Skip to content

Instantly share code, notes, and snippets.

@oeon
Last active December 19, 2015 13:29
Show Gist options
  • Save oeon/5962703 to your computer and use it in GitHub Desktop.
Save oeon/5962703 to your computer and use it in GitHub Desktop.
Burned Area Reflectance Classification BARC, quick synopsis

Inspiration:

http://www.fs.fed.us/eng/rsac/baer/barc.html

http://www.mapbox.com/blog/putting-landsat-8-bands-to-work/

http://www.mapbox.com/blog/processing-landsat-8/

…quick [BARC] synopsis:

  1.  Obtain pre and post imagery.
    
  2.  Correct that imagery to Top of Atmosphere reflection (... for L8 see http://landsat7.usgs.gov/Landsat8_Using_Product.php)
    
  3.  Calculate NBR for each image (NIR-SWIR)/(NIR+SWIR)
    
  4.  Calculate dNBR where dNBR = pre NBR – post NBR
    
  5.  Generate the BARC256 by shifting, compressing and truncating the dNBR to fit into a 8-bit image where BARC256 = (dNBR+275)/5
    
  • Apply a gap mask if using L7 data.

  1.  Manually threshold the BARC256 into burn severity classes, Unburned, Low, Moderate, High.
    
  2.  Reclassify the BARC256 into a 4-class thematic raster (BARC4) based on the manually selected breakpoint.
    
  3.  Generate metadata.
    

Process, with ImageMagick:

composite LC80410362013117LGN01_B5.TIF -compose minus_dst LC80410362013117LGN01_B7.TIF pre-nbr1.tif

composite LC80420362013124LGN02_B5.TIF -compose minus_dst LC80420362013124LGN02_B7.TIF post-nbr1.tif

composite LC80410362013117LGN01_B5.TIF -compose plus LC80410362013117LGN01_B7.TIF pre-nbr2.tif

composite LC80420362013124LGN02_B5.TIF -compose plus LC80420362013124LGN02_B7.TIF post-nbr2.tif

convert pre-nbr1.tif pre-nbr2.tif -compose Divide_Src -composite pre-nbr.tif

convert post-nbr1.tif post-nbr2.tif -compose Divide_Src -composite post-nbr.tif

composite pre-nbr.tif -compose minus_dst post-nbr.tif dnbr.tif

convert dnbr.tif -evaluate add 275 -evaluate divide 5 barc256.tif

Other to consider: PCA-derived burn index, https://twitter.com/vruba/status/347489714389000194 - is that https://en.wikipedia.org/wiki/Principal_component_analysis ? That's a new one to me.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment