Last active
March 18, 2021 21:40
-
-
Save ogrisel/bd2cf3350fff5bbd5a0899fa6baf3267 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from sklearn.utils.extmath import _incremental_mean_and_var | |
from sklearn.utils.sparsefuncs import _incr_mean_var_axis0 | |
from sklearn.utils.sparsefuncs import _csc_mean_var_axis0 | |
from sklearn.utils.sparsefuncs import _csr_mean_var_axis0 | |
from scipy.sparse import csr_matrix | |
from scipy.sparse import csc_matrix | |
for dtype in [np.float64, np.float32]: | |
print(f"## dtype={dtype.__name__}") | |
rng = np.random.RandomState(0) | |
X = np.full( | |
shape=(1000, 1), | |
fill_value=100., | |
dtype=dtype, | |
) | |
# Add some missing records which should be ignored: | |
missing_indices = rng.choice(np.arange(X.shape[0]), 10, replace=False) | |
X[missing_indices, 0] = np.nan | |
# Random positive weights: | |
sample_weight = rng.rand(X.shape[0]).astype(dtype) | |
mean, var, _ = _incremental_mean_and_var( | |
X, | |
last_mean=np.zeros(X.shape[1], dtype=dtype), | |
last_variance=np.zeros(X.shape[1], dtype=dtype), | |
last_sample_count=0, | |
sample_weight=sample_weight, | |
) | |
print(_incremental_mean_and_var.__name__, mean, var) | |
mean, var = _csr_mean_var_axis0( | |
csr_matrix(X), | |
weights=sample_weight, | |
) | |
print(_csr_mean_var_axis0.__name__, mean, var) | |
mean, var, _ = _incr_mean_var_axis0( | |
csr_matrix(X), | |
last_mean=np.zeros(X.shape[1], dtype=dtype), | |
last_var=np.zeros(X.shape[1], dtype=dtype), | |
last_n=np.zeros(shape=(1,), dtype=dtype), | |
weights=sample_weight, | |
) | |
print(_incr_mean_var_axis0.__name__, "csr", mean, var) | |
mean, var = _csc_mean_var_axis0( | |
csc_matrix(X), | |
weights=sample_weight, | |
) | |
print(_csc_mean_var_axis0.__name__, mean, var) | |
mean, var, _ = _incr_mean_var_axis0( | |
csc_matrix(X), | |
last_mean=np.zeros(X.shape[1], dtype=dtype), | |
last_var=np.zeros(X.shape[1], dtype=dtype), | |
last_n=np.zeros(shape=(1,), dtype=dtype), | |
weights=sample_weight, | |
) | |
print(_incr_mean_var_axis0.__name__, "csc", mean, var) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I have edited the gist to add some nan values and to print the value of the mean.