Skip to content

Instantly share code, notes, and snippets.

@oeway
Last active February 5, 2021 11:04
Show Gist options
  • Save oeway/d5e2c2e88f9f847a003df310a3cd2b63 to your computer and use it in GitHub Desktop.
Save oeway/d5e2c2e88f9f847a003df310a3cd2b63 to your computer and use it in GitHub Desktop.
# TODO physical scale of the data
format_version: 0.3.0
name: UNet 2D Nuclei Broad
description: A 2d U-Net trained on the nuclei broad dataset.
authors:
- Constantin Pape;@bioimage-io
- Fynn Beuttenmüller
# we allow for multiple citations. Each citation contains TEXT, DOI and URL. One of DOI or URL needs to be given.
cite:
- text: "Ronneberger, Olaf et al. U-net: Convolutional networks for biomedical image segmentation. MICCAI 2015."
doi: https://doi.org/10.1007/978-3-319-24574-4_28
- text: "2018 Data Science Bowl"
url: https://www.kaggle.com/c/data-science-bowl-2018
git_repo: https://github.com/bioimage-io/pytorch-bioimage-io/tree/master/specs/models/unet2d
tags: [unet2d, pytorch, nucleus, segmentation, dsb2018]
license: MIT
documentation: UNet2DNucleiBroad.md
covers: [cover0.png]
attachments: {}
timestamp: 2019-12-11T12:22:32Z # ISO 8601
inputs:
- name: raw
description: raw input
axes: bcyx # letters of axes in btczyx
data_type: float32
data_range: [-inf, inf]
shape: [1, 1, 512, 512]
preprocessing: # list of preprocessing steps
- name: zero_mean_unit_variance # name of preprocessing step
kwargs:
mode: per_sample # mode in [fixed, per_dataset, per_sample]
axes: yx # subset of axes to normalize jointly, batch ('b') is not a valid axis key here!
outputs:
- name: probability
description: probability in [0,1]
axes: bcyx
data_type: float32
data_range: [-inf, inf]
halo: [0, 0, 32, 32]
shape:
reference_input: raw
scale: [1, 1, 1, 1]
offset: [0, 0, 0, 0]
language: python
framework: pytorch
source: pybio.torch.models.unet2d.UNet2d
kwargs: {input_channels: 1, output_channels: 1}
dependencies: conda:../environment.yaml
test_inputs: [test_input.npy]
test_outputs: [test_output.npy]
sample_inputs: [sample_input.npy]
sample_outputs: [sample_output.npy]
weights:
pytorch_state_dict:
authors: [Constantin Pape;@bioimage-io]
sha256: e4d3885bccbe41cbf6c1d825f3cd2b707c7021ead5593156007e407a16b27cf2
source: https://zenodo.org/record/3446812/files/unet2d_weights.torch
onnx:
- sha256: 5bf14c4e65e8601ab551db99409ba7981ff0e501719bc2b0ee625ca9a9375b32
source: ./weights_opset11.onnx
opset_version: 11
- sha256: 5bf14c4e65e8601ab551db99409ba7981ff0e501719bc2b0ee625ca9a9375b32
source: ./weights_opset12.onnx
opset_version: 12
pytorch_script:
sha256: b7f9dcf1da55a6d4cb29a0186d5558a86e4969916368479754517d00fa365848
source: ./weights.pt
This file has been truncated, but you can view the full file.
View raw

(Sorry about that, but we can’t show files that are this big right now.)

View raw

(Sorry about that, but we can’t show files that are this big right now.)

View raw

(Sorry about that, but we can’t show files that are this big right now.)

View raw

(Sorry about that, but we can’t show files that are this big right now.)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment