER0Kl9TSV2o418nPyydQ\n4e9aGkEEc5jDAAYwkpFczdVh6znY2ka4OhKxxDKa0UxmspMYMNwxbCKJdNoiiCCBBOIwwXSGC5wR\nvxnBu+++q5/YBLzxDT7R1Cj4frfv897L72mtot4aV4nWIErQ1oSkM3QDhnOG/Lx8nrn3GerDvIF8\nyZcMYIDjYRQgENZwvJOdpJMett5DT3o638O5vAbHQVRR5bTZ5w43tiUwmoThrGfEb0aw9G9L4VLg\nF+i45pvQHktxNEVTr7M+rwRJEN7b+Z7uP9wa1wHtHjsIbbw+ZJ0g90zejeFsJis9iyfveJLI6kga\naWQ60z37M8hgOMMdAZFNNn3pSw01HnsDaPtBBRV8l+/SQAOZQcH4s5hFX/o623YOJzdzmOPpk0km\nNdTQl75kk00RRZRTTl3EaWUPaBbj3WQ4a7m8z+XsrNzZpAl0BYYEdfoD8CufwX8EfunTno8WFIVo\nIVGPjpfebYoOXejc9+P7qHivwpNeYxazEISLuIgAAfaxjxhiuIiL+IIvuI/7AFjLWnrRiw/4gHji\nuYRL6EtfUkhhNrOppJLv8l3eR8daiOW7HZw9toACVrCCy7iMAAE605mtbHW297GPAxwggQQqqaSO\nOvrQh5rkGnK/Dn3baQnvJiMkDGcll/e5nJ0RO72R1G+iNYchQW0C/NTVlgscBX7tc+A/oSOw3f3X\nAn8zQuJCJT8vnxfHvsiBogPMYEbI/mBXV3v7SZ6kE50A6ExnJ2guOK23e8x0pjuCwS+WYg5z+Hf+\n3fFmyiabAQzwuNI+wRNczdWMYhRTmEJ72lPRrYL3SkwwneECYmflTr1E5OYOdIS1m2r0oqk7eV8d\n4Q3adcDdQW03AX87rcs1nKPYKcAfLXqUxSz27RNsOI4gggwy6EQnKqmkDW2cSOnjHcOdVtwdb7GD\nHVzO5SSTzGY2k0cetdRyF3eFRHbHEcdudrOYxdRSS296s6l006nc/glhhIThrCJ9VjovLXtJZ271\nw+3aamvX9/r0exlYil6isutZHwTrxc9gALwpwE/UcLyTnVRRRQYZIZlaj3eMeOI97XZFuid4gq/5\nmja0oYoqBjCAUkpDBAToIkdu+0YGGVQ2VJ7A3Z4aRkgYzhrSZ6Xz/BvP03B7g57k/ahFG6gV2lMp\nnOdfNNpQ7fZ6Wg6t6ARiOAdxpwD3K/5jB7PZZJNNHXWMYAQQmqm1H/2YxSwSSSQSbfwuocTZP4hB\nLGABD/GQ0zaTmbSlrcc+MYc5JJMccj0zmEFyUNriiUz01JxoaYxNwnDW0KV/F0pvL9UbS9BBc8HZ\nXRvR3k1vAt2BLwldlgItZPzaV+ANxgMdcb3Z2CTOV9xlR1Wsotf3evGvN//Fnk/20FjfyH3c5yTi\nO8hBoonmCEeosX5iiXWK+1RQQVva0oEONNDAIQ7xXb7rCIREEtnDHo8QmMUsDnGIq7maCCLYwhZi\niXVSbVRRxUu85LnmAgpYwhIn42sMMTTQQCWVRBNNRzrSgQ4MYhAppPB87POsrlkdcu+tbpMQkUvR\n/iNd0e9u/6uUmmfl0H8NnWezGLhXKVVmjZkMjEL/OY9VSq2y2vsCi9Hvfm8rpcZZ7bHWOa5H5+gc\nrpTacTo3ZTg3aYhs0E9TAXoibwBeQWsFdUAFJPRMID4vniH9hnC4/jArP1mpJ3m3IfovhLdJ1OMt\nQHQAbdcwnJcElx0FmL12NoHGAM/xHLnkspa1nmjoTDI5xjEnHUcBBaxmNVdyJUUUOX0LKGAVqzzL\nTe6U4TZP8IRjuM4ll5705Ame8IwpoMBZWrIN2iMY4ZskcAc7SCGFVFJZYGV9OVJ7pKV+ZSE0q0mI\nSHegu1LqIxFpC2wGUtGp0w4ppWaJyESgk1Jqkohcg34H7I/OrrMG6G1lwdwAPKyU2iAibwPzlFLv\niMiDwLVKqQdFZDhwp1LqPp9rMW9c5wh5q/OYt2QetaqWWIll7IixzZYnla6il4ZsYVAOdEYvJ8Vb\nbYK2U0Sil5wEbWuosdqirPENaEEgQBtrOw6djiPBGtuAfuWJtI6tgJ1GkzgfGXvLWO5adVdIuz1p\n+1V/c++Hpgpx05jm8Vxqbmxf+jraSSONbGc7APXUh8RThDtfc8ffxS4ngeBTPEUllRSogpC+ra5J\nKKVK0LGpKKUqReQz9OR/B/Bjq9vvgfXAJHTCg6VKqXqgWES+Bm4QkR1AO6WUXbnrD2hh8451LPs3\n/wYE6V2Gcwq7GJC77nThAv3dT1BIV9FBcsHLSrvR2V27obWLRLxLRHnAReh4h07Ara59a9FG6hhC\nU4W7+yRb7aUneZOGc4ZwZUdtbyO/6m8FFDjeQ400OtHSwak1wlWOq6baN1FfBRV8m2/7jtnP/pDj\nhjt+BBFczuVsZrOTaLAjHX37tgQnHHEtIklAH+ADoJtSyr6r/eg/ZYCL0X/eNrvRQiW4fY/VjvW5\nC0Ap1QActZazDOcg85bM8wgIgMI+hcxfOt9/QAe8AgL0q0YHdOK9r2l6lSl29RmKLijUFa+AAC0M\nugLt7AvAP1NskfXZJfz9GM5tgsuO2tjeRsHeSPZSz1SmMpKRjGY0pdZbRC3eeurhPJn2sMc3UV8S\nSWHHxBPPJCaxmMXsYEezxw9YP7agq6OuVetJnJB3k7XU9AYwTilVIdIkna2lpDOiL5syj2c/TjGg\nIGoCYR7icNlaFXpyH+Fqs8uMJlmfUYR/zXG/QPr12Y4WMuusT8N5SerYVF4pfMVjk8gkE2VVpwr2\naNrEppAJPpVUZjLTiZ5+nMedsXOZ67FnZJNNg6fAehMRRNCHPiHeT4c4RAUVRBHFQQ6SSqpT8jTY\nuymbbA5wgNu5nc1sZgYzKKXUuZ/W4LhCQkSi0QLij0op2zN9v4h0V0qViEgPtPkPtIZwqWv4JWgN\nYo/1PbjdHnMZsFdEooAO4ap3uYWE4ewkVvyzXcZFeH1VbbtFWAOz4P/2n0+TkGggtKq0jftvxq/P\nFWhBMcg6phEU5yWDhw5m68atvPDSC1SVVtFII7HEUkYZj/IoccTRQAOTmEQUUU66DBu7BOlhDvNP\n/kkDDTxghp4YAAAgAElEQVTN08QSS0960ote5JBDCSUI4hQM8sPWXtzBd6DdWuOJ5ymeooACNrOZ\nQgr5ki9poIGJTHRqWscRxzCG8Vf+Sh11HOEIUUTRpW3rqcPNLjeJVhkWAZ8qpbJcu96kKenBr2kK\na3oTuE9EYkTkCqA3sMGybZSLyA3WMX+JXnkOPtbdnFJZesPZwtgRY0ne4vXjTv4wmTH3j3G2bbvF\nqqRVOn3Gm0EHWUF47L/hPLRv3X60ZcvNGvRrS4V9AYQ+VWvQOZzW0JToz3DekZ+Xzz/m/YNrSq+h\nIx2ZyUymMY1RjOJiLmYGM8gkk5nM5CIu8mRrtZeeRjOaWdZPAgk8x3PcwR3sYhdllAFwDddwERcx\ngQncy70hifqyyGInO9nEJo97LMBkJtODHoAOrhvFKCc9yHVcRwYZ3MM9XMmVXMZlbGaz4247kpG0\npS13PxacRqDlOJ4m8QO0t/lWEdlitU0GZgKvi8hoLBdYAKXUpyLyOvAp+j3vQZfrxoNoF9h4tAus\n/ae9CPijiHyFNiGGeDYZzh1s4/T8pfOpCdQQFxHHmIfHOO15q/O4f8L9VMRV6II/CXhdXevRT0i4\n15e9aLeHAHDE6l+Ljq6ORGsQcdYxUtDxEjFo76Y/WN/rrX4H0N5N3iBYw3nEi2NfZPCRwbzGa7zA\nC077JjZ5EvkBjLN+MslkAhN8l57u4R5mMtMJXrMN1ItY5KlNDdoLaT/76UY3BjGI7WznQz70vc7g\n1B+g7RS2XcKOzLaZzGT+jX8jhRTe4I2T/bWcFCaYznDGuPaH17KtchtWlmXNCvRknhTUeSnQHm2g\ntlmO1g4ELQhq0V5PP/E52Tp0pM6VwFa0O203tPCxq9O5X0fSjQvs+UR+Xj45U3Io3lKMICgUz/Gc\ns38xixnJyJBxz/M8pZRyLddygAO+kcyP8ziNNBJDDHHEccz6mY92zrCXqCKJZCc7GcYwZ4KfxCRm\nMjPkmDOYQR11xBJLLbWkkMK/+BftaU83ujkCqIAClrGM7nRnH/u4l3t5mZfpnNiZlYdWhhzXJPgz\nnDP8+I4fs+3gNl3Hwc0wvHYGG4WezPPRwqASbxU5Ww8tC3PCPein+9/RS0qX4LVxrEDrte0hTNGw\n4yIi44A0tNjKVkq96NNnHlqMVQMjlVJbgvsYWpb8vHxy0nJIK2nSAmYxyxOwdpCDTtBcNNHEE88g\nBlFFFT/iRxRRxEVc5Ix3T/zVVHMFV3g0kUwyySWXK7jCNwAOYAMbOMpRZjHLE0w3hznUUMM0pnmO\nV0opiSRyhCNMZzp11NGOdh5hl0EGAQIcrvA147YIRpMwnBHkKtGO0IN8dv4Jb2bWv6DtBA9Y28GV\n52xsg3MXQiOuD6KXsgJojSJcbYnBnFKqcBG5Fq3v9EcvYL0D/KdSqtDV5zZ0AOltInID8KJS6sag\n45jnuoUJF0A3hSk8y7MUUMBbvOV5Qwc94XagA//Jf5JLLu/zPokkMoQhnok/OKjOZjKTuZIrfQPg\npjOdSCKJIYbe9OZ93udqriZAgC/4wjfAbiITPe3NBdd9yZe8r94P2Wc0CcO5QyThPZECaPtEAG2f\n6G192jTn5hqDjqdwpwr/DvBPtK1hGPBqM+PhVFOFXw18oJSqARCRd9FZpdzlx+5AB5uilPpARDqK\niDvGyNCC2DmaCj8o9N0fRRRP8iQAySSHTLgTmcijPMpkJtOe9nSnO3HEsYQljGAEi1hEJJFh3U1j\niGEnO333NdBAGWXEEMMEJrCb3c5yl9/yE+iU4G4NZg97PNqQTQQRtItt53uMlsAICYPDyabTONFj\nTpk/Rb/NJ6Pft93Bb2vQAuQY2r5Qh9YCqlx9mnNzjUYvQSUF7fsncJjw2WTt8afOJ8DzVuBnDdp6\nsiGojxMoarEbvfBlhEQL487RtIhFvn0u5VJGMYpneda35nQBBVzCJTzGY07bbGYTIODRJMIdv5ba\nkFTgNkkkESDADnYwlakeV9vgID2boxwNu3TlFhRllFHRWBEyvqUwQsIAnHw6jRM9ZlpmGiU/KNEC\noBBtX3C/9V+JnuDtpR/Q9oIqtGvsHTS5sLqXnN6x+jSX+tvO9VRjHXOYa98a69yniFLqcxHJAFZZ\nV7IFf3EWrOqHiCYTJHr6uOtC+KX8tiu8AVzMxez2JIDQbGKTR0CANlJPZKLnWOFSiieRxPf4nm+A\nnV1dzp13yT5GCikhYzLJJIKIEO+qNNLIIccREjOZySEOUd+gA47Wr1/P+vXrT+p3dzyMTcIAwC0P\n3KLjFoLbd9zCOznBgQgnxvV3XM+Wvi47bTF6Kr0zqGMxsBFtWwighcI/0FpFLPpVptr6jEELBrH2\ngzY+uz2m3ALgY7S9ohidhuMw2oLwPZq0j1zgo9PzbhKRF4CdSqn/cbX9D7BeKfWqtf058GP3cpN5\nrluGcQPH0evdXs7STBll1FNPFVVcxmVOvWnQGsOrvEoyyZ5J+AVecJaj3Ni2DDf2MWKIoZZakkji\nP/lPZ99rvMZVXEWAgHNuu341QE96kkgihzlMBBEUUUQ99XSgA3XUcR3X8SEfMp3pIdeTTjpJJLGT\nnVRSSTvaUU897ylTvtTQiuwt3Ru6ZAPsObTnlI6XtzqPT3Z+An1djUlobcJNsdV2j6ttLTrv0h3W\n9yq81efsMTe5tl9Faw2JNGkna/EatJW1fw/wLlow2Utcp4CIdFVKHRCRy9Ci74agLm8CDwOvisiN\nQJmxR7QOJeUllFIasjSzl72e+tT2Gn8jjfSnPznkEEEEAQIkkOB77HqftAAppLCZzYxilJNCw73v\nVV71uNi6c0K5r68//R3hNY1pdKe7ExsRbhkqgghGMpIccviCL1CosH1bghNO8Gc4v9m3b59/e4m3\nPW91Hrc8cAsDRw7klgduIW91XsiYa394Lbf/x+3UV9frqiOvoyfyYrQr6wrr+1pwYouKgz5rgLes\n/tXA79DBcEuBv0NQcS6dEbYRHUexEW0IL7WOsYEmoTIIHR7aDi18yiDM3HAi/ElEtqGFwYNKqXIR\n+Y2I/AZAKfU2UGRlQ/4tOqDU0ApEE+27NJMQl+Cs47sjqH/Oz9nIRkYxipGMZBSjqKXWqc9gk0km\n9dQzm9me9myy6Wu9AaWRxmY2e/bXUecxSPsF5rnHzWEOqaQykpH0ox9FFDlLV8HX05WuZJNNMcUc\n4hDllBPb/hT9uE8Ao0kYAOh+UXdK15Z61/3XQPcu3Z3NE7FbXPvDa9lWuk1n4wqOSwBtF9hA0zKQ\nzVqaUmkEp/TuEabduQi00KhEawWdfc4dXCr4LuDP1ifAKdSRV0r9yKftt0HbD5/8kQ3HIys9ixVz\nV0AVHAvoWAc/OsZ1pH+N1hh2s5upTHW0iaMcZRrTnLfweuqJIIIssuhIRwIEGMIQlrCEm7mZHHI4\nwAG60tWxMdi4I6YXsIBf8StWspLJTPZETgezgx1MZCIjGOEcbxObGM94FrGIm7jJo+3Y11NJJVVU\nEUccgtDne31a6lcbghESBgB6duvJtm7bQozKl0hTXsbm0oDbQmJbyTY9qQfHNdhBc6An/J8G7b8J\n/fZ/z0m051vXadeFaOva53fupKB2/2SdhrOccSPGUbi00BOrMIUpvn079+rMJ0c/oW9hX3azmznM\nQaGcTK6gA+32sY9aaimjjGiiOcQh+tGPFFL4M3920mIsYpFn+crmMz5zvKba0IZNbOIqruI93kMQ\n4sIUY6+l1hEgueRSQAGCsIhFHOOYc15bsG1hC1FEEU88EUQQSSSxxPL57s9P51faLEZIGACdmK9w\nQSGFg5uEQPKHyYx5uCkx3wmlAY/h+Om7w+13P43F6Ik/Aj2ZFxM6yYv1z15KWhfmuO5zu2nOM8pw\nVpKfl8/G1zZ68jAB3M3dIZHMLye/zAPTH2Drxq2senYVUwNTfQPSnuAJMskkksgQD6Nccj1aQjjP\nJrcmsJCF9KMfy1lOMsk8xEMUUBAybi5zuZ/72chG/syfEYR00p39thC0l8n8ypge4Qjtac/ebXtP\n5dd5QhghYQCOn5gPmk8D3vXbXTnYcFA/UYfwn9RtJ55wcQ+263ox/pXkCDrmIfTy0sXHOa7d180a\nwqcpN5y15M7LpX2gfUh7CiksYxk55FDaoZQrb7ySEWNGMHjoYHLn5TIhoFNohKv2doxjHqMy6EJB\nE5lIG9o4LqpuI3MiiZRS6pQRtbHdVC/lUkcg+SX9a6TR0RRyyAm5pru4i7nMpQMdwrrC1lNPF7pw\nhNarcW2EhMFh6M1Dm42JcLSNPl5t41+f/IvyjuXeCnN/sT6TrM83aHra/OIebLdVWxgcr5bEX9Cp\nwndjFdi1jlvgc+zlaEO4eyntMM0LFcNZidRKWE+eGGIYxSiW37icYWOGkTsvlxWZKygsaHpew9kG\nwtk02tKWKUyhgAKyyKKCCnrS0xEMz/N8SAQ0+Gd1tQXCYhZTTz1DGHLc/mtYwy5PPKb3HLHEcoQj\nYa+/JTBCwnDChNM2bn/w9tASpD9FRzu/j37bb0AHy+Wj3+qrgT+i4yCq0RN3G7THkf/yra49sY6m\n1BtF6DKn7dBCw7ZzFABL0EtVtrbwLXSepyjrWpKs8a/hvxRlOCtRsYoUUniGZ7iMy5zqbjvZSR/6\nkN09m/439neir8EbIR0u0C5cpHRPp8oytKMdUUTxJV+yj33kkksHOviOCxAIm74jODOs3d+PTnQK\nq/0ECNBAA1VUURvVei6wJpjOcNrIv4k3jsFmOboqeiE61cZF6Lf9f1r7o9FCYSReG8QhQg3V4I3K\nhiYbxCCaguVsTWEP0Altd6jCWwbVZgnayB7gpBP8tRTmuT458vPymZ82H0p0/QebGcygLL6M+5+4\nn6J/FXkS/AWv6dvptuOJpwc9HFfWtaz12CQyyOBWK4dMsE1gLnMpo4wooogjzmMLsSOsX+ZlutHN\nYyTPIosqqniKpzz9iykmkkhP8FwGGVRQwT3cwxrWeKLBs8lmN7s5xjFqqeWBZx7gkfRHQn5fLRFM\nZ4SEISzHy+WUPiudl5a9ROnhUviVzwGWoGs4uJd+/mK1dQU+sNpqrDY7p1MxWhvwS6OR5GqzvZvC\nZYi1M7zuJNQldw16qWqkfTNGSJwr/OL6X5C2JS2kPYccYpNjqYuv44FPHvDss6OdL+MyitsVU6/q\nSahMoIoq4ol3PJsSSCCOOOqpp4YaRjKSTWwKm311FKN4mqeppZYEEogkkja0YS976UpXbuVWNrOZ\nCCIopJBKKomyFnDiiCNAAEEcb6Vyyj1R1//gH477q0LRlrbUU08jjdzIjaSSylM8xbNvPcvgoYND\nrtFEXBtaDU9MRDFQCO9Nfo9vz/82z455lo1bNjL99emonyrtoupnY6gndAL/KXqJZwc6PjkJHccQ\njdYM7HxMgl6uikQvD0Wja0PYvIPOAyU05Xhy77va+n4TOh6iFK9NohTjAnuOktg+0bd9H/toKGyg\nOqKaRSxyXFihKUJ6JCNZfv1yhk0Y5lmSAhjPeK7iqhCNIdyykW1H6EUvvuZr7uIuJy3IQQ4ykYnO\nuW1swWIbqkcxyvG4msY0p2ypTSqpTGc6U5katlBSb3qzYv4KXyHREhghYfDFiYkoxvE0qqGGLWxh\n3IJx7Nq2C/UL64+nC3AFoYn7wiWm7IpeIrID6CIJ9WRKpim1hh1dvQwdC3EE+L61vxitdbjPHbw8\nG49Ov7HD1aYwZUvPIbLSs3j7pbeJboimrKqMO0MSgEEPeug0GQHtgrqRjYCepN0J/ojDmVCfGv4U\nUiVOpblgL6LxjPfN5wTaJmAf9wu+8CxJLWax7xhbsLgN1bbNITZM9St7/z78syIECGhtvJUwQsLg\nixMTEeyKig6g41P0pB2LnpQHEery+vcwB7dfzOxAuf5oYRBBU4K/Iut4tlfTYGvbnQVkLdqYHYMW\nSO2tY6e4xoOOxP4JMACvXWNJmOsznFVkpWex7vl1PNmgJ+sCCpjNbM9av1sI2O6haaTxFE+xmc1O\nhPRUphLx9wiGdhrKV2VfEU88CSQ4S0B+xBFHOulcyqWOllBKKVFEUUMN29gWImAaafTUgmikkX70\nYyc7WcQiDnOYRLRGVEYZueRSRhkzmUkttXSjG9FEE0kk5ZSTRhqd6cyzPMvFXOxoSS/wAtdwDSqu\n9ZYsjZAw+OLERIQLfLOrzK0FuqPzMyXSNNEfRE/guYTP0Ap6yccvJsJdT+IoTRpFtTXeL63HFTRp\nH/b4NTSVJ7XPXWydMwavpmI4K3n7pbcdAQFNyzeTmERHOjabJqMHPQDYwhZWsYp2tGNC1QT+h/+h\nBz24lEuPWyfCFiSjGe0Ywd2lSxewgIMc9IxJJDHEED6XuVzHdaSSyixm8TEfk0kme9lLAw2eXE+z\nmc3N3OzcUyaZDGGIsz2XuSxhCRVUUEMNd90YWomvpTAJ/gy+jB0xluQtyc0X/AE9ue9Dv8XbCfRu\nQk/AndHCZBlaiOQTanz2MzzfhHfJqIPVZtejCJfWo8j1vdI675XWd/vc0CSU7rY+Pw5zj4azguiG\n0BiAFFLoSEcu4iJGMSokVsF2KU0gwUniV001QxjCIhaxl71EEOHJ3mq7x7rJJptoonmIhwD/RH0P\n8ZCniBBAKaUeAQF66eowuhb1EzzBd/gOnelMRzp6tCLQdSzcSQMnMMGzPZ7xfItv0YEOJJHE9ve3\n+/zmWgajSRh8sb2YpmRN4bN3PqPmVteiZ7A2UIfXEwmaEuhVoN1Zi9GTc5Krz/JmLsDOw+Q+103o\nLLDHS/sB2v01DviaJvtIEv71sn8KQUk8DWcR9VH+ofF11DVbYCi7ezaNPRpZ3n45n2/9nKgjUfyd\nvzsTPuBkfbUD3UDXo76My/iSLxnAAPaxj8UsppFGyijzvZa2tPVcR7jYBrctwv4ezhYRHGDntx1N\ntG43NgnDmWDEb0aw7L1lqGiF1Av3/OgePsz7kA7JHah5uUZ7GEWgI52TXAODn6JitECoRxfqXIY2\nbh9DezIdQy8b2cfz4zBaIEQB22nK9BpJaIoNm0Po1OCN6D+aQ9a5OqKXrPZAmL9Hw1nMbQ/fxn89\n/1882vCo0zab2VzHdZ50F9VUs5e9JJLIsrbLSOqRRLf23VCxio5JHdlzZI8nPgG0FpBFlq8X1CM8\nwiEOedJ1zGa2b53pTnSiL32djK07PF4STexghzPedmut8qytNhEcYBe8XUYZ1VTr9nABqC2AWW4y\nAFpALN20lIb7Gmj8WSMN9zWwdNNSYi+Jpbxdua7BMBytFVTQVPfhHfCUCy6maTlnODqIrTPaXnA7\nWkOoRAuNX6IFyQq82IKkq3U+ewnLXm663GfMGrQB3D7HDdbxe6AFTTd0LEeXU/jlGM4YWelZDGo/\niMFRg/lB9A8YkjyE6/pfx6CnBjEjcQaZHTKZkTiD5PuT2RGnJ+IUUhjFKGKJZTjDqYquIqltEmlb\n0rjz3Tu5a9VdBIoDIUtCNu5610/zNF/zNYtZ7Ovt9DiPk0uu95rJYje7nesYyUjiiGMWszz9sskm\nlVQ2spEMMuhLX/rRj1JKQ+pVZJLpBPn5bWeTzSEOUUop29nOFTdecRK/5ZPDBNMZAIi6OorG+33y\n2ryMFhDBLEMbqveiJ3o7WM1vOQe8XkXuY/4B+BHeaOlewN/Qk7zf9fSgyQOqDK0p9CI00M7vfMWE\nGsrXAH83wXTfBPl5+fx2ym85UnyExupGqmuruY/7PAbayo6VPP3y0yFxALcl30aXoi5UU81hDtOG\nNnSiE0XxRTx37LmQcz3FUzzP8yHtk5lMFFEc4Qg96clkJgOEjUt4iZdIIMEJctvGNqKJJkCAWGJp\noIFqqgFt9L6aqz1lTEELlkd4hAIKWMlKruIqtrKVGGIop5x2tKOccqKJppZayimnP/2dc9rHmsxk\n7uM+im4p4sV3Xgy5VhNMZ2gxGiPD5M0OlzesC/oNfx3akykZPTGXh+nvfkyjaMoSG2N9JgX1/wB/\nYtGeS3YKj0ZCBUTw+WJc3+1++eiAOtAaSDh3XUOrYafYaFPSxhOL4LYTjGc808um+waLtevQjgAB\nHqaprlM22SRE+JcaPMYxj92ggAJyySWeeHrSkzrqHAEB4ZMB2sZwmxnM8IxbyEK60IUiiuhMZ19B\nU04505lOLbWO4Ep1uQHmkEM3ujmBd/vZ71vHog1tSCGFopqikH0thRESBk24Os/h0mkr12cdTRP9\n2uP0B72MZCfmDFfTIVw0dCV6/fV4acTd5wu+tyTrn60NJWH4Bsidl0vbkrYhKS8e4iFyyHHeumOI\n8TXMdm/fnV70cuwABzlINNHU19SHRFyDdoc9zGFyyOEIRxDEU7hoLnM99obmjOJuutHNs23HadzE\nTSwJE4yjUDzDM2GD7kooYShDKaCA3ewOm/nWWSozNglDaxNdH63TW7hZgbY/BE/8a9Bv72vQEdMJ\nNI1Nbqa/+7vtslofpv8x9CS+ztpfbLVH07z7a/D5/mJd32vWcezjvU6TFhJ834YzgtTKCXkB1VHn\nOwnaGWFHMYo+9KETnXiER3im8RlGM5qNbKSAAkBP7kMYwi3cAsAhDvm6qLrdTFNIoT/9mc50FrOY\nLLLYwQ6P4JnFLI+twH39KaTQla4hdbNnM9vRGprTVkAnFpzKVDrS0dc9t5FGZjKTYWOC3QtbjuPa\nJEQkBxgKHFBKfcdqSwfSwIkgeVIp9Vdr32RgFPpPcKxSapXV3hdYjP7vflspNc5qj0WvTF+PXgAY\nrpQKcQ240NduW5trb7uWbV9s07plNHrybkC/RsSjXUpr0W/y9ktNA3ANOpJ5FdqbKAq9HBSB/p+2\n04Qn0WRvSLLGv2YdKwodkGfbJEqs8TfStKy0H20AP4I2iAfzqjW+Fv3kJbjuoTM63sMd1Pdn9NJY\nG7RAKjp5m4T1rP/COvrHwANKNZXvE5GBaFFri7A3lFLPBR3jgnqu8/PyyZ2Xi9QKn33yGd1Ku4Vo\nErnksoENtKc9ZdZPt3bdSLo8iQ4Xd0AShY/e+gipEo4GjhJPPNFEM41pIeebzGQaaaSOOjrQgRrr\nJ4EEvsW3nEhou0Toa7zGVVzltP+RPzoCSxDqLdW6He2IJpoKKuhKVzrS0aO5TGQi9dQTSSQxxKBQ\nNFo/NdRwERc5Cf1iieU5nqOAAtaxjiMcoZ56aqnlV/yKFFLIJZfNbOYKrnDsEkUUcZjD1FHH1+pr\n39/3mbJJ/A6Yj57IbRQwVyk1N+iCrkH/CV8D9ATWiEhv66/gv4HRSqkNIvK2iNyqlHoHGA2UKqV6\ni8hwIAO473RuyhCevNV5TMmaQvGBYlSk4oquV/DsmGd1jWvZpvMbufXLCLSqvxc9FdoTcRz6KdgO\nfGHti7Q+o6wxCdZ2NNp+YVMMfGKNj0RP/Ha/evTkfRvwOU2ZYUHHVTS3LBaBtj/YLrYKbcOoAH4e\n1P8uvMbt9DDHDYOIJAH/AXxbKVUrIq+hn9vfB3V9VykVXG3jgiQ/L9+TVK8XvciNyGVhoGlJJ5dc\nvuIrT3nS2czmyoorSf0klYJPCljFKqYxzZMCPNyyTSKJRBDhaA0FFLCa1Z7gtYUsZDvbOcQhz3ln\nMYsEEvgZP3PO41dKdAELOMxh3uZt1rGOKqr4Ht/jK77yRGYvZCFb2crlXO5pzySTx3iMrnR1kgLa\n/d/iLbaznW1sox3tPPdmZ49taOVMlccVEkqpv1l/EMH4SadhwFKlVD1QLCJfAzeIyA6gnVJqg9Xv\nD+j3unfQ+TvthcE3gJdO6g4MJ0ze6jzSnkujRJVoV1F0uoK0zDRiDsY0pewOoAv57Cc09UUy+p25\nG1qPrAB+iE6y1xZvWo4q4FJrjF0UqBg9+VvnpxjYijeL6wr8vZvuxD/jbC464tutcb+K9nq6lfC1\nr0+vLHA5WjQliIitu+zx6WdKGlnkzsv1ZF1NIQUCsKztMmZEz9AeRuVHeKHRW7/6cR5nOtNJJZVN\nbHImWHf0c7hlm8Mc9kz8m9gUEt2cRhrTmOaxT4COis4hx3OecBHXdnZX0JN+sICwz/MkT4a0T2AC\nk5jkERB2/xxyKKCAS7jEN135VKY2m3eqJTido48RkV8Bm4DHlFJl6CQM77v67EZrFPXWd5s9VjvW\n5y4ApVSDiBwVkc5KqcOncW0GH+YtmacFhHuCLYaSQ1b9T7f+tozQwj92sr2fuvbn0yQggo3JO13b\npdYYgo5bSGhVu2HAK2FuIoomT6qj6OWvYAEBusCRfT2tUKZUKXVYROag7/IYsFIptSa4G/B9ESlA\nP/OPK6U+bfmrOTeQ2lB5mUIKHyZ9yO8/1grY0I5D9f9rEDGWi5rbhuH+Hs7IHBylfMwT1NNEcDpw\nOznfQQ5SR51j0D4RG4o96S9ikSe5XwopxIWxMIdrj7B+9rCHOcyhkkoSSSSeePrRz1nOak1OVUj8\nNzgllJ4F5oCPmGth0tPTne8DBw5k4MCBrX3K84paVetdSipGT9LBEzyEDzqz/86jXNt1PuNvoinL\naoHV3++Y4Vwn/P8Wm+wbScBfaaopEZxF1n1cv5raf0ILrnV4jd4niIgkA49YV3IUWCYiP1dKucXb\nh8ClSqlqEfkJWue5KvhYF8pzrWL9bS97CveQn5fP4KGDm03BAV6Nwf3dHXldTDFJJDGAAex1qYsF\nFFDq+D17qXG5T/ktKdlG43AaizsauoACEkn0vPnb42vC5M8I1x4gQC213MM9bGSjpzrdQhZyFG2T\nsX9/69evZ/369b7HOlVOybtJKXVAWQALwfEJ24NeYLC5BK1B7LG+B7fbYy4DEJEooEM4LSI9Pd35\nd77+IbUmsRLrfau2U10cxutFBMdP7Nfg2g43ofdAT8yxaF3ykM9xw50nnNeT+6XpCHqJTPAmFyzE\nm0U2iSbtY7n12Q/t/hqust3x6Qf8UylVqpRqQJvCv+/uoJSqUEpVW9//CkSLSOfgA10oz3Xq2FRe\njE98604AACAASURBVPcGfGWTzU+P/ZQV83UI/W0P38Z/Rf2Xp08mmVzHdYDWGDLJdL67PX5SSKGM\nMq7neo5xzMnHZPffxCZSSQ3xEsogg2qqHS8kvyWlNNLYzOawSQDdHk7uJTH3+FxyqaHGuR6bOcyh\nAx18I7SLKOIe7gl7TZFEci/3Or+/gQMHep6nluCUNAkR6aGUsitg3ElTHs03gSUiMhe9jNQb2KCU\nUiJSLiI3ABvQq83zXGN+jV6mupvwnvaG02TsiLFsfW4rJWutJSc7KM29/GP/9pMJn+b7L+jUGHlo\nm0Rb/LEFyq3oibkXWqvIQ/vLgbZ9BJ9nBdpDya4mZ3tV1aOXloqt47RBCyu33aTY+qxAW746W/0C\nVlsfmqrhHUULsqQw1988nwNTRCQeLar+Hf1sO4hIN7RXoBKRAWhvwgt2GXXw0MH8b6//JWdbjuOh\nY6f4toPB7DrNM16aAcegsq4S6SR8FviM3W13U7KzhEvUJTzN00QRRTnlPMmTRBJJHXWUU04FFUQQ\nwWQmU0MNbWhDDjkc5KBH47CvIYoorud6+tCHLLI46rfeBRRTzA520Ja2Tr8qqogllv/gP5x+e3xN\nU9BAAz3pSRFFTGQiccQ53lZ2bQn7vuqpp5JKookmhRS2sMX3mN3o9s0H04nIUuDHQBcR2YU2Mg8U\nke/S5N/yGwCl1Kci8jq6JE0D8KDLv+9BtAtsPNoF9h2rfRHwRxH5Cj0tGM+mVmLozUNZyEKmZE3h\nq+VfUfn/s3fm8VXVd95/n+RmIyFkYRWEQNxarSmyPPZpnxmVKlWqpE7VuvSpRTszz1TBqshSgUCt\nQAKUdWY6QGo7LFbskEijCBJsa0dlkcbqaEUg7CFkhSQ3yc295/nje35nP4AILng/vHgl99xzfud3\nbpLv9/f7Lp9Pa4s3H6DyDieQlf8qrNLUGFKe2gnX9L+GptQmDjcdpuN4h6zQ7WJhbqZYDcsYV2HV\nymUCX8VSlqtBqDbyjO9bkfJbuyMrQ8zy93D2OFRjUW7Yv1coR5LkexFholakz2MdHxm6rldpmvYb\nJCcXQ0JLyzVNU38Lv0QWPf9P07QupN7qC/+73bt/b25/10f7wBaSv3rE1ewdtpfmI80cPXqUnN45\n9O7fm8LxhZROKw3Ut84hx5MwnsY0fsbPAEsvws74qq6NEjWPB+lK5JFHjBgjGEEBBcxkJsUUU0WV\n2RWdRhqZZPpeP5jBZnJ7BSvMcZR8qRuzmEV/I3UbFObKIcfz+Z1rxLmbvqAY/cPRbHpvkyi2ufE8\nEkzJQ5zENzANfP5b+Sx6aJFJJa5QVFzE0ueXUn+yXjqqT8WlBJJPaMGbHAfZaaQhprcdqxLKfc4Y\nnAl2e97hTDiktmIJJ/0pzt30ScBdBguwKn8V9yy6hxvG3OD7vjKo7+S/w5X3Xcm7q951vK+6oMso\n81QoPcMzDGUoO9hBE01oaI4mOnsH9anKXNV5BRRQSim11HIzN3vYYEspZRjDTnm9SorXUktvevM3\n/sYgBjkozJeznBOcoIsuMsjgG3wjcMwXeZGbZ9xs7sLsiHM3xeGLis0VLF6zmA69gxQthfH3jPcY\n9SP1RwgsitCxaDMSYWjtUKrfqYZEyOydyfZd2x29FjlpOdTU1NCW2CahoRM4HcQLSLNcNVZzXD3B\nGbGTxvt/h+xT/dCO7Ay6sMpr7T0UZ6I50WZ8HYWU3MbxiSCcGaYku4QIEXLycvjHn/2jycvkLpMF\nqxR03J5xrH9jPXcvupuV01dy4K0DZJBBEkmB4ZjjHHcY1yqqmMlMOukkn3yPot10ppNGGiFCzGAG\ngxnsCIsBHOAAnXR6HATAMY6xi118yIcsZCEhQhzlKHdyp+kg3Ma+hBL6098RAhvJSNawhiSSOMYx\nDnMYHZ1ZzKIb3WijjXTS2clOmmmOiw7Fceao2FzBhGUTRIfawJ5l8r1yFBWbK9hzYI/E590rbkW5\nnYcpA3o0cpTGbzcC0Egjbz/3NtFY1Cw7baJJDHaBcV01ssLPQJLWVwPbEeNvv9faUzyIMvhB2hHZ\nxtexxv3W4uSBOl3i/RWC+aHiOC9Qu4QH91gGcnWOs9bZr0wWbCWm7ZLbKJ1WSjPNDvlRv47rJJIc\nBlmFlB7ncTO5rfAar/EP/AMAG9nIQAb6kvNlkeVpbFPoQx/u535HCGklK00H4bfbmchEZjDDMf+5\nzOUe7jHnN41pRIkykIFEiTqkTecw57yKDsW5my4wLF6z2OEgAPYM3cOStUvM1w9MeYBwQlji86rq\n53m88qKjgO5Q8/Uax3jRW6N4/kbGYpWS5iEhoBQktJOHf5ns18BFzS+7giHI8qUKcVhBXFBuZtlU\nxDlV488htQGnlKl/6DiO8wS/XcK9e+41K3MguEzWLDFNFc2JfX/Z59F7KKCABThIIDgRQEucSiqt\ntFJKKc/wDKWUmuI/29hGM83sZrdvJVIeedRR5+Fksms+uKuwiilmO9sZxCDf+SSS6JiLXfuiiioG\nMYineZr7ud/DSxXEbXWuEN9JXGDo0P3ZIttjstS455/u4Vj0mFQTVSOGvQFZhd/gc2FQSMpvwec+\nZn/tVyabhxhspVynA19BQlI6zgY5ldg+hnA65SG7kxeM4/bcxgbjeh2rAqu3MXae7Tzl1NwtcHGc\nFwTtEuyr4MLxhazes9o357AqfxVXXXsVfyj+Az/Xf06Ri0ulkELKKGMyk8kiizbaAvsPIkR4gicc\nx6qoYg1ruJiLSSGFHvTgeq53hIG+yTcpp5yxxi+nyk+c4AQjGclOdrKLXcSIcSmXMolJJnXGEzwR\nmBQfwAAPFbhiwg0qfy2llJd5meMcP68Ef3EncYEhRfPX5zzZeFKS1X/eZPEY5WEZzaAKn6CQjN+C\nz31Mvd4AAUzHwtdkN/DVxtc0JISViJSwKnJAVfm0AdlluCuYQPITKkFdhpS69sKbJwFrVxHXkzjv\nCNol2FfBN4y5gbe3v83TS59GC2u0dLaQcVEGO3ruoFPv5MXFLzI1PJUqqminnXnMo4EGEkhAM/6l\nkEIvepFLLjvZSQkljoqnOcwhSpSpTCVKlK/xNQYz2FSMU5hl9Aurbmz1NYkkXuRFmmkmlVTChGmk\nka1sJY00YogKnqLL6KSTCBFmM5s22niSJ7mDO8wQ1HM8Z5bsKsGhFFIIE2YiE81ubJXwVl3c/4M0\n7yeT7NHaOJeIVzddYPDLSSRXJKO36kRyI9KA9l2fC9cgwcdeWJ3LJyGlPYXsi7MdIafEDYmOnATg\nzEmAtZrPQIz7q0gewX7NK8h8lLFvRXYFiuPJ7QC2IC2YKVi7CVWh5MZ6pK8izxhrJJb6XR2yQ1Lz\n3QDsjFc3nW/4VS4tTFtI6pBUs8QV8JyzLHsZh1oPcXnn5RzgAGMZ69sRPYIRbGELQxhCIYWUUGKG\nm0LGv1ZaGclIk6p7BSs4xCFSSHEIB4E4iYu4yHMfFf6xc0AVU8wJTpid0fZrZjGLJJIc4y9gAQc5\nSB/6MJnJjuOjGGXmG1awghZauJ7rPePOZS572MMABtD773rz7B+e9Xzm56K6Ke4kLkBUbK5gydol\nHK47zJ6Dewh/1eCr2YOEa+7xuWgdYjhtRlwr05h+93RGDB3BkrVLaI+1k5qQyrVXXMsLf3iB6tpq\nSITG+kYJ56gepFy8JbDrkZBWDlZzXApSCaU6s8+khHUtUil1/WnOW4eVgHc7ErXLWGOMNQR4Ju4k\nPglUVlRSvqScpsNNHN5zmFvDt5oGcXX+asKZ4cA+iHGMYyYz6UEPHsFb7qnOmcUspjMdEMruS7nU\n16HYG+sOcMATvnqSJ3kKrwzqJCY5dhz2++vonp6HoD4IP1JB+3MoKGen+j3cc7mcy/mAD3hDf8Pz\nfrwENg5fjLlxDGNuHMM1t11DuDAsK+k3kNBNCtLSmIms7FUncieengX9qzo/W/kz0jLSSIgmMPCi\ngYTDYf687c8kZiQSIsRDtz/E/N/MpyXWItdvwT+3oXQdhuDs8v49lpF3U5T7IQtn5ZIfL5O9QgvE\nMf4KCW0lIU5qDRLS+uLY588EbhhzAzeMuYHxo8fzw3d+6Hjv3j33UpJd4nudqm6KEeMkJ095jp3w\nLkTIN55fQokZujnEId8Ed0YAlUAaaae8vxtBpIAp+IeG3eP0oldgbiWNNIYxjAMONs1zi7iTuEBR\nsbmCdw6+A8MQB5GAGOlOxMheg2VEy/EmnauBPRC7J2ZWfby75V0xyu2Ioc2Emb+aidaiyS6kEgkZ\nqb4FBUXj0duYi73vON32fSzgeztSEEdTjux61DM8h8S2O3A6iA3Gc7fj7C5XtOd5xIlgPgUEJbEj\nAXq5qropgQQu4qJTntNpa5hJ8hFpr6KKRBIdq/u5zHV0Z0NwZVQQk2yMmIdNFoK7pYPGj7l++WPG\nv6C5FFDA2lPWk388xEtgL1BMWzKNSHfjD64dCQGNQjqs70BW89XGyWPxGmW/hLCSCf0WUgJ7PfA9\n0HvqEjLCOB5Dqop+i1B+1yFiRtvxOiO/XYH7e4VyhFR+L3K/NcY99iI5h9sQB7EX0ZOoRCqamo33\nqrEkTAGjgvBsCf7i+BgISmLn5OX4kgCq0tJcck9Jsjef+SYZ4DKW+a7Ad7DDI106iUl00ME0prGU\npcxkJgMZSBFFrGQlz/AMK1nJDGZwghPMY57j+rnMZS97fed2mMPMZrbj2HzmM5KRnnPnM99BFqie\nK0KE+cx3nFtCCXXUMZe55P1dnuc5zxXiOYkLDEXFRSxdt5T6tnrLAMfwz0PYKSpeQFb1ymAGJYTV\ncff7dnqMauBNxCHkYq3YNxjH7DQb1TgdUjXwunFeGrLX7YZV3bTddp+XEAfgx4j0WyyZ0/VI46Db\n8f0euMqYW1E8J/FJ4lT0HBPvmUjSiSSzcqiNNpYgfT4qvl9FFTvZyUEO0kabWVF0ghP0pjchQoxl\nLPvY5+Fzsucs7JjHPC7hEt7mbdpoo4MOetPbkXCezWxu4RZe53UOcMAk6YsQ4T7uYyc72c1uokRJ\nJJEwYZJJposuNDS60Y0IEe7mbrO6aSc7SSCB93iPRhrJIosQIXR0NDR0dFpoQUcnnXTzc6mllh70\n4Et/9yXfpDXEcxJxuFBUXMRT654i+m3b9vYFpILID/ZfnQzjvyqFte/6q7HoNOqM1267lgKhZ0N0\ndXZJvsOuQ612BLciuwF7DiEP+Auy81DO4GtIWMqv9NvOvtCCVGP5oRMrpNSF/87o24ijzAsYI47z\nBlWyuX7JetnppsI9D99D+epyMk5kMJCBZqnnAQ6YCmwNNDCPeWZlUYyYI+dQrBXTnNRMZ6eEnAop\nNAn4EkgwKTX8cJKT1FCDjm6WnbornqYwhVJK+Wf+2XFcyafq6FzO5exnP/XU053uXMqlpvDQS7zk\n6PS2kw0+wzMc5zj72c8ABjiqnkoo4VIuZTe7CRMmjTR60pOIFuEfn/jHs/kRnDHiTuICQvFvione\n4Yp/3oaQ9PnBTlGRiSSw7buBFxBKDbeB3YDIl9rRDF1JXZIX6G5cn2e8p5hlQYx3K+KMUhBD31Ou\npxMx6BkEa1mrnKTqkwBv4roCkVTNM87rgTQM+kEzzonjE4dKYitUVlTyx7V/5Equ9Aj2fMiHzGIW\nM5jBJVzCTGaioXl2BE/oT1DaKdVBquNZGeLlLDeb4OYwx2GEl7OcoQzlb/zNrDhaGqCk7JegPsAB\nuuhycES9zMuOhr0VrOBmbqbMQzMgiBFjIhOZyUzH3ECoO1SllqPnQ5/Df0z7j/PaJxHPSVwgqNhc\nQTjmn1AjhBhOO9YjPQeqmczNq5SHOIjX8G9Wa7G9LkMM/veAO7GEf6pt53QgOYAcxInkIE7qpPHe\nHQjV+B0IRXgXooDunnMTkovowGoGVNQiW5HKrQ6EGHALkpM4gDgmlY+wiyvVGefE8amisqKSJQ8u\nIYWUQHEdEE2GQuOfX1IaLCM+kYmsZa1JdWEn6TvGMWYxi9nMZiELGclI6ql36EwHqdjtZ7/j9XKW\n00mnY9472OHp6FbCRSFCHvoQe94lqOopnXTPZzOZydR8UON7/rlCfCdxgWDxmsXBq+8u4ErEkB6H\n3IxcHrrnIRY9u4im1iYxtO/5XJeH5Bb80IwY3KNIaOoHrvfV7iHPeF2P1Q+hsAXZGdyKE7chO40r\njDFasDq2+yJO4XXXPPMQw9/iGk+FutxcU1VISEs15cXxqWBh0UJeXPoijfWN9KIXV3CF73nKIbTT\nzgIW8CiPsoMdvufaK4FSSXWQ9CkW1l9gqd+p5LG7VDWDDI9u9gIWmHThdsZWt0M5lRZ2F12MYhQz\nmckgBnlYZjsC6AmCSmwD6U7OEeJO4gLAPf90j9BtJCJVPXbDV444jzcQZxGCtjbhyJ7wvQk8/a9P\nE1llJCC2ITuARONc1VPghx7AYGQ3oiEr+JBxTSdCw52BJJDDyK4hAWfp6Sik+mkTsqJPQhyO4nF6\nCYtJtss4PgpLdGg5ksdoQsJlycY9tmEJ6o4C/tMYt9b2bBHj/2tYobA4PlEsLFrI1p9vZWrXVDMh\nHcRtlEIKy1nO/+H/sJWtTGYyUaIeyg27PgSIwX2URxnIQLLIYj/7PQ1sigfpIAcdx7PIYjjDmc1s\nU1UuStTs1rZjjSnoLggqe93DHr7Ld02H4KcRUUCBxznNYU5gr4SWen6dRLy66XOOe/7pHtbuWOvs\nAShHVtQaEkpSfzM2A61t0EhqTKIzu1NW3v+GrPTtv/9bkJ1CT6TsVUHlMI4hoZo/Io159hW80pDw\nubfj+1Jj/Ntc1x5GBHDdx1OBm5DwWcyYQ2/XeSpnou69BqncsifCtwDHEYf6V+K0HB8DlRWVlC0u\nQ+vQ0FN0CscXnlGM/KaeNzG1fiogSdv7uZ8yytjLXkeJagkl7GY3velNR2IHGT0zSOpMItwUpkvv\nIocc0kijnnoKKTQN8HKW04te1FHHCEawgx0c4QjTmOaZy2xm00ADPelphpyqqGITm5jIRMooYwc7\n6KKL3vR2zG8Oc7iCKzjMYVM4yH6tgtLStlOCq+qmAxxgIAMZxjAKKGAGM8gmmyyyiBHjr/yV+7mf\n13jNIU40m9lkD83m2bfi1U1xBGDdH9d5S0DH4ixJVbAlkPVuOp2tnbISr0bCMe4Fkjr/JGaoigRk\nZV8D3IcY2zSCQ0YjXWMp7EJ2LRpeCVWVbPc7rhZsHcDtAefd6rp3DG+llJrPXuP8ncRxFvArZV29\nRzQiTucokrqsnIJaeddTzyhGOcI5N3ETddRxB3fwcvRlco7l+NJsAOxkJ7/jd+SRx0hGsoMdjGAE\n29nOCEYEJo0jROhGN7rocty7kUae4AlyyCFGjDzy2Mc+k48pjTQSSGCw8W8hCwkTpg996E53ZjGL\nCBHz+VQozE7Wp6OLcBD7aKONcoQ6vYYas6JLyZQqenM1vzbagsPM5whxJ/E5RcXmCqYtnEaXFkDT\nGvST7cCfOM8/ByhGPBPpibDrWKtS2YRT3Mt9vMXn3mU4K6GCrlVQoV61mw+atwrfvkJw9/Ynvm+4\n8BCkEbF+yfrTOolIyKqzVk1oIUIeDWqA9axnBzvIJdfDg6RoNnLIMctm1Yp8F7tMqu2VrKSQQjOU\nowz1EY6QSSYHOOBJKIP0VUxmMlVU8TzPB/I2jWMcO9jh4ZWqooqNbGQSk5jPfIooYgADHI5uGcvY\nwx4e4iHzmNpdgfSH+CXDASa/O9lz7FwiXt30OUTF5goefOpBdp3cFcw9FFDoRAv+ndT+bAiWLgM4\nacPV+TGC6cTdxzt87l2Ipetwqmvtx1/BKoUNmncYq3IryBnYn+0soGnaFE3T3tU07a+apq3RNC9P\nu6ZpizVN261pWpWmaUPP/m6fTZyJRkQQbnnoFn4RkgRyAQWMYATv+VZQCP1EovHPDUWzMZzhRIly\nKZdSZvxTTW0gyWR1nxJK2MIWHuABpjGNR3iEfvQzhXzsUKv4Agro46n9Fqikst/8CiigkUZT2ChK\n1FOl9GN+TCqpDgdkz2sMZzhHOOJ779TzqThEPCfxucToH45mU9UmSeruRxrK7OEee9+Dm/iuDW94\nBiQJ3AtnyOkVpIrpYsSQd0Ni+/VYRHtXIMnfHq45lCM5jpG2sSIILYgbz+OkLy9HGgAv9pn/EUT7\nGiSXcBzv829AchXq73CNMXe/ZxvGWeUkNE3LQ9zQl3Rd79A07bfAi7qu/9p2zi3AQ7qu36Jp2v8C\nFum6fq1rnM/17/X40eO5fdPtnuP/PvTf6d2rtydPMfqq0Rx795ipI92R1EFySrLkGDrDNNDAJVzi\nWDEryotsstHQHBQXShI0l1xPTqKYYtppp4kmruRKaqmlN70ZznB2sMOXmbWUUoYxzAwFvc/7xIiR\nRhrttHOSk/wr/+q4/w52cJCD1FFHN+NfO+30oAdTmEIVVaxmtTlGlKiH1qOKKp7lWUKEzAS1yn/c\nwi3sYIeZtxjOcMdOaxKTeFP3L0OMU4V/QdF7RG+Ox46Lsf8vYACYpdt2mu5qxLgfx2pUS8YSHbJj\nFZIArkVCOKoCKIb0NNgN7HrEASUguYwIYtTTsCqUQBxKF+KYUpAVvb0TW6HCuFbDot94DfgGlgaE\n/XjIuEeH8TxXGM8fMu43CHjfmF8isqqNGnNINs7pMM5PMN4/9JGdRA5SiHut8WmsR5zAK7Zz/h3Y\nquv6b43X7wN/r+v6Mds5n+vfa1+NiL4LySCDB2tsWtb5q3kv8h4JBxIYyECnLkLiXFJ7pTKhZgIz\nmIGOTh55Ztz9f/gfLuZiJjDBLGFV4aIgXQllRIsoohe9HMneFaygnXZHaEdhBjNM3eygJHojjTzN\n0477+507j3k00UQ22TzGY+bxYooZzWhzjn7PsYxl9Kc/f+bP9KOfY1z7MxZTzEEO8sCMB3ikyEuf\nHncSXzAUFRexYM0CTnaeFOM2CDGOSrSnEakyUpVDCjaOpr6VfSHFpltdjfAhgRjPr2E5GEXId6ox\nVZWQEis6jH8/RAsi8uOXk/gq3pyEm0sKZIdwAqmaOmLM6zgw0JifnTqkGXF6LYiD+D5erAIuQnZG\n73706iZN0/4RmI8Et17Wdf37rvc3ALN1Xf9v4/UrwCRd13fazvnc/14rjQhFr1FfW++rCTGJSVzG\nZY4VvFqJq1X+u7zryQu49RhURdBudnuI88CpxzCd6abCnB1TmcrTPO05PoUp5phBeg+TmWzuXOYw\n55TnBmlP2M8/ld7EAAb4vjeVqaSSSi21XMM1HMs9xst1L3vOi1c3fUFQsbmCB554gGMJx6zEMYjR\nbEbCJX4NZHlI17KtP6nmhhqGbhtKwf4CNr22CT1Td1ZBlSNNcj3x6ka/jRjufKQ3odr43p7nWId/\nzmMtTqlU1QvRhH8zm1K0qwSzT8lNAX4V0lmd7vMZlGGV4P7WZ3yQXcYxziqBrWlaPvCIMaNmYJ2m\naffqur7afarrtccjFBUVmd9fd911XHfddR99Qp8i3PQaE66b4HteKqmOmL3fCrqEEqqocoRT3HF+\nldh2iwQp2JvOugKSW7nkenoRlrPcca+gzmeAbLLpZSMOCzo3SHsil1yzSqmWWt9zUkgJbMrLJJPJ\nTKaIItpoI9QlpvzVV1/l1VdfDZz32SDuJD7DqNhcwbQl03jn4DtE2iJeJtdbkdWwu/x0FGKI92LR\nV9jQqXei6zp6VJdY/VYkrJSPlIr6jWnXjd6CGNg9yBraXl7q/zttlUh8iNPY/wqv/sQrSMI5z/jv\nV86r5qOoPdzzLcQqg+0ZMKcoUsYLBNibU2E48N+6rtcDaJr2X8D/RtoDFQ4jmRWFAcYxB+xO4kJA\nEA24yg8oqKojOyYykVJKHaGY/eznGZ4xSfLUe0HNZarMdAELAs/JJpthDHMQ/8WI0dP2yxLU+QyY\n1VKnO9dPe6KKKuqpJ4MMmmgy9Vrc6KAjsClPkRS2004DDSSFpMzPvciYOXOm3+UfCfHqps8olFb1\nrmG7iBRGLL0GN5IDjvdEDHqm8XobYjR/B+9++C6bPtgkuYZRSHmrnW8paAGl1sSjkOWFX1VU0Hwi\nSO6hFafTykAa39YhwkGqIsl+TtBSRkMcW3PA++q6fDBKzy2cqjT2zPA+cK2maWmapmnAN8FQprfw\nAvB/ATRNuxZosucjLlQUji9kdb5zQ7W873IajX9BNBgKu9nNSlaylKWUUUYhhdzP/TzAA2xnO1VU\nsYAFJJDg0WNYwAIaaWQmMznKUS7jMs85JZSYJbLjGEcttaSRxlf5Kp10mucXUOAJfZVQQqbxR2XX\njgg6t512R7hJNdnNYAb3cz+P8AiZZLKMZY5rl7GMAgrYz37f+V/N1ZRQQiuttNHGzQ/5VYScG8Rz\nEp9RjP7haDblbbIOBGk5r8JaDdthrPqTf5dM58WdElaxr7afxV+HQTXN+SWY7foTSk9iDc4dTjVi\nPu0d2huRPME3gHeQ8FQi4lASkbDRHsSBaHirpE7gn1NQ8/k9To0KBfsO5FksqpGo8bUZqcpKBN4+\nq5zEEwhrVQx4C/gR8EMAXdd/aZyzFPk0WoEf6rr+lmuMC/L3urKikl9N/xUNexsId4UJd4bJ7Mw0\nq312spNDHPKwuFZRxUu85GBBdSejZzGLJppII407uZOd7KSNNo5ylAgRQoTMxrdkknmP90gggQwy\n0NFJIomTnOQyLiNGjBxyaKCBBBL4C38hStQMJR3nONlk041udNJJM80kkGAyzNr1IHaxi1RSzeqm\nCBG+z/d5mZfpSU8SSPClBQEx/LnkmroSaqfQQQeJJJJBBkkkESZMBx2kkUYTTdzMzbyZ/Cavd7zu\nGRPiOYkLGh26a/vqp+W8ATE9L+AsazXCNX1f60t7qJ3ODzu9oSr/cm/JEQxGDLubiuMS22tl15Lw\n6kO8gVMf4gSSRN6D05hvQQz2m8jOp7vxPL9GktIZSDirj88zbsBib70Kb8hqPZLYB8lPJCHJtctq\ntgAAIABJREFUdbu4URVWqOxt70dxOui6XgwUuw7/0nWOt4TmC4LU5lQmNlm0FIqOQuUUqqjy5AXK\nKAvkVlJOIkSIHxiMkn45jZu4yTx3PvP5Ol/nPd4zHdR2ttOPfg7iPwWVtJ7CFFay0lecqIQSc952\nGvJxjDPJ/3R0k4vKXs6rdCfc6EUvcz6qiW4BCxjFKMez2B0UyM6pM9pJZUXleaMLP62T0DStFBgD\n1Oq6/hXjWA6SDhyE/Lndqet6k/HeFGAc8uc/Xtf1TcbxYQgNXCpSTz7BOJ4C/AZRXa4H7tJ13cnF\n+wVEirsvK8/4ugb5qcWAIdA92p1EPZGmdU2yCu8AopBxMoOm1iba+7X7t+2fSkN6JPJTrUR2IAnA\n/7LNQTmMV7A0HSqR+9chO4RmZMfQidUdnYtXZ+JXSHWSuxqqAaEq140xwzgdTx8k57ILCWWdMD6b\nBCzyvkRjXiHEAdnvsQd/UaM4zgn8OrHdUMZvMpO5giuIESOXXN9z7cloDc3sY/gbf2MSk0gnnXba\naaWVnexkF7uIESOffKqoYgADACsPspCF5nh2iow22ogQoYqqwIRyL3qRRRZTmMLlXO5hcbXPNZFE\nx/j72e9JzIOTuVZ9/yiPOpzjYzxGKaWO6x7lUWZFZ1G+pPzTcxLIn/ESxJArTAY267perGnaJOP1\nZE3TvowEKr6M0LO9omnapcZ++t+AB3Rd36Zp2ouapn1L1/WNwANAva7rl2qadhcwF/9AyAWFis0V\nLF6zmA69gxQtha996Wu8/t7r7HpnF8ebj4sR/wtSHqpKO2uQngMQV/sB5FycQ0drh7jXEGJAE6Gl\nvUUcxjF5zTrEpfdGSls7jGM5WOWtSq9hPbKijxljhpHwUhoSsolhaT7UIE6hw/ifgTiIVKwkdrIx\nTgNCGFiL1WSXjH811GrECaVi5TkajM8hGWGfbTO+b0ScR6Ixh05jHo2Ig0k37vlr4xlajfnYE/Zx\nnFP4dWL7UW9vYxshQg76CT8ow7mMZSSSyAM8QBllnh6CecwjhxwHU2sTTWSRxUxmkkIKK1lJAw1m\nGMu9GymmmPWs52JHzQGO8bro4hIu8dCQq8Y6DY0qqjjOcc/4KndhJyJUzLVuFtsEEhxO5hCHPE4m\nh5wz6nA/W5xRTsLoLt1g20mYTUGapvUFXtV1/QpjFxHTdX2ucd5GpG5kP1Cp6/qXjOPfA67Tdf2f\njXNm6Lr+pqZpIeCoruseUcoLKXarktJ7hu4xj4VeDNHVs8vZJb0N6QdwM7MeQYz7GNtxxbp6FDGQ\ndYhBdLOoNuDtZP49stpXfQzd8XZrv4DsDPogRrUWcRDuEFAECe24S3LtDLD1iJPIIzg38l+2carx\n9leUG/OtxZtvcd/P/jx+Y20B/hRngT2X8OvEXslKhjPcjOGrfMA2tnEZlxElyj72kUGGIydRrBXT\n3K2ZrD5Z1O2vY25UEsFBvQlTmcpd3GUa0hJKyCbbY6iHMIQqqnzHKKWUHHLMnYrCQhbSQAODGEQT\nTejoPM7jniY/xQnVTjs/5+e+c7yMy3iXdwkTJosshjCEHHKop97koPobf6MvfXmURx09JWmkcT3X\nm+Gt7NHZLNq4yHOfTzMn0cdWpXEMK8J9ERKRVjiE7CgixvcKigga4+tBAF3XuzRNa9Y0LUfX9SDB\nyc89Fq9Z7HAQAF23dHlLPU/iz8y6DqeDAIs5taftnCB2VffK3a71nId/yeltOEtga4G7Xeeoklx3\nIt0uQGRnX/0rwRxNYYTlFfz1qcdi9VAEsd2q+621zdVvrFHAnwLmEcdZoXB8Iav3rHaEnPYn7Kc+\nVm/G6FWlj72pbS5zqdPqWKhbbKqj9dEUtBawWluNNkAz2QWCehMu4zK2Gx2iBRTQQIODshusUM4g\nM3HlRAMNfMiHJJPsYF2tow7AbHBTTqaTTmYz29P7EZSDSCONv/JXetKTNtoIE6aOOo9m9xzmMIpR\ngd3l5ZST2TeT+x++3/c+5wIfO3Gt67quadonshT6vDcdKXiS0grun0ZQgXLQTy0BK9kcdE56wHH7\nWsN+bTVWuOsY1grerez4X1jhn9ONryEVVCORhLE7Sb4RZ8tZ0OegceryWIUkrFyIGmsfTnnVOM45\nTmSeYHb2bEJ6iJwhOfTT+9FvVz9mMYtkkmmiyexYVpjEJEp1Sfy62VTv3XMvT+daDqWDDkcoRvVR\nKEM7SZvEGn0NoYBfkv3sD+yjqKMOHZ3v8B1TAU9H5w7uYCtbHecOZCCHjDWwu/cjqM+hP/1poYVG\nGkknnTzyaKABDc3REzKZycxkJskkk0aaSVEeIUIaadRRx5MrnjyvGtdn6ySOaZrWV9f1Gk3T+oGZ\n4fFrHjpkHB/gc1xdMxA4YoSbegTtIi6UpiNPUlrBvaoOSi4rveYErJh6Hs5GtjNlZlXQfc6pxj80\nU4WVGwFxECEsfYnTja8jO548Y6wOrMS3jlcNL+hz0Dmz58lBdi55trEGG/8V/hAwThxnDCU+1Hyk\nmUN7DnFb+DYz5LO6eTWR1IipTw3Bq+wgmU6Afv36sTpLdih96MNmNvM4j5vvqzASQIaeQS96mQbc\njUEMYhjDmMc8xxjLWc7d3M2zPOu7eq+jzmSLVe+rXIq790P1Urg7u0cyklpq0dFppZWDHKQPfRwU\nHKo/YhCDzNyHvRx4BSs4wQn+o/g/zquTONtmuhewVI1/AKaSxwvA9zRNS9Y0bTBwKbBN1/Ua4ISm\naf/LaDz6PlZ7k32s7xJsZi4YjL9nPPm7XNnSF5DEsv3p843jdpRhcRrZm+BUH4DCICRHYMcrPvfA\nOC/D55yg0Ex3ZMeg5mZnllWluu77DrF9X2t7nYiEjm4wnucGrKojNX+/McuNMYKec4jre9Xo6zeW\nvw5NHB8Biujv9k2388N3fsi08DSz8Q1kF9BQ41z7Ba2yY8QC38vqn8Xdi+5m/ej1HAodchh3kDBS\nA3Kf/vTnAAe4gzt8m+5UQ92N3MhkJvMMz1BKqVmplEqqpyP8QR4kmWR2stOxa1DOwD1vRU0+i1me\n8TvppDe9iRHzJODVvXay01H5pI6p7wczmOo/VlNZcf40eM+kBHYt8PdAT03TDgLTgTnAc5qmPYBR\nAgug6/r/aJr2HNJ52gX8iy0r9y9ICWwaUgK70Ti+EvhPTdN2I0GMC76yacyNklBYsnYJW7ZvoSut\nSwztB0g1zxrECOtIs9ezSGlqGPlU/69rwFHGNZ1YPQsjkcT3KiTro2N1Mlfj5E/6CvBn4D1kpZ2F\n7FZO1XmdgFQxrcIZYsozvlYiyfMoVhnrn5FdgmY7Lyj8lYSEt9T4bciORTM+kyjw34iTaTLOU/ra\nqUg4aa/tmV/HKqE9iFWMrcpn4/hY8Ct5dfc32HcBIIb1F6Ff8JOun5jXLO+7nDbauK7mOs8KfFX+\nKu55WBp+dF0nPTnddyeZQAJzmcvlXE4qqeb97bkFHd08XkAB5ZR7+iaCynFzyPHsdtRYm9jk0d3e\nylZixBzjz2c+V3O1GHmqySLL91411DDGlYC03zuBBLrR7dMtgdV13Z2eVPhmwPlPg5de0WC+/IrP\n8Q4MJ/NFwpgbxzDmxjFkXZtFc3KzJKJ/hRhAu7ZCGWL4ekPfzL6khFLYb/KC25CB/MG0YBnonogh\njOHcEbj5k0CMaB/E0KpzTxU66o2VxD7qej/P+G/vxl6LRVFejeXMYjjzHip8lgCuRZxAdXor/NqY\ndyFWg1yG65wyLHZbsEJb1xvff5+z4W6Kw4Yg8SG7Qcvqn8XYh8eyfsl6kzH2+muvZ/0b1usHHpZw\nS/mScroOdTG7ZjZ9+/Ulq3+W6SAUNXlQuewBDjCWsWxnO220+eYtdrr0av1yE0HkfN3oxgEOeI6r\nxroSSpjJTAYxiBgxrud6U/JUR0dD42quNsNu61gXuHPqRrfT9lS0035eS2DjHdefMqItUSvJmoLF\nY2TXRmiB0fmjefjuh1m8ZrG/kwgj4xQgK+hOxJgrmm97s5vbQWDcS8Xun8NasbuTyhuwtCOqEUP/\nbzg7oqsRp5OKOIMaxPj/F7LyV/9XG/NuwdnYVo5UdvnBnmtYb3xVFWCqQa4aZ44jYnveDchn/CHy\nOXcQzBIbxxkjiNRPGTS1C1Cr3bLFZWjtGntf32sKEtnhtyqurKhkzg/mcFH9RaxkZSCT61jGmgZ7\nAhPYxCbHyr6EEk5y0kwQKzEf9w7gIAdZxCImMMEx/n72c4dRUud3/5u4CcCRLymggMMcppVWRwf2\ncpYznOHsYpdnrIUsNOk57OerPooFLOAoR8knn/MpThfnbvqUUFRcxPzfzKcl1CKrZtWEdhLpTE5H\nDOtx6BHrQdPfJKhesbmCWyfdij7W9lmUYTW9RREZHMBUYkzEosOoxp9W+zhCBtgTa0Vfh4RiMpAe\nDCX88z5CP66+vonsQMLGdd1xlu6qiijw5jns5al2/AYJk9nPXW98RulI2OhKpDFQlcC6dxn267KM\nZ8xCHIObH2pXvE/i48BXfChtIalDUukzoA9jHx7LDWNu8D1vdf5q7l509ynDJX7XrWAFPelJAw0c\n1A5ysX6xmWdQeIInKPYwpzg1J+Ywh1pqiRDhIi4CoIUWIkS4l3vZylbChM2KolpqCRGiP/1poIFO\nOtHQ6KCDTjrJIYd22ulOd/rQhwQS+IAPyCWXwxwmhRQSSKCLLmLECBGinnrSSSebbJJIIo008shj\nN7s5znGTu6mJJr7El4gRYxjDeIVXSOybyPgV430/vzh30+cURcVFPPXcU0RzorLKf5/gRq8y6JHW\nA7C6tPVm3Vopn0BWEfbVvlKOU7H7ZmTVnIG1W6lEEsiJyM7iNaweC4UtSC7AbcTzjOu/ZXyNYBEC\nrsPb26F6GnS8ifC+Ph8QSB6iBXEiScguZyhWg5yq6HrHdk1QFVQb4sASkc/C3VcxFqH3uAChKo7c\nMqLnGmpMeyhp/MNew+WXu7h3z72sX7L+lPM6Vc5jHOP4aeJPGdc1znNdkP6zPQw2mcnMYpa5AwGp\nvNrPfnNHYsdkJvM9vuc47tewt4IVptNaylLSSKOFFjro4E7u9Iw7k5kmV5Tqi5jIRFOUaCUrmcIU\nxzUFFLAwfeFnsgQ2jo+BBasXEL0mKryhe7AMvF81USEcefYIFZsreLDkQVGU247FxurHDvsdJEmb\narzn1pBW+C2WwXzdZxxFj+EHtTZpQkJVah6n6lvwW88EGfYoYrz9nm8U8nx5xnnqHD8SxFeAr2M5\nF3/q/gsSvqv2PfIDPRujcjqH4xYf8kNQ7sIeU19YtJAXl75IUlcSkVCEWx665ZQ5j4VpCyHqH/qJ\nJkR9f8diroMDGegw2jFiFFDAdKYziEFmPmMf++hGN17kRbay1ex6TiLJtxJKJe7rqXd0dtspxkGc\nQhNNTGUq3enOCU6QQw7P8AyHOUwVVYHU6h2HOz5dgr84zh2KiotYum6pyI++gcT17UUSAQXJyd2S\nmbZkGjX9a8TQdWAZw6Ai5jCyalalsfZmt07j/XQs/iK/v8Fq46ud4yjPOGaPkCi1ukpjXD/UISt5\n+y4A4/v/RByaysNEsXQqgp6vw5hfpnF/lcdpNZ41grC+2rUpVBXYKiRclc0Fzd10tqt2P5wrhxOU\nu1AL/oVFC9n6861M7ZpqvvWLn/+CE7knaKDBkXwuoIAPEj7grvBd7GAHwxnuqGAayUiqu1WzosW/\nT8EOu9NQ7+9jH93p7uhdcOtTK2Mf1LCXQAJFFJFFFktZaooNZZHFJjaZbLi/5/dcyZUeneuhDOV+\n7mcFK2ik0fcevdp7ndfqpnhO4hNCUXERT617iui3bVUMG5GQjyppVZ0jnVh6C1dB7ru5hMNh2rLb\nrLBUFRL7d9NSVCM7kjosHewPkVCTm8cpFYwcm5dDSY3jDj/lG+NdgoTJOhDHoGi4NyGrQvu9VE4i\nzzVOHmKwu+NNXNcA/0SwjoYqC9+PP4vsQeA6vAn6IO3snRdeTmLCdRP4zh++4zm+/u/Xs+hVL8/P\nqTB+9HjyN+V7qoT2jt7ryxmkUFlRyZzxc2g90EqKnkIkOUJSShLTm6ywygtpLzAgfwA9LurBX1//\nK4UnCx33ySXXpPpWWMEKqqmmgw4SSKCTTtJJ5w7uMA34k92epK2jjfRoOoMZTBtt1FCDhsbP+Jk5\n1hzmUEMNOjoppJBMMhEiRIkygAFEiJhhohAhU7MihRQ66SSRRNppZzCDSSLJ8fn8il/Rj34O/qcS\nSswcRyed6OhczuW+Wtb23MlP+AnJJJNNNh10UEABxznOSEay9+/3+v5M4zmJzxEWrFlA9DuuMrdv\nIaveFxBa7C4kseoisrtpxE2s++M6p2YDSCVSGEk8qxJQt2HfgKzM/Xic1theXyv3Mo11UCPdasT5\ndCCJ4zwk9KNKb5sRx6RW9mFE1DPPNc4aY/4hvJTdY21zCwohXYLkERID5rkWq8vajg68n8Wt4KqI\nvCBwulX7R0Ht4VoaaPDE3LsOBbW8i4N46r6nyGjKYCrGziAM89vnM3vIbLLTsunY28G08DTJLb0D\nb/Kmp8vZj8hP0X0r6g7Vaf0yL/N7fk8HHfRo68FTPGVyROno5utSSjnGMVppZTjDuYIr2M1uR3WT\n6m5+mZfpTW9+zI/N94opJp10x7F5zONGbnQQC2aQ4XAQYEm0KuM/k5m+MqcAbQa1QRVVXMzFHsbb\nDDIooIC9qXsDfw4fF3H50vOMis0VjP7haE5GAmo6VZnmm3gdBMBYeHbrs3RFu6SPYi3wEmLEhyCJ\n6BokZPNnLKO61fj6FYL5lEK280BCNOuQxPfxgGuSEafTieRGtmGFr44g4ZuRyO7mO0hIJ89nHN04\nP2iNo5YvecYzPYvkUNYZ89yOJOdTsPou1LNUG9cfQBhutyLO+BmcYbILHH4yoqvyVzH24Y8upNFQ\n0+Abc2+s8Q+BgIS7Ik0RTyfxY/pjtB5opaGmgQnhCY73NDTPfYJI+OwNaI/yKG/zNk/wBFGiJJJo\nGvwCCsghxyw9VbKlU5hCEkm8x3tsY5uHBFB1N+eS63AGgO+xx3nc0X8xkYnoAb9w7ma8eg8ZmkB1\nj+9gh+dzfJzHqaWWhWkLz+pneqaI7yTOIxyU4HsCTuqBJKGfJ9Bl62m6sF35UWJHEP3rscgq3y9E\nFKTnHkGMegJidFsQ8c1tyCrcD7mIoVXhog2IsVblqvYGvGpjTD8kIuGtZwPe70Acor30Vj1/NdZz\n/hr/Z27BPwwVlDO5AOFXcWTvVfgo6Nevn5fUEejbL6g8TXYfQbH6S7ou8R3Pj9n1VPQddiQbq6Fk\nn1VRUNJ3EIMYylDKArhZgnikgsZzn59Eku959rlnkGFqf7tzJ+kGJcEx/KXRo0RJHZL6meRuiuMM\n4KAEPx2nkUqi+iELib3f6jo+ClmJq0WEX4npKGTl7+aAKjeOKw6oO7CU4/Yj4aeg+Y7CciK3YhEL\nVuN8zj1Iea0fV9K1ttfuub2AOIm+mAp8nMR6frtTsHeIK6gqq6DPwu+5LlDcMOYGFm1cxKJXF7Fo\n46KzNiY9Lurhezyrvz+dBODharIjiJ/JzygPZ7in12E5yxnGMMcx1XjWSScdrpVRkKNposmkFf8o\n8zxTx9VFl4c3yj33LLLoSU9GMIJSSh0cT620Ukop3ejme7922ukzIEiL+Nwg7iTOIzr0DisUsg9Z\nxZYjHc2VOCtv8iGxIVHCI3Yowxy057MvmvwXNxKDPo7E+dchO45mvBxQt2HlCfJkTqxDwjXu+drD\nRBdhEQ0az0IlInCUZ3utxjlpG6cbUnWlwlzrjNepOAkM7Y2n9t9af+aEYN6pTNt87D+HjwhN0y7X\nNG2X7X+zpmnjXedcZxxX5zz50e/02cDZhK769etHAQWmEpuCMpKKFM8OLUtjQaLz/G1sI5NMZjKT\npSxlClM4zGFHyariQlJfCyhgHvPM94cz3HceESKmVnXQPOuoYxnLHO/VUecYX83BbvxLKGE4wxnB\nCEoo4af8lJnM9DAm1FBDHXVsZzvjGMf93M84xrGRjaSSyjjGcT3Xez6rYoqpp/68hpogXt10XnHN\nmGvYdXKXf+XN/bZj1YghPIysdAdh5SqGECwEBE5+JPv3dqxDHEgPxEAqniS/7uTnjK+aMQ+3Qp2C\nEiACcXwZxph22o+gOa/G4nFaZ5zv5m76M9LfoI7vR5r90s/iHkHztgskFZ19dZOmaQnIT2+krusH\nbcevAx7Vdd2dKrdf+7n5va6sqKR8SbkZulJd1EFQ6nRllPE2bxMjRhZZRIjQi15W5VLue1xx1RXm\nmG9vf5vnnnqOy6KXmZ3FqlR0DWtIyUyh4UQDGWSQQgrttBNLjpGRkkGkW4Rund1EcyElQl1NHVdz\ntamC10CD2QF9F3exi10m8Z6ap4ZmdlwnkECUKBoaSSQRIkQXXWZV05f5skNlr4EGk5r8IAfJIQcd\nnRxyHGp7c5hDI41mZVQrrSSSSCaZpJJKO+000EA66aSSSogQjTSSRhrd6U477dRRx7/M+BceKXrE\n7+MHzk11U9xJnEdcc9s17BrmbeVNey6NcG7Yv8u6GhHisZuVV5AVsFsutBzpC0hHQk5K1+F05afd\nEaPrZ1ztutd/RZyEu3xWVReBdGpnut7fYlx3EV4nU46U/fY25vw8EmpzO1KlXRjUib4BScp/gH/J\nbSvSWe5XFZVnO+cePnYJrKZpNwHTdV3/huv4dcBjuq67A4X2cz53v9dnCndvRRllfMiHDnrvX4R+\nwfU/vd5j6O665i6SdiV5m+OGRnn2Lf9Ell8vx6K0RVwXvs7T3byQhcSI0YMentLTKqpYxzr60c+R\nnF7BChpoYDSj2c52WmjxCCOBJX2qnlV1TPudpyqcpjOdTDIdn80ylnm4nux6EgtYQLeh3QI/Dzg3\nTiIebjqHqNhcwTVjriHtqjS0L2vs+tCf6yG5e7IV8tiO05DlIeWwq5EqpmcR57AbidHbwzYFyMo7\njOwiwsa16px1OB0Exr12I+Emd67uFWSFrkI8XzHGt49ZgRjXPyJOpB/ektJRiHPYh0hL/SeyQ1ln\nnF9gzLUSCSP55Q4SbMf9ynFvRRoSm13zU58LSPXU88Z9/xPZwb2J7CAOGfdYBXx8odzv4SwoVtCB\n/61pWpWmaS9qmvblj32nzxFuGHMDV953JU/nPk1JjxK2h7ZzIzc6zvlJ10/Y98Y+z7V9M/v6xuj7\nZAbH3/2aByeEJ/DbhN+auhYAC1MXEhkSobFbIw00eMJMz/EcgxnsqV56kAfpSU92spMHeZAIkcB8\nwza2mQb/TJLcgxjk0cb4MT+mJz09c1AVVI/yKI3VwdVl5wrx6qZzhIrNFTz41IPU6DXWCj2AajsU\nC1l02koJsRor9t6CGOcoaAkag/sOZl/DPvSRPivO1xFT1AfJO6hxMcbO815CEpLL+CpiVJuQ5Li7\nO7nSONc+psIaxFBvxR8DkLDQD7BW/WqMLViNey8FXG+v5Q9ayiRiKdy557cdZ+jNbw5HcYSbzgaa\npiUjn8Qkn7ffAi7Wdb1N07SbEbd8mfukC0WW143KikreXfUuU+ut7ullLGMTm8xw03CG+9Jc6ym6\nL2+S6gfwowgJou64LHYZr6a9yutDXqfPgD6Mf1hSR0seXEL3tu400sgsZpnJ6H70OyPDnkaaKSik\nkE46O9lpViXBmSW5z7Rayn3MXT326quv8uqrr/qOdbaIO4lzhGlLpomDsK94fRrB8t/K577v3seq\n/17Fnuw9YkhVdY87ZJMP+i6dvbV7pdFuDWK004CrsLiL2hGD5/4bCaqWUiyqIA5G5T9qceYGWrHo\nMaqN91qRyiNFsRFUUnoY+e1aa3zdhTRMRV3zclcrbkNCYTFkBzDoFM+hG/dxo9r4aqcT+QoiUvQW\nZic7NVgd2GePm4Gduq57Okt0XT9p+/4lTdP+VdO0HLc874Uiy+uG38r+x/yYUkrNPMAKVtB1wtuQ\nVzi+kNV7VjuuV3TjQRQhJzL91aNixJgQnsD6AevN7vDxo8czocbZo2En0jsTw95AAwUUsJOdDGMY\nW9hi9jLMZKZ53qkkTBXOtFrKfSxncI7jPfciY+bMmXxcxJ3EOUDF5greO/KeJQGqkGd8XQeJCYl8\nc/g3efihh0WZrhhm/XYW+h16MIldJdKQphLD9nM2An9BDHYGQovRiqyYVQQ83/UarO7uKoLj/Gre\nZVj8T72wkt7u+L+f5sQ3cK7aVV+F6mFQsDvSbUgvhD1XsgGpVHJ/RuXGOF14tSyqXGNsRD6ne1zH\nwCq1PXvcjbhCDzRN6wPU6rqua5o2EskBfvzg1ucEZyJE9CAPslLzigedqsdj/OjxvpxUK69Zyep8\np2NxGGPbjsVvbmo1P5zhvMzLLGOZI+S0nOUc4hBDGWr2MKjxN7KRVlqZwQwGM5goUeYzn8d4zKIJ\n4Ul041+IED/iR+bY+9nvud9CFtLqYqS0P09JqITHZj3m/YDPMeJO4hxg8ZrFtHdr91/x5gF7ISuc\nZYoGlawu4Z1330G/zQgfBYVT1O+xX9z+W0h+IAGLNwksadIIsusYhEUrbg9HveMz5q3GuXnG60Ik\nlq/6Kfyc2VjEYKuwVQdOFTiwHF4eFoOrGkud95zxnPfhxK1Y/E5KflRH8g7bkT98lZNQokruhLyi\nNHcfU5VRbo3sM4SmaemIQuOPbMf+CUDX9V8i3Lv/T9O0LqSw94KX5rXjdEJECjndc3zPC2KVDXI+\nOd1zGDtrLE//4Gkuqr/IJPkzQ1a2EKaeonsU604aSld2KdJpTEMz/mWQwe3cTjnljGUsvzXUqtax\njhOcYDGLWclKR7XUdKaTSCJhwrTQwo/4EQUUUEYZU5lKOulEiRIjxm52M5WpJJJIBx3ca5TnLWQh\nYcK00UYLLRziEDvZSffLu5/XJjqFuJM4B+jQO2RF/AaWdrQKc7wPCScTuOnrN1nd12CLBwSUAAAg\nAElEQVSFRODU4RQI/ikpVle34c5BjGUnEobKNF6P5PTa0u6/v2QkvLWFYC3oDuNeI5BkdZ7POfZx\nO5EdgEqC98TS5PaD0q7uZ5ynsMuYX57tnkE5Ej+7koBFXXIW3E26rqvZ24/90vb9MnAV2H+B4Bcy\n8mNgPRMuKXsO4u233uY7eIkLSTV2IL/GE46y62MDDPnaECorK/lJ109MZ9FEEzNCM7i963YzH7KA\nBejoxIiRRBK7DOGR9awnSpRssvmmoeT8BE+QTDI/42dcxEXUUksXXWYjXB55PM/zrGENGho96Uk2\n2QxnONvYRi96UU89TTRRSy1/4k+kkWbSkQNMZSpRokL3EUS3c44RdxLnACma0bmVhTPsUgY0wF3f\nuov6znrLQYDTMZyKxO4VCOjsl92CfRdSjX8I6STyC/U+ljE9nWNSCCNOwk25YUcM2c3kEUw/Yh9X\nUZFsQSqLhuBtmLMjAWvFvw3LUXRh5Uzscznd/RWyjXm4GxjjOCdwh4waTjbQdqSNghorGe023n5w\n5yCGMIQFLHBwGS3vu9zUxz4TOpK9r+81HYSDULALFiQvYG1kLUl6Et81hFjcpINzmctX+aqpU11G\nGX3ow2M8Zr5uoIGnedq8Zh7z6E9/QoQcYxVTTCaZ1FHHCEawne3mOGDRkW9jG3dxF9vZznCGs/3o\n9vOqI6EQ75M4B6jYXMEdE+8g/B2fLG4l5GfnkxZL451hNhm1arz9EduQVVUHYvxSEcN5LV7jX46s\nrP8GfN84dipa7RuMe/wZMfqJSKzf7tSeQ8I5Sjr1JLJ7UJ3Z7jmDOLE6xJFlYeUtgvoT7N8DrEAq\ns27FyknYcyhKk1o5BnuIqNGY4wAsapJq/OVZ7fQlIDmJK2zzKLrwqMI/i/ioDXlgNeXZUUUV5ZQz\nkIHEiNE5tPOU/QJuKBr1oB4GO/PsmfQ5uJlq/ZhrQXYCdsehMIlJzGVu4L2e5El60pMssogSpYEG\nJjKR9aPXn5KqPU4V/hnBmBvHkD8wn3ccWpoGGmFP/R4x/E1YCdw8430jPJXemE6f3D4cPHGQCBFJ\nRmcg9fx/QpyGnfCuADHGdmW20+U28hAncQ1Cv9Fi3D8BMba9gDG26zbiLE9Uc66U5yIbMfjfxEok\n/zeywl+N/HZFjP/1xj3tDgLEKSmDrkJO67CIBwfhDDHFsHpCokhorZ9xjYYV+lqFxVjbjjjENYhz\nzMCiOY/jE8WZqNfZlelaYi1EO6PcjtNJFFDAK7xCE02ECXNy10m+3v3r3PHYHWZjXmVFJb+c9kuO\n7z6O3q7TmthKUkISGQkZtHa0sotdvmSA4CQaTCTRk78YznCOcISJTCSJJJJJZjrT0dFJJ50OOqii\nylPCG3S/NINfpokmVrLSI66UQAJhwtRQQyqphAnzE35C+qvp5303EXcSHxNKba6ptQkX35hAhTRU\nhY8Kx+Qh4j0j5GXHsQ4aOhuIHIvISl4pyyUiTiGEv9a0SuquQ4xzNc4y1u5IXmIdYkBjyGo+DTHQ\nHYhxTcLpIEB2Gat8xsxHDL4KE+3DyklsR1b++UjOIIpFLW7/PVZjhrDKXpUy3SCkk/o+n/N1Yw5J\niOGPGNd2ITuvZOBS25ySjeMxxDl0+jxnHJ8Z+CnTLWCBx+BWUYWO7uh4XtGygvKfiXLX1SOuZsmD\nS0ivSWc606miite6XjOrh6qoYgtb6IE/caGdIPA4xz3hphWsIEaMPvThcR6njDL2stcRAnNLlIIQ\n8vmhk06qqEJDc+wk1BhhwmSSyRzmmO/NYx4HOw4y7755sOrsJGnPBPFw08dAUXERP//dz+m6pSs4\nFGNfOauwzxpkR6AYYFV4RKm6Xe0z1qk4irojJaDucE01XoqPcsQBfQ/nnLfiz+VUiuww3CGgFLyC\nPyo01BtxFjrCLFuHlaC+zXXfZxGn6B7/EELL4T5fQTldpY431nX9EcTZfMt1TXe8VCEXqDLd5xE3\n9bzJ0Xyn8FN+yhCGmCvsD/iAucz1nFdKKcdyj3H5sMtp3NRoGlx3GEe99uQkEON7lKP0pz+P8qhD\n3MiOJ3mSp3gKCA4v2UNS85nPcY5zCZd4eibe530yyfQdQ4kS2R2EwlSmcgmXkD062zfsFA83fcpY\num4pXd82GoHyjIOViFHsiTe0on5U2cbXfcgq/xKcIZY38BZL+lcJiiG+GjGAzUhSuBorieymzBiL\nVQ5qN7xBCV/VT2zHrfg7rVuRiqWTrvdU010b4hRiOHsW/MZfhThStUNy76JUWa1feau6/lsB1yhK\nFMUhdZbVTXGceyR1+VdppJDi0Zr2C+ckkECoK4TWoTm6mN0dzeq1ul5pYyviP0UoOI1ppAaUX2XY\nGqP8dDAAqqmmiCI66WQkI8kll6EM9WhxK+1rP+SSa4oPuZFKqvSd+G9QzgniTuJjoCvR1SmaZ/xf\nizO0onACMZjtQDIkNSYR0SPeBrIXcFbxgBg2u7woyE4lgv8quxZxGn5QzsqewwiqsAr6DVG5EHsI\nKg9Z1bvDOaOQHU8PJG9h3+EHVW4lIc8/ktOXtfqtk4LKA5uRzysf+YzOf5l5HB8BkZC7XE0wgAGO\n10/wBKWUepxEjBiNzY28/dbbRIma8X03Pbe9w9lO/zGd6bzIi5RTThppfJfvBgoSqbzDDnaYPRZu\nhAiho5NPPoUUspKVvnQjv+N39KKX7xj11NMc8MfcTrv0nZyFJO2ZIk7w9xFQsbmC/OvzSfpKEqEv\nh2iuD7DCfsI2ZUiIZhTSRT0K9GRddgLulfRt4PqdFgPcgISqlO5CJsHiOvshINxqlYPamznzsFbY\n67F0FoIkjJXAkV3zoRoC2AUk/3Ez4gybsXQ2gmg97LbidGWtftGaoHLaHsZ83wdDPjiOzxBueegW\nfhH6heNYMcUegSGAoxx1vF7Oco5znLu4i8KThXSnOw/wAPdzP4UUMp/55rl++hIllPAP/ANTmMJ0\nppNNNi/zMjFivkR+fejDZjbzAA9wJ3d6zimhhHbaKaCAgxxkBSt8NTSWsQwdnXrqfe9TSCH96c90\npvuOfzzr+HnVlIjnJM4AFZsrGD9rPHuP7xVDr7h/3kASwPafjypN7Y0kd+sRw9mFt5sYRLf5Ltvr\nasTg1iPxfLVCfw6J3dtX6VsQ/iE/3YStwGC8uwxFUVGA0Fe46T7cdNpRZFXvLin9Kt7qoOeQz8f+\neajnacCiIK9FwmxjCS57PYZVGqvG8JunX06iHMlJDMYZcnLniJ5BdD1eAV6L5yQ+K1hYtJCXlr5E\nqCtEY0sj2dFsj/40SCcyCIdSF11kk81N3EQBBb6lpFVU8RzPidYEERJJJIccwoTppJNCCj0r/FJK\nOcQhxjKWnewkgQTe53160YsWWhw5hCqq2MlODnCABBK4mqt5lVdJJZUIEXR00kgjQoQkkuhHP45w\nhHbazeT8JjbRSCOX4dTSAMnLxIiZGhpRoiSkJTB73ezApPWnnpPQNK0aCaJEgYiu6yM1TctBTN8g\n5M/7Tl3Xm4zzpwDjjPPH67q+yTg+DPmTTQVe1HXdybz1KcJkd9VqnHHxjUj/whvAauiR04NQLMSJ\nhhNEukfEyCs210Ss7l5l9BXsK+9qvMawDDH4CcCdrsmNQmLvftBx5kkUZYVRTcV2ZFVfbXu/DaHu\nOGm8X484kSRkB5NiPI+Gf/lo1LiHCov5Pc8GZAejci72sleFQUi5cCsWqWErVlmt+sxqjbm0IPQh\nycgOpBnJCV2Bs6vbnSNKM94P2i19weHHtPpJ0EA8UvSIWcY64boJDPnDEA9B3gIWMIpRFFDAMzwD\nYNJhgD+ragEFZse0/Xx1vdtBgOQ4csgxQ0TLWU4vevEYj5nX2cdX81Fj72IXaaTRl76O+Sk8wzPU\nUBN4vR0ZZHALtzjmuX7k+vP+M/m4OQkduM5FWjYZ2KzrerGmaZOM15MNLv27gC8jdSuvaJp2qbGM\n+jfgAV3Xtxm8+9/SdX0jnwEsXrPYy+4KVsK0D/Ro70HTG00AXHXLVbzb8q6EVqrxzxeAZawSsEj4\n/HQTChFH0D9ggjG8uQRF1Kfuo+5l52Xa5/M+eKuc/MgF7QbdPZc0ZJeiEsPuBPytSDjLDnvu4Xpk\nZa/7XOs3v2qEh+rbtmMbkZ1KHpZ6nd/fUQxrZ+Yv/fGFRRDT6v9v78zj46iufP+9klqrbXmXDLaR\nsWFgAs9hjZPAxIQdwpKZkBAnTBI+THhvAvhNhoQtjyGEfFgMBGx4b/LB2SYGAk7iLQYDxiYkExYb\nDAYnELw02MTygixZtlpqqfu+P869Xbeqq1qt1UbUzx9/VF116557q6vPufesMDCullECyaYMB3zG\n3gyZ3PksWUlT4aC7rKpu+6i2tv32su38vOvnOSPzWtYWRQOgldbcLuIn/CQX9+C2dW0b1n4SZpSv\noy5XjzssH9VAoU/qJqXUFuBErfUHzrm3gM9orXcopeqB57TWR5ldRFZrfadptwLJ4v8usEprfbQ5\nfykieP5ngNagbsuXP7OcuY/M5aW/vERLZYvHmFyf/hSi6qiGuuo69qb2ksqm5HwZIgAKldBcjOzD\n0shuoxyp5uYaggH+C1kxT4y4ljX3Jsx42pGV88V4gmoP8kKNR3YKu83nUrwI66lIMFyV6SODF6Bm\na1B0IivvUeSreDD91CA7kgReGdTxiHorbf6HPZcFpv8K8+zKzfhGOONbgz83VphgBfiZub8M2SFN\nJl9dtQ2YaZ7lLbG6yUVYlDPQbYRvbxAqkKY+zJfvl6178JrN/2RX9idzMotKFjEuO84XB7FSreTf\n9b/77tvKVv6JfwK8VBuv8zpP8RQ11HAKp/iYtRqpuHD2hWxYsCE3BhtjcTqn57nPumO7mZuppTYv\nxYatLHcf93Eap/ECL9BKq0+lNoc5OdVZsF/rVrtg6gJm3T+roNA+4OVLlVKbkc19Bvix1vohpdQe\nrfUoc10BTVrrUUqpecCLWuuHzbX5SMmZJHCH1vpMc/5U4LvBko+D+WNa/sxyLxmfXfm7qayDqbct\nsz2d4mIPfo0w2hkIg0qSH89gVVMgzPWiwLXhiM0jgzDUT5prlnbS3Af5zHx6oK17zU2i9zjeXtPW\nx25w6O9DhE87stu4CBFaIwNzWYqojwqVI12ECK9Dyd95WbpLEbfYk51ru/B2HLbfNPJW2uf7MmK7\nqMIL2EuZvtoRtdq7sZBwYdNWBLHoM4u4/7n+FRLdCSQ3lUdTaxOdupOKzgoatzcyqn4UdRPrmDJj\nCi8ufZE9yT2UUcboKaM54YITeGXZKzRtMTaLhlHUHVXH+t+tR7UpmnUzVRVVTJs6ja27t7KzcScT\nmeirRT2/fj6Xz5c4hyXzltD8fjON2xtpL2mna08XXboLlVHUVNTQ2tVKZ6aTWmpJkSKjMtyt786b\n143ciEKRIUN1aTVtmbbQGIjruZ6jOCrPNnFr6a0ce8axRaU0OeA2CeDTWuvtSqlxwDNmF5GDyaN/\n8P0CusHcR+Z6yfimIszWJqMLxgZciOjNrd9/MbEHafxxAm8SXgJ0FcIEvxS4ZsfkqmNsnQYrEBoI\nX2XbOAld4BoIwx1DuKrMjs2+nwscuqUhc7HPyPbVYP6uQp6pRlb9QQHh0mow/awKXLM2mSTRqr3t\nyE7GNWKvQNRhXzV9Br3JPuKISvM9EOqNqNTf1ve/mFQeQHh1wbBzEQgTVlc0XsGieSKseqpmmz1z\nNvw+//yRHJmzOSw6ZREbX9sY6q5eWVLJ17Nfzzt/6PRD+303Vwh9coHVWm83f3cha8GTAatmQik1\nAfkpgtQQm+TcPhHZ8L9vjt3zYfXGuOWWW3L/+7tEn4sO7YXk04CsvK0ROgyur39Y7IGLZfgNpUmi\n3TV3ER4DsAn/7gCEObYZesmQsbhQ3VyzNMIY9uZAO5D5W7pR8QnBeIgGRMjYDK8jihhT8BhEwDzb\nzXjT5AfW/R2yC1pNLCBCcPE1F/Pw1Id95xZMXTAgrpaDKZAKoTth1VMUVU+jMjo2hBrZybh4qP4h\nvnHrN3o3oF6i1zsJpVQ1UKq1bjXFV84Cvo8oBb4G3Gn+2kiUpcAjSql7kTXjEcDLZrexVyn1CUQx\ncBkwN4zmYJV5zKX+tmgw/8NK3UO0T38DIiJtjQmNGJT/22mzieh4hnFgHB/8iGKm9Yh6ywqmQvEF\nUfs7e747hu3ePw4vP1VH3h2CiN9BzvYXNdYgreC4FV6eqDAoCC0fPAVxsT2NeCcRgmLSbQdRjDdU\nWJtCpUrD7tnZvpOtf9pKha5gT3YPFYkKxlSNobOsk/OuOi/nGRWkufP9nSTfSVKeLqeTTtpoo4MO\nxqgxlOpS0iodWqfixd+/yEnqJErMvwwZOuigkkoSKkHpsFImTJ7Axm0bKW0ppYoqUqRoLm3mHd7h\nOqf8uU3BcR3XSbunUuxiF7dzOzdwQ67dHdzB31r/RlNrE9dzPQkSdNBBujHNNRdfw0hGUlNRw7gj\nx3H5Dy4fUA+nXtsklFJT8PxUyoCHtda3GxfYxxFTYRK/C+yNiAtsFzBba/2UOW9dYKsQF9hrQugN\nqk3iH2/6R9LnO0v8FchKvYz8XEgZvCCtJP5VbVj67qUIsxuGGK6PI9xV9FjCYxmi8ji5KqBVSG6o\nYNpsW76UAjQbIsZt+80Snfr7Z4iaKviMdprxhMVsWHfZ7uI2wsqrtpl7agqMtw2/95PFb5EdzDTg\n57FNoi8oZHy2DKw7A3VYCvHgPYtZzEY2ci3XhuZd+lHZjzjtptN8mWAfnf0ox2w6hud4jtl43vV3\ncRcg0dsgBulneIZruTbXZg5zOIIj2M3uSBdc224f+3y1re/mbjrppI46SijhHd6hkUaO4qg8I/Vm\nNjOe8UxhClmyjGZ0aMLAkziJp3maIzgiV8vC2k1Cq/gdaMP1YGKwhcRXv/dVmiubZSWqgVYoT5eT\nPiydn7H0XUTNsh/Pm8ZmKc2Qb1NYglfLwTLjJKIacejlmOeLiE69A1F77SOfEQeZ9SJEcO1E1C1V\n5vxhiBorbcZrV9ldyO5hAl5MRRn4FlZLEAP0SERQ1CKMvwFPODYCnw7M5XBk96QNjRJkZ1FmxjES\nv6Cw4+pEDOQjzDPdjkRuV5nn/TFDs8X8HwXmdyP4lelDm37cuSw218oN7VtiIdEXFOMN1RuPqeA9\nxdR5uH3M7Ty1+ynf/WFtowLulrCEqlFV7N6zm1nMYi1ru60nEfYZ8utH2LoRQQTbdVfD4kZuzOWY\nguhneDAYrock5j4yl+bzmvPOJ5YlSI9PCwO3OYvGI0ztNCRnUxqJLN6HMKEwV+pSPB25mzOpwZxb\nieeB1AA8jzDnDJ7aph5ZJdvI7GCgWApZlU01Y2lGGO37eMLNegk9av5WIZHKVuApJICtFGGydkw2\nktymCv8LngG6gvzYC8C4d0u/NtV3KfIG7kcM0DVmzAm89OIt5pwVKsMQYVmJl4Nppfls+ykz94zE\nM+6/bK7ZvsciCtIk+QkCi4BS6u8QMWRxOPB/tNZzA+3mIlEzbcDXtdZDMiKjGH1+b3T+wXuCdR7C\nUNblsTV7f1jbQgF3tf+jlv2/358XgOeiJKCTDX4G8pIDVuVWa4XbRc3N0jiSI/0xE3GCv8GFz3Dt\nILUnFe5Bsw9hNtWEu6ouxb/q34+/RsM+JPK3HWGgJ+EXGCUI83VTclh30F34o6vttSziuWPLlw7D\nnxbElgLdjjDnFkPnq4R7Ci0zfxvM/4cId9vdRzhKEZeELcgOJJjCex+yi7FpvMPGYNVTrqptuZlb\n0NMrhadiSpp+w+Zv634/HzHuCGit30YUhSilShDx6wsTVEqdB0zTWh9hbG7/D3HMHXIoxvjcGwN1\n8B63zkNUMFtXmecZYu8Pa1swGK7Sq/1QTNBc2GfIrx+RikhWFmzXHc0sWa7gCi/JYZzgb3CRZ7g2\nyCay4R40ZYhKKMzjaB9iA3gYLzFfGx4DPM3cV2n6OQxZdS9EVr4jkBV9MLPqhUjRoi/hJeZbjefe\nWmPaHYsIjKBb6gXAO05fh+CpasI8hS4w47I0KkP6tM/C9ehK4hU8etuMKyyF93BEbWfpho3hHNPO\nxfnIbi7Yn2soj5qPNVavpK84A9iktd4aOH8h8AsArfVLwEilVF2fqR2EKMYbqjceU8F7pjOdu5HY\ng7BkefeW3cu5V52bd/+JnMj9+NUxu9mds0tY3Md97K3fy0VXX0TDPzRwN3eH0rmHe3xJB+/iLl+m\n2dd5ne/xPSqo4Pt8n3u4h//gP/iAD5jDHF9fd3EXrbTyIA/mzp3Iibl5WjzEQ5zACbm/IDuLh+of\nGtAEf/FOIgTXzLqGTQ9u8mIlQBjJyIgbWon2ULJ5jtbh6cQXEC5sFpJfi2EF0Z4/7s5V49kAFP4q\ndeEyT1QvaYTxu37aUUuHsXhJA6P6rDZtViFr65H45/ObiPsU/rcxagwt5OfACtNiuJvBqL6yeNlu\n/xjRpjhcSrjv26GAKzi2IfupHX2idhCiGG+o3nhMhd0zLDWMm/50ExW6guZsMzckbmB01Wi6yro4\n96pzfd5N9v4l85ZQsa2CG965gUQ6QRddtNFGO+3cpG6iVJeSqcww6ehJfPMH38zFZlz6mUt59PlH\nyZDhOq7LpQVpp51HeISFaiFlw8qon1zPrm27uL7lerJkGcOYXEEiEKPzGZzBr/k1jTRyK7dSTjlp\n0rTQQhttbGADN3ETR3AEWbJMYxo3cRMAXXQxnvG8wiu5yGuAv5b+ldvm3xaXLx1snH+mLNsvu/Ey\n9tTsEcY7Da/0aBAZouMD7G7ZjY2Iagvhq+eoJH6uIAgmBcw45wu57lpHE3f1HxRKlkYT/iSBYbCq\nrwYz7mAa9ChBqxEVkRUAUYKxFs/dFkMnqMVI4iVUPL1AX2lkV/daxPUioJSyZZmui2oS+Pzht1JH\noJigt6ID4/p4T3/d/83vfpPFlT1LchgalGdUQw00hBqkb6u6jQmpCXnXLuZiFp29iCkzprD6h6u5\nvMszjN9bdi9fvOmLB32CvyGL8888n5MeOYmnG572Tu7ES8ZnsQxhbq4B2sJ6HC1D1EggDDwqliAK\nCfILDtk+XyLfe+piRFdvPXjHkm8XWQK+GifD8ebmziVJuB1mONHztf2HvV1Tgd/hd0ldhgi1T+FP\n+1GofxuJvZ58o52t7JdEnkMToupzvZtWInaSY5CUHb3HucArJqA0iLAA0rxAUTf+Z+bMmcycObNP\nA4rRP+htksMoA32YYdtiYmpi5DXaye2Obn/gdsq6ykJ3TQDPPfdcvwcaf+RdYG0ivw7dQYWq4JpZ\n1+R2EsufWc5lt13Gns/ukcZ2lRt07/wjwsgrkZVpKSIIlNOuBs9l9HnE1uC6a1oPo2CZTnutE/Fi\nSiM7iAxeveawbKmLEOFl0388jewCbBLAFPAvTvvg3PYiTL6Z6CSFh5v2u/GM7tVmrEeQX0vaYokZ\nu302O5DcUw1Om4V4CfrS+N1t3TnuB07B/510kJ+FdyHy/NzvrQHZZU0DnuidC6xS6lfAk1rrX4Rc\nOw+4Smt9nlJqBnCf1npGoM2QcIEdiuhtksOo+37KT9HoSNfWqGt9SaoYx0n0Eb5EfgBJqFpXxdTJ\nU9myeQv7W/YLk7LZSEuBLwQ6SSI6fddHP4msZkEYXBYRIHZlb5l7CWJXsFlWT8ILKLMuth+Y+xJ4\nO4YknmfU+4QXM1qFGM2DQWYrES15AtGY22yqWxDmbgVJJ7IDaSa/jgXIzqTGjGE7/l2ApZdEVumF\nCv+Al47cLYW6BS85YqHAvj1gknp6NG2mWKsaayA62eJq5Lt4tedCwmQaeBeYorVuNeeuBNBa/9h8\nfgB5AvuBb2itXw30MSBC4kDVgugOs2fNZu3CtVToCjpUB5M+NYnxleN941y/Zj1PPPAEpGB/ej+j\nDh1Fzega2lva6WrqItWVooMOJh02ibLyMjrppH5EPY17G0mQYMyIMb7jD/Z+kGvjPouzjzmb5g3N\nuSJA5ZTTQQf71D7qyuvIdGS4lVsBfKm83+It9rOfaqrZX76f2mwt7V3tKBQVVNBFFylSVFFFDTUk\nSLCb3dRQQxttVFLJbdyW63Mb22illf3sZzSjmcCEXM3rJprYwx7GMIZOOumgA4WiqqaKiUdO5Mof\nXDngWWA/0uomXyK/JLAJUp9P8SZvwgn46zKsIT/HkrnHl4bangu6ZFpD6yJkJTsKv9rqd4g6y5Y4\ntbDpxIM0bZunCVclVSFM3Ho+7cPb3QSDzp5FWN1Y/IkHl0Jo6d6k6ScsmV5wR92Bv6jRfvwC4nFk\nVxXmVmwxlfD63tOQ1ObuuDbhN5QXk6LkQuDViOsFoLW25Yzccz8OfL6q5z33DYNdC6JYzJ41m02P\nbuKH/DB37u7n7+aTfDJniH1wzYPsbtnNf2S9im93vXsX6XfT/Bv/ljs3n/k0bWjibM5mDWtQKBIk\ncqm/P+ADX4T0fOZzOIcznek8vOlhbv7Xmxn53khmMSsvavtufTfDOoaRMAnHwiK77+VeqqlmX3of\nZ3Imf+SPvjTlz/JsaLT0dKZzB3dwMzczkpG5NlH3nMEZrGFN7t75zKeJJtgPretamXfFPJg/sN/r\nR9oF1hcPEeUmuQGP8XwKYVbPIivQFxBm5jLx7hLjfR5R9QQNup9DGHXQPfRiZBdiiwsF+29BXGxd\nF9jpiMDZhqzkD0cExiXkCwg7vnLCs7eW49WKsHghZPx2jlm8+tWvIjuEw5FV/Pl4Bm3rDkzInK0r\nrcVGROgtdOY4zZwvxRMEhZ59WLLFlWZsQwyL5y72CQiAr2z6iqS9OIBYu3CtL+UFwLVcyyu8kvv8\nrT3fYlJ2kq/NGMb40mmAGILHMpZXeCUnGCwTX8taH0O37S2dr2z6Cp3vdXIt14a2vZZreY/3cq6v\nYW2+zbd5j/dyfVgBYem7zD5I/3qup5RSX5tC97j32nnbf8Mbhw/49/qR3kn44rjOl8kAABVOSURB\nVCGixGUH/hiF4Eo/uOotJpNpMCNqd7DtU+Sv7MsIj3B+GRlrB7LatjuEqPFFeVxVIkFuC/H0/eX4\nVV5WRdSCCMz95AfZWQSD2n4bQbcVsRfU46mnFiNpP+oR4b0HL8HfKvzC2oV1QwaJVzkEz2OtIfyW\nDzP6O5tpf6FCh/tNdxe53F30MRQXie22t5HPUW0rqcztbn4T4bdto6SDffR0vMXc496bZwAf4O/1\nI72TuGbWNUxdN1U+RKkjMngr4zWEr3rbkHgGEAYZBlftHJURNer8OMQe8TlkZZ50rkXVZ+5EdhQV\nCJO3KOQOGnX+XUS3/0WEwdqUGDYY8HTzuZXwHYldzYet9KPiS8Yju4TtSIzJQkPbZm49H4/Zb0Lc\nYkdE9PU+sgPZjDzLfaZ9g7l+YBfY/Y6DJfV2EB0q3K2vu8jlQtHHtm0xkdhuvzbyOaqtjYCeznTS\nET+OqIjsYuh3BFwci4mwds+5/wb6e/1IC4nzzzyf+791P8e/ejwljSX5zMK6ZlrmNjavC0E9ssJe\njhhLg9W5XbXGIkR1sjykTZb8MQRVIhcg6h6LwxDbQXDc9r1uNmOyiFK77I+g/WlETbUJL/6glHC1\nzhiid0lRNSysS6xFEhEI+0z7TyMquksQL6hhpt0y5LkcieSbWoio2IJzWIyXAPCzSL6mOmRH8Riy\nWwlPp/OhxWDWgugJTrwkP4p4DnN8kcsPjHqArSX+wPXd7M6Lln6Ih9jFrlwEstXXQ3gkthulvGDq\nAhKTE5HR1HOYw2Qm5+6rpTYvSvoe7mEyk5nDHE7kxLxo6Xu5N5L+ndzpG29397j32nnbfzY6fCDx\nkfZugoCHUxJZbe5CVpzDEOZo3VILedl8FmFUKWR1bF082xC1SBkicFJ4taJH4M8mezKSxCGBMEhN\nvmsohk41Ipj2I0yvJdDX2+b4G+Qbu5OIOmo4stM4HPiD6Wc3IgTGke9yalN+lBDtKZSNeEY2oG9W\nyLWfI4y6Cnlmrr0jGF1teZ+tIZ5G7C2uZ9kLpp+s06Yc2Z1YF1hb47sGEUjrhlYWWLfkp5t6+0Aj\nzLuprqrON871a9bz5ANPolM65900bPQw2ve209nUSaozRZo0Ew+bSKIiQafupG5EHTv27iChEowe\nPtp3bEue1o2o8z2LMO+mNGlaVSt15XW0d7aTzWZRKHawg/GMp5JK2mmnjbY876YSSiinnAyZnBeT\nrQORIcNwhpMiRQstjGIUWbKUUEIppXTRRTvtVFNNCSV00UWGDApFJ52MYESujUJRXVPNxCMn5qLD\noxC7wHaD7mIg5j4ylzVvrmHP5/b4b0zi1WFwXSeT5KtMXJfO1QjzCav1YGtA/BrRnY/HH1BmmaF1\n/XwWUbVEubeCMPHnkHCt4JgaEQZpmXISL3sr5CcR3IUnDAu5i05B1G5R9SwOR8qxBoPlrJdYWHT4\nxxHX33SBfu3v4DFEiFpBvJFwwbMcEQKn071wfxb4w9ASEjFiQOwCWxB5MRDApge94ytuu4JG3Rhu\nB2hA6h/YVNzuecz5FoRRucbP3UTnNLJqkk7TJlgEx0YQu59/gahijsEzEu9GdgrbEO+hSjzDrV0l\nT0N2L2lEODQ4/5eaftYhzL4czxsqiZd+Iww25caLCHN3vaRcYfl6YDwd+HckjyB2Eo3stGyB22GE\nw1Xf2ip4mDGE2/v8DgclyM4pWAfE/nROR3ZSMWLEyMOQFRK+GAiDTcdtYt6j89i5Y6cICLvKDIPN\nMVSBnyE2IG6lJXjMCoRJnoRXNyEI248iWm/fBJzofK5CbArB6nLPIszxIkSINJCvktpsxuem+E6S\nnxF2GcKkOxw6SfJX34sRVdlCZLewHlH9JMycrHfUCkTouONZiF9YvY6nllqIMO9L8FdncGG9x9y0\nHCDfyWMR97iCZQeeC7DFMqKdDGLEiJHDkBUSUTUh2rPtJHcmvZV8MOdSEmH0FcguogJhgraYzXjg\nKNPWrV1tmZeNKwjmWWpB0ke8gTD+MJTgZ65lCLMLi0mwhu9jzLHrpusy0wvMOLcQrgq7AEn7UeLQ\nsWNYhQiQoG1kmZnnyADdRYiHUzDC+iREaDWYeycgz9FWjrNpa2wsSFB1ZoWTqyKzyETcE3QLDD7D\nC4gWSjFixMhhyAqJqJoQlSWV6FJHB9xg/q5CVDgjyI/YnYro2a3rpIWbOiKJqGpsGc5ViDBIIR46\nW/BW0r8iX5AsAY53Pi9CBEt1xATteTv+R5FvM6xK3VgzztURfdWTn7zajvVxxKC+ycwhi9gX1pBf\n4+LzyO5iCaLqKsPbNbUgz8Teu8/MIYXnlpsgXHW2E9lVuXOim3t24T3jKBWgPR/0RosRI0YOQ1ZI\nhNWEmPrqVK6+6mp2ztvpL0nYgBcJHBaNvArZefwX/iCyHYiuuxXPRpHEr/5ZYI5txDWIF1ENft38\nBNNmC5JbSSP69yj3TNfWafvX+IVYsG2h1BQ2HiQYIOcWSLJ4luj4jFKE+boCcAV+9ZwVrjYAzu7m\nykNoLTO0WhDhOs4Zn43LaCBfgPw3ovZaQrRaqQ3ZoRwWcT1GjBhDV0hYL6Z5j86jPdtOZUklV191\nde56YnGCzuGdOffK+j/WkxmXYRchGZ+tgTOL6NNdBrgUSYvRYD67dQ5ADMvWg8dC49WX3h7o73HE\na8fmM0oSbh9QeALJ9R4qlF67iWiD8+aQuS0h3KX1dDxX1CCy5AccnoM/slobuk0IA38JEZopvHiN\ncmS34aqYluJ3h12B1BMPznkFno3EBhMGU7zbVOln4Y/TiBEjhg9D2gU2iDCPp8oVlRxScgi1Y2rZ\nsnMLzeXNfkYEnqvkAqJdUt0VvHW/tN5I4KmwXC+gsNTjbciuJeh6a9u4mU1t4FgVXmW5FoQxVuCl\nFa9EdP+dCBOvxbOlHI64kf4N+OeQuT1MeKpwmwU2KJB2IjmugjsSW5nPBrdZY3cKsU+4qitrwynm\nWT9m5jUKUV9pM4bReEF/USneNzt93RK7wMYYeohdYAsgLEYizOOp/Zx2ti/ezuazHH3QswijsWqk\nckTVEfW0gl9BMN/TEkRVVYIYe7cgTLQRYWINTtsnzV9XNdTgtFnlHF8E/BJhepcgwiSYarwZETyV\nwKmGtk1wXYbYB2qJzt1kDcMuw29AGPA+RF1ja1t8DBE2YeqpZrxCRJOdvv5Avm3jAqKr6QWftZtC\n3cVCPJda6xDQEGjzlwgaMWLEyGFIComoGImqbFWo8TNVm/KfOB0xBLsFgFYQrYcPLgSDJTovQnYh\nY/GrYpbiqYwwx9bds1ClOxeVeOojKyDCEhBeYo6bEAZtdzZJxOPKrVKHc21kSH+vIG/ORYHzkJ9C\nHPP5l8juxp3/CqLfwKh8NMFnHZ7yxqsnAdG2mH0R52PEiJHDkMzdFBUjsb1xe/gNYbv9+sDnc/BW\n1S5sDiGLJYSnnw4ySJB4BTcP0yZElWRjH6zXzm8RoRWWtTQdOA5j0AnnuCvQZhP+kqUu1hCerC+N\nX0DY85uJ9iQqJ9xWEcXAK0LGE3zW1hU3DBqZq7VjBPta4Yx1ZUQfMWLEGJo7iagYifqx9YxcN9In\nQKpWVJE6KpXfOExwjEDSUixE1C3teEbfLeaeND1PP23rUXcizNaNWAbPNfaNQN8r8UeMR0Ufu99y\ncIVulwm2X0t3N9ER0FGr/J1E77aizivCd0wfc8ZjPcfq8J71duTZbye/Zra747LlZUsRFVYCsV18\nDEmhbsukxogRIxRDUkhExUhMrJ/I1V++2ufxNOPzM1jwpwVsanB2HkFvJAublmIzwnz+hOelZJEk\nvIpaFCOqQHYon8db7U7HS3/t9lGHME2bgHAaEtthmWwhu4JFkFkXsn1E2VPbIs5bO0XQk8jNShtE\nrblnOeLZNBb/jqmBfGM1yM6qlfy4lApEAGw0/byBZIoN1tu2WXet2s3xiI4RI4aHIendFGaTmPrq\nVO6/6v6ca2ywvSs4UrtTPL/t+fBymevxXF6fRrxzgtHVbrR2BlEhQXgMgPVo6kKY1gjExpBECuu0\nIQFyNiOrLU16lhnTCMQIPQZhtpp8N9YJiDCzEdFu6dQk+Wk/CiXks/SD6cItHRCDcDVenqSM+TsM\nv/utjWH4FF723YpAmxWII0BwTvtMf+3IbqTMjKkcyVtlM+1ONXNP4s98uxepR7EPEnsTdL7WGXs3\nxRhyGFJZYJVS5wD3IT/1+VrrOwPXe/RjCjL+q798daiAiMKsK2ex8PmFZEoy6E7NuNpxHH/s8YxO\njObpdU+T6kqRTqWpppo22iitKCXTkeGQUYcwdtxYdJdmxLgR7N21F1WmGD5quO+4dU9rro07vmNO\nPYYNjRuEyaXxVC0JoBNK06UcPf1oUq0pduzaQbYiS6opBWVQUlVCpjkj91oXWJu6vBNqS2v5+Cc+\nztbNW9nVsouSqhJSe2QeuaC9rLQlYb6JDkQlVYEw+lYoH1UOGtJdaWmTRZh2FaKK2ouMoRwREGmE\nkXdC+YhyyqrKSLelOWTUIYwZNYb1b68nk8hIP23IXGpKyKaycn+Z3F9dXc1RDUehuzRpnaZxdyMT\n6iewbfM2mlPNMuaMjKdmWA11w+oYOXZk3vMOe/afO+tzPf4xKaVGAvORvYsGLtdav+hcn4mINOs6\n9xut9W2BPmIhEWPA0B9CAq31Af+PsJqNyFo5AbwGHB1oow8EVq9e/ZGieyBpH8g5m/erp+/tLxDB\nACLKagPXZwJLu+ljUOY3GM92qNAYLDqDQaM373Xw/8Hi3XQysFFrndRadyJRCQe2jJbBc88995Gi\neyBpH8g59xRKqVrgVK31TwG01l1a65awpoM7snAMxrMdKjQGi86H5X0/WITEoUjGIott5lyMGAcr\npgC7lFI/U0q9qpR6SCkVTMeogU8ppV5XSj2hlPr7AzDOGDH6hINFSMRK2RgfNpQhzsn/V2t9PGKC\nvz7Q5lVgktZ6OjAP8ZuLEeNDhYPCcK2UmgHcorU+x3y+Achqx3itlDrwA40xpKF7YOBTStUDL2it\np5jPpwDXa62DNQfde7YAJ2itm5xz8XsdY0DRk/c6DAdLnMRa4AilVAOS/edL+JNiHBD3xBgxoqC1\nblRKbVVKHam1/itwBuK0nINSqg7YqbXWSqmTkUVZU6Cf+L2OcVDjoBASWusupdRVwFOIp9NPtNZx\n+rUYBzuuBh5WStlKGJcrpa4E0Fr/GPgC8L+UUl2Ic++lB2ykMWL0EgeFuilGjBgxYhycOFgM15FQ\nSp2jlHpLKfWOUuq6XvbxU6XUDqXUG8650UqpZ5RSf1VKPW0Co+y1Gwy9t5RSZznnT1BKvWGu3e+c\nr1BKPWbOv6iUOsycn6SUWq2U2qCUelMpdc0g0q5USr2klHpNKfVnpdTtg0XbXCtVSq1TSi0bZLpJ\npdR6Q/vlwaRdCIbOBtPnI0rl545RSs01/b6ulDqumH57QkMpNVMp1WKezTql1Pd6SsP0M9vQeFMp\nNTuiTV/nUpBGb+aiesgHAvcWzYf6SCfv/e0BjUvM959RSh1f4N6e8dS+BloM5H+KCLIrsp9TgeOA\nN5xzdwHfNcfXAXeY4783dBKG7ka8HdfLwMnm+AngHHP8r4iXC4g95VfmuB74uDkeBrwNHD0YtM3n\nau0Fer0InDKItL+NlCxaOljP23zeAowOfP+DQrvA+9eAyZFrPj8GfC3Q5jzgCXP8CeDFHr7jxdCY\nSTfBfUXQOQZJ5FKJ/D6fAab281yKodHjudADPhC4r0d8qLd0ot7fHtA4CslUtho4PuK+HvPUfmfs\n/fkf+CSwwvl8PeJB0pu+GgIP9C2gzhzXA2+Z4xuA65x2K4AZSGaivzjnLwX+02nzCXNcBuyKGMNi\nxMA5qLSRTEprkPQRA04bmIhkljoNWDaYzxv5kY0JzH/Qv+sA/dHIAmGUuWcZcEagzX8CXwobc5Hv\ndzE0Ztrvow+/yS8gaXPs5+8B3+nnuRRDo1dzoUg+ELinx3yoN3Si3t9iaTjnCwmJHs/lYFc3DWSQ\nXZ3Weoc53oHkWAVJ+7YthGbw/PvOWHLj1Fp3AS1KqdEuMSWeW8chFZ0HhbZSqkQp9ZqhsVprvWGQ\naP8I+A7+HLOD9bw1sFIptVYp9S+DTDsUWjya7gHeQ7z3mrXWwSoWYe/6xEL99oKGpu/BfW8Cpxr1\nSTVSVzA4zj7NpUga/TEXiH43XPQHHyqGDoS/v/2JHs/lYBcSelCIiEgdMFpKqWHAb4DZWuvWwaKt\ntc5qrT+O/MD+QSl1WuD6QNA+C3H7XEdESooBft6f1lofB5wLfEspdeog0g6FUmoq8L+Rld8hwDCl\nVFjl8ODzKnqcRdLoc3Cf1vot4E4kB/KTSJL1sNJRvZ5LkTT6PVCxwLvRr+9LN+9gwfe3P8j39IaD\nXUi8D0xyPk/Cv8LrC3YoCYhCKTUBKZkTRnOiofk+/tWMPW/vmWz6sonemsznBCIgfqm1ti/yoNC2\n0JJTaDlwwkDTRhKpX6gkcOxR4LNKqV8O1py11tvN311IcvSTB4t2AZwI/Elr/YHZffwWSZDuImws\n73fTb49oaK1btdZt5vhJINHdLigMWuufaq1P1Fp/Bqni8XagSV/n0i2N/poL0e+Gi/7gQ8XQiXp/\n+xM9nsvBLiRyQXZKfNG/hBSk7A8sBb5mjr+GtxJZClyqlCpXSk0BjgBe1lo3AnuVUp9QSingMiQN\ndLCvL2DKB5l2PwH+rLW+b5Bpj7UeFEqpKuBMZEU2oLS11jdqrSdpiUS+FFiltb5skOZcrZQabo5r\nkF3NG4NBuxu8BcxQSlWZ/s4A/hxosxT4ZzP2GYi6aAfFo1saSqk6cw0VEdxXDJRS483fyUi5rEf6\neS7d0uivuRD9brjoDz7ULZ0C729vEBWk2fO5FGMgOZD/kW3X24hF/oZe9vEooqdNI/q4byCGvpXA\nX5Ft7Uin/Y2G3lvA2c75E8yXthGY65yvAB4H3kG8iBrM+VOQbfJrCINeh1R2HgzaxyJb8teQUknf\nMecHnLZz/TN43k2DMecpZr6vIXrtGwZ7zgXewe8iEdlvICnGy4ErgSudNg8Yeq8TYXjsCw3gW+a5\nvIbUVZzRy9/T84bOa8Bp5lx/z6Ugjd7MhR7wAURlt7w3fKi3dJDSYnnvb5E0LkfKdW1Fqsg0Ak/2\ndS5a6ziYLkaMGDFiRONgVzfFiBEjRowDiFhIxIgRI0aMSMRCIkaMGDFiRCIWEjFixIgRIxKxkIgR\nI0aMGJGIhUSMGDFixIhELCRixIgRI0YkYiERI0aMGDEi8f8Bhdf5Z45f0qQAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x121303dd0>"
]
}
],
"prompt_number": 1084
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#multilinear regression OLS\n",
"\n",
"import pandas as pd\n",
"import numpy as np\n",
"import statsmodels.api as sm\n",
"\n",
"X = loan_limit_by_inc[['annual_inc','emp_length_clean','grade_clean']]\n",
"y = loan_limit_by_inc['funded_amnt']\n"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1085
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"X = sm.add_constant(X)\n",
"est = sm.OLS(y,X).fit()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1086
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"est.summary()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<table class=\"simpletable\">\n",
"<caption>OLS Regression Results</caption>\n",
"<tr>\n",
" <th>Dep. Variable:</th> <td>funded_amnt</td> <th> R-squared: </th> <td> 0.212</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model:</th> <td>OLS</td> <th> Adj. R-squared: </th> <td> 0.212</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Method:</th> <td>Least Squares</td> <th> F-statistic: </th> <td> 1495.</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Wed, 19 Nov 2014</td> <th> Prob (F-statistic):</th> <td> 0.00</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>18:25:21</td> <th> Log-Likelihood: </th> <td>-1.6328e+05</td>\n",
"</tr>\n",
"<tr>\n",
" <th>No. Observations:</th> <td> 16683</td> <th> AIC: </th> <td>3.266e+05</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Df Residuals:</th> <td> 16679</td> <th> BIC: </th> <td>3.266e+05</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Df Model:</th> <td> 3</td> <th> </th> <td> </td> \n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
"<tr>\n",
" <td></td> <th>coef</th> <th>std err</th> <th>t</th> <th>P>|t|</th> <th>[95.0% Conf. Int.]</th> \n",
"</tr>\n",
"<tr>\n",
" <th>const</th> <td> 2194.4996</td> <td> 212.309</td> <td> 10.336</td> <td> 0.000</td> <td> 1778.351 2610.648</td>\n",
"</tr>\n",
"<tr>\n",
" <th>annual_inc</th> <td> 0.2503</td> <td> 0.004</td> <td> 60.796</td> <td> 0.000</td> <td> 0.242 0.258</td>\n",
"</tr>\n",
"<tr>\n",
" <th>emp_length_clean</th> <td> 78.6857</td> <td> 9.810</td> <td> 8.021</td> <td> 0.000</td> <td> 59.456 97.915</td>\n",
"</tr>\n",
"<tr>\n",
" <th>grade_clean</th> <td> -478.7410</td> <td> 27.957</td> <td> -17.124</td> <td> 0.000</td> <td> -533.541 -423.941</td>\n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
"<tr>\n",
" <th>Omnibus:</th> <td>197.206</td> <th> Durbin-Watson: </th> <td> 1.967</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Prob(Omnibus):</th> <td> 0.000</td> <th> Jarque-Bera (JB): </th> <td> 137.111</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Skew:</th> <td> 0.106</td> <th> Prob(JB): </th> <td>1.69e-30</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Kurtosis:</th> <td> 2.609</td> <th> Cond. No. </th> <td>2.43e+05</td>\n",
"</tr>\n",
"</table>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1087,
"text": [
"<class 'statsmodels.iolib.summary.Summary'>\n",
"\"\"\"\n",
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: funded_amnt R-squared: 0.212\n",
"Model: OLS Adj. R-squared: 0.212\n",
"Method: Least Squares F-statistic: 1495.\n",
"Date: Wed, 19 Nov 2014 Prob (F-statistic): 0.00\n",
"Time: 18:25:21 Log-Likelihood: -1.6328e+05\n",
"No. Observations: 16683 AIC: 3.266e+05\n",
"Df Residuals: 16679 BIC: 3.266e+05\n",
"Df Model: 3 \n",
"====================================================================================\n",
" coef std err t P>|t| [95.0% Conf. Int.]\n",
"------------------------------------------------------------------------------------\n",
"const 2194.4996 212.309 10.336 0.000 1778.351 2610.648\n",
"annual_inc 0.2503 0.004 60.796 0.000 0.242 0.258\n",
"emp_length_clean 78.6857 9.810 8.021 0.000 59.456 97.915\n",
"grade_clean -478.7410 27.957 -17.124 0.000 -533.541 -423.941\n",
"==============================================================================\n",
"Omnibus: 197.206 Durbin-Watson: 1.967\n",
"Prob(Omnibus): 0.000 Jarque-Bera (JB): 137.111\n",
"Skew: 0.106 Prob(JB): 1.69e-30\n",
"Kurtosis: 2.609 Cond. No. 2.43e+05\n",
"==============================================================================\n",
"\n",
"Warnings:\n",
"[1] The condition number is large, 2.43e+05. This might indicate that there are\n",
"strong multicollinearity or other numerical problems.\n",
"\"\"\""
]
}
],
"prompt_number": 1087
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Mapping using folium"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"state_geo = r'https://gist.githubusercontent.com/datadave/108b5f382c838c3963d7/raw/3036216d894d49205948dbbfd562754ef3814785/us-states.json'"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1088
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df = loan_2[['addr_state','funded_amnt','annual_inc','emp_length_clean','loan_status_clean','grade_clean']]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1089
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df = df[df['annual_inc']<200000]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1090
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import folium\n",
"from IPython.display import HTML"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1091
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df.info()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 53487 entries, 3 to 188121\n",
"Data columns (total 6 columns):\n",
"addr_state 53487 non-null object\n",
"funded_amnt 53487 non-null float64\n",
"annual_inc 53487 non-null float64\n",
"emp_length_clean 53487 non-null float64\n",
"loan_status_clean 53487 non-null int64\n",
"grade_clean 53487 non-null int64\n",
"dtypes: float64(3), int64(2), object(1)"
]
}
],
"prompt_number": 1092
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"map = folium.Map(location=[40, -100], zoom_start=4) # Initialize map\n",
"\n",
"thresh = [2, 3, 4, 5, 6, 7] # set the threshold, use histogram as guide\n",
"\n",
"map.geo_json(geo_path=state_geo, data=df,\n",
" columns=['addr_state', 'grade_clean'], # pick columns\n",
" key_on='feature.id',\n",
" threshold_scale = thresh, # set threshold\n",
" fill_color='YlOrRd', fill_opacity=0.75, line_opacity=0.5, # colors\n",
" legend_name='Grade (G-1 F-2 E-3 D-4 C-5 B-6 A-7)') # legend\n",
"map.create_map(path='grade3_chloropleth.html') #draw map"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1093
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"HTML('<iframe src=grade3_chloropleth.html width=1000 height = 500><iframe>')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<iframe src=grade3_chloropleth.html width=1000 height = 500><iframe>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1094,
"text": [
"<IPython.core.display.HTML at 0x1211b78d0>"
]
}
],
"prompt_number": 1094
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"map = folium.Map(location=[40, -100], zoom_start=4) # Initialize map\n",
"\n",
"thresh = [5000, 10000, 20000, 30000, 35000] # set the threshold, use histogram as guide\n",
"\n",
"map.geo_json(geo_path=state_geo, data=df,\n",
" columns=['addr_state', 'funded_amnt'], # pick columns\n",
" key_on='feature.id',\n",
" threshold_scale = thresh, # set threshold\n",
" fill_color='YlOrRd', fill_opacity=0.75, line_opacity=0.5, # colors\n",
" legend_name='Funded Amount') # legend\n",
"map.create_map(path='funded_chloropleth.html') #draw map"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1095
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"HTML('<iframe src=funded_chloropleth.html width=1000 height = 500><iframe>')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<iframe src=funded_chloropleth.html width=1000 height = 500><iframe>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1096,
"text": [
"<IPython.core.display.HTML at 0x113822e90>"
]
}
],
"prompt_number": 1096
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df.annual_inc.hist()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1097,
"text": [
"<matplotlib.axes._subplots.AxesSubplot at 0x119c7b2d0>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEACAYAAAByG0uxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHTxJREFUeJzt3X+MXWed3/H3B0xSfgQG05VJnMCYXQPxktVQNxipBC6E\neEPVjYOEiC016wG6EnjDj221i81KDfxR16Td7iatQOom3rFR4022oSHpJt442RyKlIZZ0jgYjGt7\ntaaxweZHQgJCBFv59o/7jOdkGHvGZ+7c57nnfl7SyOd5zrn3+d7HZ+7X5/nec62IwMzMrIkX5Q7A\nzMwGl5OImZk15iRiZmaNOYmYmVljTiJmZtaYk4iZmTV21iQiabukE5L2zej/uKTvSPqWpM/X+rdI\nOiTpgKS1tf7VkvalfTfX+s+XdEfqf1TS63v54szMbHHNdSXyF8DV9Q5J7wauAX4rIt4C/MfUvwq4\nDliVHvMFSUoP+yLwkYhYCayUNPWcHwF+nPr/FPg8ZmY2MM6aRCLia8DTM7o/Bvz7iDiZjvlh6l8H\n7IqIkxFxBDgMrJF0IXBBREym43YC16bta4Adafsu4MoFvBYzM+uzJjWRlcA70/JTJemfpv6LgKO1\n444Cy2fpP5b6SX8+CRARp4BnJC1tEJOZmWWwpOFjXh0Rb5d0OXAn8IbehmVmZoOgSRI5CnwZICL+\nTtLzkv4x3SuMS2rHXZyOPZa2Z/aT9r0O+J6kJcCrIuKpmQNK8hd8mZk1EBGa+6jmmixn3Q28B0DS\nG4HzIuJHwD3AeknnSVpBd9lrMiKOA89KWpMK7dcDX0nPdQ+wMW1/AHjoTINGhH969HPjjTdmj6FN\nP55Pz2WpP/1w1isRSbuAdwGvkfQk8G+B7cD29LHfXwK/CxAR+yXdCewHTgGbYvpVbAImgJcC90XE\n7tR/G/AlSYeAHwPre/jahs70h+Hm9rnPfW5RYujXiVuSI0eO5A6hNTyXg+esSSQiNpxh1/VnOH4r\nsHWW/seAy2bpfw744Nxh2vzN5018nG5O77VFvWo2swL5jvWhNJ47gFYZHx/PHUJreC4HjwZh+UFS\nDEKcuXWXs3LOk4ZyOcusVJKIAgvrNvCq3AG0SlVVuUNoDc/l4HESMTOzxryc1SJezjKzOi9nmZlZ\n0ZxEhlKVO4BW8Tp+73guB4+TiJmZNeaaSIu4JmJmda6JmJlZ0ZxEhlKVO4BW8Tp+73guB4+TiJmZ\nNeaaSIu4JmJmda6JmJlZ0ZxEhlKVO4BW8Tp+73guB4+TiJmZNeaaSIu4JmJmda6JmJlZ0ZxEhlKV\nO4BW8Tp+73guB89Zk4ik7ZJOSNo3y75/I+l5SUtrfVskHZJ0QNLaWv9qSfvSvptr/edLuiP1Pyrp\n9b16YWZmtvjOWhORdAXwM2BnRFxW678E+HPgTcDqiHhK0irgduByYDnwILAyIkLSJHBDRExKug+4\nJSJ2S9oEvCUiNkm6Dnh/RKyfJQ7XRObBNREzq8teE4mIrwFPz7LrPwF/NKNvHbArIk5GxBHgMLBG\n0oXABRExmY7bCVybtq8BdqTtu4Arz/kVmJlZNudcE5G0DjgaEd+csesi4GitfZTuFcnM/mOpn/Tn\nkwARcQp4pr48Zoulyh1Aq3gdv3c8l4NnybkcLOllwGeAq+rdPY3IzMwGxjklEeDXgVHgie76OxcD\nj0laQ/cK45LasRfTvQI5lrZn9pP2vQ74nqQlwKsi4qnZBh4fH2d0dBSAkZERxsbG6HQ6wPS/Xoa9\nPW2q3TlDe6rvTPubtjmneNvSnuorJZ5Bbnc6naLiGbR2VVVMTEwAnH6/XGxz3mwoaRS4t15Yr+37\nB361sP42pgvrv5EK618HPgFMAn/NCwvrl0XExyStB651Yb05F9bNrC57YV3SLuAR4I2SnpT0oRmH\nnH7HiIj9wJ3AfuB+YFPtnX8TcCtwCDgcEbtT/23AayQdAj4FbF7g67F5qXIH0Cq/eiVoTXkuB89Z\nl7MiYsMc+98wo70V2DrLcY8Bv3IlExHPAR+cV6RmZlYcf3dWi3g5y8zqsi9nmZmZnY2TyFCqcgfQ\nKl7H7x3P5eBxEjEzs8ZcE2kR10TMrM41ETMzK5qTyFCqcgfQKl7H7x3P5eBxEjEzs8ZcE2kR10TM\nrM41ETMzK5qTyFCqcgfQKl7H7x3P5eBxEjEzs8ZcE2kR10TMrM41ETMzK5qTyFCqcgfQKl7H7x3P\n5eBxEjEzs8ZcE2kR10TMrM41ETMzK5qTyFCqcgfQKl7H7x3P5eA5axKRtF3SCUn7an3/QdJ3JD0h\n6cuSXlXbt0XSIUkHJK2t9a+WtC/tu7nWf76kO1L/o5Je3+sXaGZmi+esNRFJVwA/A3ZGxGWp7yrg\noYh4XtI2gIjYLGkVcDtwObAceBBYGREhaRK4ISImJd0H3BIRuyVtAt4SEZskXQe8PyLWzxKHayLz\n4JqImdVlr4lExNeAp2f07YmI51Pz68DFaXsdsCsiTkbEEeAwsEbShcAFETGZjtsJXJu2rwF2pO27\ngCsX8FrMzKzPFloT+TBwX9q+CDha23eU7hXJzP5jqZ/055MAEXEKeEbS0gXGZHOqcgfQKl7H7x3P\n5eBZ0vSBkv4Y+GVE3N7DeM5ofHyc0dFRAEZGRhgbG6PT6QDTJ96wt6dNtTtnaO+dY3/TNucUb1va\ne/fuLSoet4e3XVUVExMTAKffLxfbnPeJSBoF7p2qiaS+ceD3gCsj4hepbzNARGxL7d3AjcB3gYcj\n4tLUvwF4Z0R8LB3z2Yh4VNIS4PsR8WuzxOCayDy4JmJmddlrIrORdDXwh8C6qQSS3AOsl3SepBXA\nSmAyIo4Dz0pao+673PXAV2qP2Zi2PwA81PB1mJlZBnN9xHcX8AjwJklPSvow8J+BVwB7JD0u6QsA\nEbEfuBPYD9wPbKpdPmwCbgUOAYcjYnfqvw14jaRDwKeAzT19dXYGVe4AWuVXlxOtKc/l4DlrTSQi\nNszSvf0sx28Fts7S/xhw2Sz9zwEfnDtMMzMrkb87q0VcEzGzuiJrImZmZlOcRIZSlTuAVvE6fu94\nLgePk4iZmTXmmkiLlFATKYHPFbOuftREGt+xbja73G/gZSQys2Hh5ayhVOUOoFW8jt87nsvB4yRi\nZmaNuSbSImXURHL/PfleFbMpvk/EzMyK5iQylKrcAbSK1/F7x3M5ePzprB7pLiWZmQ0X10R6JH89\nAvLXJHKP342h9HPFrF9cEzEzs6I5iQylKncAreJ1/N7xXA4eJxEzM2vMNZEecU2khPG7MZR+rpj1\ni2siZmZWNCeRoVTlDqBVvI7fO57LwXPWJCJpu6QTkvbV+pZK2iPpoKQHJI3U9m2RdEjSAUlra/2r\nJe1L+26u9Z8v6Y7U/6ik1/f6BZqZ2eI5a01E0hXAz4CdEXFZ6rsJ+FFE3CTp08CrI2KzpFXA7cDl\nwHLgQWBlRISkSeCGiJiUdB9wS0TslrQJeEtEbJJ0HfD+iFg/Sxyuicwviswx5B6/G0Pp54pZv2Sv\niUTE14CnZ3RfA+xI2zuAa9P2OmBXRJyMiCPAYWCNpAuBCyJiMh23s/aY+nPdBVzZ8HWYmVkGTWoi\nyyLiRNo+ASxL2xcBR2vHHaV7RTKz/1jqJ/35JEBEnAKekbS0QUx2TqrcAbSK1/F7x3M5eBb03Vlp\nqaovawfj4+OMjo4CMDIywtjYGJ1OB5g+8XK3p021O31uz3f8vZnHX9x2v//+9+7d29fx3Hb7TO2q\nqpiYmAA4/X652Oa8T0TSKHBvrSZyAOhExPG0VPVwRLxZ0maAiNiWjtsN3Ah8Nx1zaerfALwzIj6W\njvlsRDwqaQnw/Yj4tVlicE1kflFkjiH3+N0YSj9XzPole03kDO4BNqbtjcDdtf71ks6TtAJYCUxG\nxHHgWUlr1H2nvR74yizP9QHgoQbxmJlZJnN9xHcX8AjwJklPSvoQsA24StJB4D2pTUTsB+4E9gP3\nA5tqlw+bgFuBQ8DhiNid+m8DXiPpEPApYHMvX5ydSZU7gFbxOn7veC4Hz1lrIhGx4Qy73nuG47cC\nW2fpfwy4bJb+54APzh2mmZmVyN+d1SOuiZQwfjeG0s8Vs34ptSZiZmYGOIkMqSp3AK3idfze8VwO\nHicRMzNrzDWRHnFNpITxuzGUfq6Y9YtrImZmVjQnkaFU5Q6gVbyO3zuey8HjJGJmZo25JtIjromU\nMH43htLPFbN+cU3EzMyK5iQylKrcAbSK1/F7x3M5eJxEzMysMddEesQ1kRLG78ZQ+rli1i+uiZiZ\nWdGcRIZSlTuAVvE6fu94LgePk4iZmTXmmkiPuCZSwvjdGEo/V8z6xTURMzMrmpPIUKpyB9AqXsfv\nHc/l4GmcRCRtkfRtSfsk3S7pfElLJe2RdFDSA5JGZhx/SNIBSWtr/avTcxySdPNCX5CZmfVPo5qI\npFHgb4FLI+I5SXcA9wG/CfwoIm6S9Gng1RGxWdIq4HbgcmA58CCwMiJC0iRwQ0RMSroPuCUids8Y\nzzWR+UWROYbc43djKP1cMeuXkmsizwIngZdJWgK8DPgecA2wIx2zA7g2ba8DdkXEyYg4AhwG1ki6\nELggIibTcTtrjzEzs8I1SiIR8RTwJ8D/o5s8fhIRe4BlEXEiHXYCWJa2LwKO1p7iKN0rkpn9x1K/\nLaoqdwCt4nX83vFcDp4lTR4k6deBTwGjwDPAX0n6l/Vj0lJVz9YVxsfHGR0dBWBkZISxsTE6nQ4w\nfeLlbk+banf63J7v+Hszj7+47X7//e/du7ev47nt9pnaVVUxMTEBcPr9crE1rYlcB1wVEf8qta8H\n3g68B3h3RBxPS1UPR8SbJW0GiIht6fjdwI3Ad9Mxl6b+DcC7IuKjM8ZzTWR+UWSOIff43RhKP1fM\n+qXkmsgB4O2SXqruu+d7gf3AvcDGdMxG4O60fQ+wXtJ5klYAK4HJiDgOPCtpTXqe62uPMTOzwjWt\niTxBtwj+DeCbqfu/AtuAqyQdpHtVsi0dvx+4k26iuR/YVLu02ATcChwCDs/8ZJYthip3AK3idfze\n8VwOnkY1EYCIuAm4aUb3U3SvSmY7fiuwdZb+x4DLmsZhZmb5+LuzesQ1kRLG78ZQ+rli1i8l10TM\nzMycRIZTlTuAVvE6fu94LgePk4iZmTXmmkiPuCZSwvjdGEo/V8z6xTURMzMrmpPIUKpyB9AqXsfv\nHc/l4HESMTOzxlwT6RHXREoYvxtD6eeKWb/0oybS+I51s1J1E3o+TmI2TLycNZSq3AEssujzz8O1\nbVsI10QGj5OImZk15ppIj7gmUsL4JcTgmoyVw/eJmJlZ0ZxEhlKVO4CWqXIH0BquiQweJxEzM2vM\nNZEecU2khPFLiME1ESuHayJmZlY0J5GhVOUOoGWq3AG0hmsig6dxEpE0Ium/S/qOpP2S1khaKmmP\npIOSHpA0Ujt+i6RDkg5IWlvrXy1pX9p380JfkJmZ9U/jmoikHcBXI2K7pCXAy4E/Bn4UETdJ+jTw\n6ojYLGkVcDtwObAceBBYGREhaRK4ISImJd0H3BIRu2eM5ZrI/KLIHEPu8UuIwTURK0exNRFJrwKu\niIjtABFxKiKeAa4BdqTDdgDXpu11wK6IOBkRR4DDwBpJFwIXRMRkOm5n7TFmZla4pstZK4AfSvoL\nSf9H0p9LejmwLCJOpGNOAMvS9kXA0drjj9K9IpnZfyz126KqcgfQMlXuAFrDNZHB0/RbfJcA/4Tu\nMtTfSfozYHP9gLRU1bPr+vHxcUZHRwEYGRlhbGyMTqcDTJ94udvTptqdPrfnO/7ezOO3rf3C+Szl\nfHR7+NpVVTExMQFw+v1ysTWqiUh6LfC/I2JFar8D2AK8AXh3RBxPS1UPR8SbJW0GiIht6fjdwI3A\nd9Mxl6b+DcC7IuKjM8ZzTWR+UWSOIff4JcTgmoiVo9iaSEQcB56U9MbU9V7g28C9wMbUtxG4O23f\nA6yXdJ6kFcBKYDI9z7Ppk10Crq89xszMCreQ+0Q+Dvw3SU8AvwX8O2AbcJWkg8B7UpuI2A/cCewH\n7gc21S4tNgG3AoeAwzM/mWWLocodQMtUuQNoDddEBk/j/9kwIp6g+5Hdmd57huO3Altn6X8MuKxp\nHGZmlo+/O6tHXBMpYfwSYnBNxMpRbE3EzMwMnESGVJU7gJapcgfQGq6JDB4nETMza8w1kR5xTaSE\n8UuIwTURK4drImZmVjQnkaFU5Q6gZarcAbSGayKDx0nEzMwac02kR1wTKWH8EmJwTcTK4ZqImZkV\nzUlkKFW5A2iZKncAreGayOBxEjEzs8ZcE+kR10RKGL+EGFwTsXK4JmJmZkVzEhlKVe4AWqbKHUBr\nuCYyeJxEzMysMddEesQ1kRLGLyEG10SsHK6JmJlZ0ZxEhlKVO4CWqXIH0BquiQyeBSURSS+W9Lik\ne1N7qaQ9kg5KekDSSO3YLZIOSTogaW2tf7WkfWnfzQuJx8zM+muhVyKfBPYzvQi9GdgTEW8EHkpt\nJK0CrgNWAVcDX1C3iADwReAjEbESWCnp6gXGZHPq5A6gZTq5A2iNTqeTOwQ7R42TiKSLgX8O3Eq3\nmglwDbAjbe8Ark3b64BdEXEyIo4Ah4E1ki4ELoiIyXTcztpjzMyscAu5EvlT4A+B52t9yyLiRNo+\nASxL2xcBR2vHHQWWz9J/LPXboqpyB9AyVe4AWsM1kcGzpMmDJP0L4AcR8bikzmzHRERI6tlnHcfH\nxxkdHQVgZGSEsbGx05e+Uyde7va0qXanz+35jr838/hta79wPks5H90evnZVVUxMTACcfr9cbI3u\nE5G0FbgeOAX8I+CVwJeBy4FORBxPS1UPR8SbJW0GiIht6fG7gRuB76ZjLk39G4B3RcRHZ4zn+0Tm\nF0XmGHKPX0IMvk/EylHsfSIR8ZmIuCQiVgDrgb+NiOuBe4CN6bCNwN1p+x5gvaTzJK0AVgKTEXEc\neFbSmlRov772GDMzK1yv7hOZ+qfXNuAqSQeB96Q2EbEfuJPuJ7nuBzbVLi020S3OHwIOR8TuHsVk\nZ1TlDqBlqtwBtIZrIoOnUU2kLiK+Cnw1bT8FvPcMx20Fts7S/xhw2ULjMDOz/vN3Z/WIayIljF9C\nDK6JWDmKrYmYmZmBk8iQqnIH0DJV7gBawzWRweMkYmZmjbkm0iOuiZQwfgkxuCZi5ehHTWTBn84y\nsxea/m7RfJzIrF+8nDWUqtwBtEw1ox2ZfwaXayKDx0nEzMwac02kR1wTKWH8EmLIPX43htJ/X6w/\nfJ+ImZkVzUlkKFW5A2iZKncAreGayOBxEjEzs8ZcE+kR10RKGL+EGHKP342h9N8X6w/XRMzMrGhO\nIkOpyh1Ay1S5A2gN10QGj5OImZk15ppIj7gmUsL4JcSQe/xuDKX/vlh/uCZiZmZFa5REJF0i6WFJ\n35b0LUmfSP1LJe2RdFDSA5JGao/ZIumQpAOS1tb6V0val/bdvPCXZHOrcgfQMlXuAFrDNZHB0/RK\n5CTwBxHxm8Dbgd+XdCmwGdgTEW8EHkptJK0CrgNWAVcDX9D0V51+EfhIRKwEVkq6uvGrMTOzvmqU\nRCLieETsTds/A74DLAeuAXakw3YA16btdcCuiDgZEUeAw8AaSRcCF0TEZDpuZ+0xtmg6uQNomU7u\nAFqj0+nkDsHO0YJrIpJGgbcCXweWRcSJtOsEsCxtXwQcrT3sKN2kM7P/WOo3M7MBsKAkIukVwF3A\nJyPip/V96eNU/ohIkarcAbRMlTuA1nBNZPA0/p8NJb2EbgL5UkTcnbpPSHptRBxPS1U/SP3HgEtq\nD7+Y7hXIsbRd7z8223jj4+OMjo4CMDIywtjY2OlL36kTL3d72lS70+f2fMffm3n8trUXaz6btrvn\nZO7fB7f7366qiomJCYDT75eLrdF9IqkovgP4cUT8Qa3/ptT3eUmbgZGI2JwK67cDb6O7XPUg8BsR\nEZK+DnwCmAT+GrglInbPGM/3icwviswx5B6/hBhyj9+NofTfF+uPftwn0jSJvAP4X8A3mf6N2UI3\nEdwJvA44AnwwIn6SHvMZ4MPAKbrLX3+T+lcDE8BLgfsi4hOzjOckMr8oMseQe/wSYsg9fjeG0n9f\nrD+KTSL95iQy7yjmGUPF4nyiaJDmoJcqpuezlDnIr8nvbH0ZzhauH0mkcU3EzErmRGb94SuRHhms\nK5G2jl9CDLnHLyeG0n9nh4G/O8vMzIrmJDKUqtwBtEyVO4DW8H0ig2fgayKPPPIIGzZ8hFOn8sXw\nIqdiMxtSA59Efv7zn/P00yP89Kfbs8Xw0pduAQ5kG//cdXIH0DKd3AG0hj+ZNXgGPokAvOhFLwcu\nzTj+yNwHmZm1kBdihlKVO4CWqXIH0BquiQyeVlyJmFl5pv/LoDz8EeP+cBIZSp3cAbRMJ3cAhcp9\nv471g5ezzMysMSeRoVTlDqBlqtwBtEiVOwA7R04iZmbWmJPIUOrkDqBlOrkDaJFO7gDsHDmJmJlZ\nY04iQ6nKHUDLVLkDaJEqdwB2jvwRXzNrpdz3qcBw3KviJDKUOrkDaJlO7gBapNPD58r9Bp4/ifWD\nl7PMzKyxIpKIpKslHZB0SNKnc8fTflXuAFqmyh1Ai1S5A7BzlD2JSHox8F+Aq4FVwAZJ+b6Sdyjs\nzR1Ay3g+e8dzOWhKqIm8DTgcEUcAJP0lsA74Ts6g2u0nuQNoGc9n77RrLkso7i+2EpLIcuDJWvso\nsCZTLGZmPdT+4n4JSWTBs/yLX+zlla/8nV7E0sgvf/l4trGbOZI7gJY5kjuAFjmSOwA7RyUkkWPA\nJbX2JXSvRl5grsvC5577n72NqpESLl3nG8OOzOMvphwx1OdzWOdgpqYx9OrcHOQ5GBzKfTOMpCXA\n/wWuBL4HTAIbIsI1ETOzwmW/EomIU5JuAP4GeDFwmxOImdlgyH4lYmZmgyv7fSJz8Y2IZybpiKRv\nSnpc0mTqWyppj6SDkh6QNFI7fkuaxwOS1tb6V0val/bdXOs/X9Idqf9RSa/v7ytcPJK2SzohaV+t\nry9zJ2ljGuOgpN/tx+tdbGeYz89KOprOz8clva+2z/N5FpIukfSwpG9L+pakT6T+8s7RiCj2h+7y\n1mFgFHgJ3TuRLs0dVyk/wD8AS2f03QT8Udr+NLAtba9K8/eSNJ+Hmb4SnQTelrbvA65O25uAL6Tt\n64C/zP2aezh3VwBvBfb1c+6ApcDfAyPp5++BkdzzsUjzeSPwr2c51vM593y+FhhL26+gWze+tMRz\ntPQrkdM3IkbESWDqRkSbNvPjH9cw/fGWHcC1aXsdsCsiTkb3xs7DwBpJFwIXRMRkOm5n7TH157qL\n7ocfWiEivgY8PaO7H3P328ADEfGTiPgJsIfutzUMtDPMJ8z+8STP5xwi4nhE7E3bP6N78/VyCjxH\nS08is92IuDxTLCUK4EFJ35D0e6lvWUScSNsngGVp+yJe+NHpqbmc2X+M6Tk+Pf8RcQp4RtLSnr+K\nciz23L3mLM/VVh+X9ISk22pLL57PcyBplO5V3tcp8BwtPYm46n92/ywi3gq8D/h9SVfUd0b32tRz\n2IDnrie+CKwAxoDvA3+SN5zBI+kVdK8SPhkRP63vK+UcLT2JzOtGxGEVEd9Pf/4Q+B90l/9OSHot\nQLqU/UE6fOZcXkx3Lo+l7Zn9U495XXquJcCrIuKpRXkxZVjsufvxLM/V2nM6In4QCXAr3fMTPJ/z\nIukldBPIlyLi7tRd3DlaehL5BrBS0qik8+gWf+7JHFMRJL1M0gVp++XAWmAf3fnZmA7bCEydfPcA\n6yWdJ2kFsBKYjIjjwLOS1kgScD3wldpjpp7rA8BDi/yycuvH3D0ArJU0IunVwFV075FqnfQmN+X9\ndM9P8HzOKb3+24D9EfFntV3lnaO5P4Uwj08pvI/uJxMOA1tyx1PKD91lgr3p51tTc0P3kxUPAgfT\nyTBSe8xn0jweAH671r+a7i/4YeCWWv/5wJ3AIeBRYDT36+7h/O2i+w0Jv6S7Lvyhfs1dGutQ+tmY\ney4WaT4/TLeI+03gCbpvdss8n/Oez3cAz6ff78fTz9UlnqO+2dDMzBorfTnLzMwK5iRiZmaNOYmY\nmVljTiJmZtaYk4iZmTXmJGJmZo05iZiZWWNOImZm1tj/B/ssO6nqtBQrAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x11774c650>"
]
}
],
"prompt_number": 1097
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"map = folium.Map(location=[40, -100], zoom_start=4) # Initialize map\n",
"\n",
"thresh = [20000, 40000, 60000, 80000, 100000, 120000] # set the threshold, use histogram as guide\n",
"\n",
"map.geo_json(geo_path=state_geo, data=df,\n",
" columns=['addr_state', 'annual_inc'], # pick columns\n",
" key_on='feature.id',\n",
" threshold_scale = thresh, # set threshold\n",
" fill_color='YlOrRd', fill_opacity=0.75, line_opacity=0.5, # colors\n",
" legend_name='Annual Income') # legend\n",
"map.create_map(path='income_chloropleth.html') #draw map"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1098
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"HTML('<iframe src=income_chloropleth.html width=1000 height = 500><iframe>')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<iframe src=income_chloropleth.html width=1000 height = 500><iframe>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1099,
"text": [
"<IPython.core.display.HTML at 0x11709ca90>"
]
}
],
"prompt_number": 1099
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"map = folium.Map(location=[40, -100], zoom_start=4) # Initialize map\n",
"\n",
"thresh = [1, 2, 4, 6, 8, 10] # set the threshold, use histogram as guide\n",
"\n",
"map.geo_json(geo_path=state_geo, data=df,\n",
" columns=['addr_state', 'emp_length_clean'], # pick columns\n",
" key_on='feature.id',\n",
" threshold_scale = thresh, # set threshold\n",
" fill_color='YlOrRd', fill_opacity=0.75, line_opacity=0.5, # colors\n",
" legend_name='Employment Length (years)') # legend\n",
"map.create_map(path='emp_lengthh_chloropleth.html') #draw map"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1100
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"HTML('<iframe src=emp_lengthh_chloropleth.html width=1000 height = 500><iframe>')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<iframe src=emp_lengthh_chloropleth.html width=1000 height = 500><iframe>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1101,
"text": [
"<IPython.core.display.HTML at 0x11709c290>"
]
}
],
"prompt_number": 1101
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1101
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Doing some cleaning on loan status to determine the average status per state"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df1 = df.groupby(['addr_state']).loan_status_clean.mean()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1102
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df1.to_csv(\"/Users/olehdubno/Desktop/python_tests/df1.csv\")"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1103
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df1 = pd.read_csv(\"/Users/olehdubno/Desktop/python_tests/df1.csv\")"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1104
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df = df1"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1105
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"map = folium.Map(location=[40, -100], zoom_start=4) # Initialize map\n",
"\n",
"thresh = [0, .2, .4, .6, .8, 1] # set the threshold, use histogram as guide\n",
"\n",
"map.geo_json(geo_path=state_geo, data=df,\n",
" columns=['addr_state', 'loan_status_clean'], # pick columns\n",
" key_on='feature.id',\n",
" threshold_scale = thresh, # set threshold\n",
" fill_color='YlOrRd', fill_opacity=0.75, line_opacity=0.5, # colors\n",
" legend_name='Loan Status') # legend\n",
"map.create_map(path='loan_status1_chloropleth.html') #draw map"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "KeyError",
"evalue": "'addr_state'",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-1107-d783f0282cc9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mthreshold_scale\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mthresh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;31m# set threshold\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mfill_color\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'YlOrRd'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfill_opacity\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.75\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mline_opacity\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;31m# colors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m legend_name='Loan Status') # legend\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0mmap\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_map\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'loan_status1_chloropleth.html'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m#draw map\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/olehdubno/anaconda/lib/python2.7/site-packages/folium/folium.pyc\u001b[0m in \u001b[0;36mgeo_json\u001b[0;34m(self, geo_path, data_out, data, columns, key_on, threshold_scale, fill_color, fill_opacity, line_color, line_weight, line_opacity, legend_name, topojson, reset)\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m#Create DataFrame with only the relevant columns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 516\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 517\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 518\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 519\u001b[0m \u001b[0;31m#Save data to JSON\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/olehdubno/anaconda/lib/python2.7/site-packages/pandas/core/frame.pyc\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1682\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1683\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1684\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1685\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1686\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/olehdubno/anaconda/lib/python2.7/site-packages/pandas/core/frame.pyc\u001b[0m in \u001b[0;36m_getitem_column\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1689\u001b[0m \u001b[0;31m# get column\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1690\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_unique\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1691\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1692\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1693\u001b[0m \u001b[0;31m# duplicate columns & possible reduce dimensionaility\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/olehdubno/anaconda/lib/python2.7/site-packages/pandas/core/generic.pyc\u001b[0m in \u001b[0;36m_get_item_cache\u001b[0;34m(self, item)\u001b[0m\n\u001b[1;32m 1050\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1051\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1052\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1053\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_box_item_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1054\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/olehdubno/anaconda/lib/python2.7/site-packages/pandas/core/internals.pyc\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, item)\u001b[0m\n\u001b[1;32m 2535\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2536\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misnull\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2537\u001b[0;31m \u001b[0mloc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2538\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2539\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0misnull\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/olehdubno/anaconda/lib/python2.7/site-packages/pandas/core/index.pyc\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1154\u001b[0m \u001b[0mloc\u001b[0m \u001b[0;34m:\u001b[0m \u001b[0mint\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0munique\u001b[0m \u001b[0mindex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpossibly\u001b[0m \u001b[0mslice\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mmask\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1155\u001b[0m \"\"\"\n\u001b[0;32m-> 1156\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_values_from_object\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1157\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1158\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mseries\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/olehdubno/anaconda/lib/python2.7/site-packages/pandas/index.so\u001b[0m in \u001b[0;36mpandas.index.IndexEngine.get_loc (pandas/index.c:3650)\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32m/Users/olehdubno/anaconda/lib/python2.7/site-packages/pandas/index.so\u001b[0m in \u001b[0;36mpandas.index.IndexEngine.get_loc (pandas/index.c:3528)\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32m/Users/olehdubno/anaconda/lib/python2.7/site-packages/pandas/hashtable.so\u001b[0m in \u001b[0;36mpandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:11908)\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32m/Users/olehdubno/anaconda/lib/python2.7/site-packages/pandas/hashtable.so\u001b[0m in \u001b[0;36mpandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:11861)\u001b[0;34m()\u001b[0m\n",
"\u001b[0;31mKeyError\u001b[0m: 'addr_state'"
]
}
],
"prompt_number": 1107
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"HTML('<iframe src=loan_status1_chloropleth.html width=1000 height = 500><iframe>')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<iframe src=loan_status1_chloropleth.html width=1000 height = 500><iframe>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 1108,
"text": [
"<IPython.core.display.HTML at 0x1171a6710>"
]
}
],
"prompt_number": 1108
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1108
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1106
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1106
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment