Last active
February 1, 2021 11:14
-
-
Save ogrisel/be1fd7f9d00f32f3c702a10a9886239d to your computer and use it in GitHub Desktop.
Update tests results for numpy 1.20.0 from conda-forge with openblas on Apple M1 (macos/arm64)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
NumPy version 1.20.0 | |
NumPy relaxed strides checking option: True | |
NumPy CPU features: NEON NEON_FP16 NEON_VFPV4 ASIMD ASIMDHP? ASIMDDP? | |
........................................................................ [ 0%] | |
......................................................x................. [ 1%] | |
........................................................................ [ 1%] | |
.................................x...................................... [ 2%] | |
........................................................................ [ 2%] | |
..........................sssssssss..................................... [ 3%] | |
........................................................................ [ 4%] | |
..s..................................................................... [ 4%] | |
................................x..........x..x..........x.............. [ 5%] | |
........................................................................ [ 5%] | |
......s................................................................. [ 6%] | |
.....................................................................sss [ 6%] | |
s................................x...................................... [ 7%] | |
........................................................................ [ 8%] | |
........................................................................ [ 8%] | |
........................................................................ [ 9%] | |
........................................................................ [ 9%] | |
........................................................................ [ 10%] | |
........................................................................ [ 11%] | |
........................................................................ [ 11%] | |
........................................................................ [ 12%] | |
........................................................................ [ 12%] | |
........................................................................ [ 13%] | |
........................................................................ [ 13%] | |
........................................................................ [ 14%] | |
........................................................................ [ 15%] | |
.........................s.............................................. [ 15%] | |
........................................................................ [ 16%] | |
...............................................xx....................... [ 16%] | |
........................................................................ [ 17%] | |
.................................s...................................... [ 17%] | |
........................................................................ [ 18%] | |
........................................................................ [ 19%] | |
........................................................................ [ 19%] | |
........................................................................ [ 20%] | |
........................................................................ [ 20%] | |
........................................................................ [ 21%] | |
........................................................................ [ 22%] | |
...........................x...x........................................ [ 22%] | |
........................................................................ [ 23%] | |
.....................................................................xx. [ 23%] | |
........................................................................ [ 24%] | |
........................................................................ [ 24%] | |
........................................................................ [ 25%] | |
........................................................................ [ 26%] | |
........................................................................ [ 26%] | |
........................................................................ [ 27%] | |
........................................................................ [ 27%] | |
........................................................................ [ 28%] | |
.....................................................................s.. [ 28%] | |
........................................................................ [ 29%] | |
........................................................................ [ 30%] | |
.................................s...................................... [ 30%] | |
....................................................................ss.. [ 31%] | |
.........................................s.............................. [ 31%] | |
........................................................................ [ 32%] | |
........................................................................ [ 33%] | |
........................................................................ [ 33%] | |
........................................................................ [ 34%] | |
........................................................................ [ 34%] | |
............s........................................................... [ 35%] | |
......F................................................................. [ 35%] | |
........................................................................ [ 36%] | |
........................................................................ [ 37%] | |
........................................................................ [ 37%] | |
........................................................................ [ 38%] | |
...............................................................sssssssss [ 38%] | |
sss..................................................................... [ 39%] | |
...............................................................s...s.... [ 40%] | |
...........s.ss.s..s.......s............................................ [ 40%] | |
........................................................................ [ 41%] | |
........................................................................ [ 41%] | |
........................................................................ [ 42%] | |
........................................................................ [ 42%] | |
........................................................................ [ 43%] | |
........................................................................ [ 44%] | |
........................................................................ [ 44%] | |
........................................................................ [ 45%] | |
.................................s...........sssssssssssssss............ [ 45%] | |
...sssssssssssssss...................................................... [ 46%] | |
........................................................................ [ 46%] | |
........................................................................ [ 47%] | |
........................................................................ [ 48%] | |
.................................................F......FF.............. [ 48%] | |
........................................................................ [ 49%] | |
..............................................ssss................ss.... [ 49%] | |
........................................................................ [ 50%] | |
........................................................................ [ 51%] | |
........................................................................ [ 51%] | |
.....x.................................................................. [ 52%] | |
........................................................................ [ 52%] | |
........................................................................ [ 53%] | |
........................................................................ [ 53%] | |
........................................................................ [ 54%] | |
........................................................................ [ 55%] | |
........................................................................ [ 55%] | |
........................................................................ [ 56%] | |
........................................................................ [ 56%] | |
.............................................................x.......... [ 57%] | |
........................................................................ [ 57%] | |
........................................................................ [ 58%] | |
........................................................................ [ 59%] | |
........................................................................ [ 59%] | |
........................................................................ [ 60%] | |
........................................................................ [ 60%] | |
........................................................................ [ 61%] | |
........................................................................ [ 62%] | |
........................................................................ [ 62%] | |
........................................................................ [ 63%] | |
........................................................................ [ 63%] | |
........................................................................ [ 64%] | |
...........................x............................................ [ 64%] | |
........................................................................ [ 65%] | |
........................................................................ [ 66%] | |
..............................................s......................... [ 66%] | |
........................................................................ [ 67%] | |
........................................................................ [ 67%] | |
........................................................................ [ 68%] | |
..................................s...................x................. [ 69%] | |
........................................................................ [ 69%] | |
........................................................................ [ 70%] | |
........................................................................ [ 70%] | |
........................................................................ [ 71%] | |
........................................................................ [ 71%] | |
........................................................................ [ 72%] | |
........................................................................ [ 73%] | |
........................................................................ [ 73%] | |
........................................................................ [ 74%] | |
........................................................................ [ 74%] | |
........................................................................ [ 75%] | |
........................................................................ [ 75%] | |
........................................................................ [ 76%] | |
........................................................................ [ 77%] | |
........................................................................ [ 77%] | |
........................................................................ [ 78%] | |
........................................................................ [ 78%] | |
........................................................................ [ 79%] | |
......FF................................................................ [ 80%] | |
.......................................................xx............... [ 80%] | |
........................................................................ [ 81%] | |
........................................................................ [ 81%] | |
........................................................................ [ 82%] | |
........................................................................ [ 82%] | |
........................................................................ [ 83%] | |
........................................................................ [ 84%] | |
........................................................................ [ 84%] | |
........................................................................ [ 85%] | |
........................................................................ [ 85%] | |
........................................................................ [ 86%] | |
........................................................................ [ 86%] | |
........................................................................ [ 87%] | |
........................................................................ [ 88%] | |
........................................................................ [ 88%] | |
........................................................................ [ 89%] | |
.............................................s................s......... [ 89%] | |
.......s.................s....ss........................................ [ 90%] | |
........................................................................ [ 91%] | |
........................................................................ [ 91%] | |
........................................................................ [ 92%] | |
........................................................................ [ 92%] | |
........................................................................ [ 93%] | |
........................................................................ [ 93%] | |
........................................................................ [ 94%] | |
.....................................s.................................. [ 95%] | |
........................................................................ [ 95%] | |
........................................................................ [ 96%] | |
........................................................................ [ 96%] | |
.............ss......................................................... [ 97%] | |
........................................................................ [ 98%] | |
.............................................................ssssssss... [ 98%] | |
........................................................................ [ 99%] | |
.......sss.............................................................. [ 99%] | |
.........................XXX.. [100%] | |
=================================== FAILURES =================================== | |
_____ TestUfuncGenericLoops.test_unary_PyUFunc_O_O_method_full[reciprocal] _____ | |
self = <numpy.core.tests.test_ufunc.TestUfuncGenericLoops object at 0x156fa9040> | |
ufunc = <ufunc 'reciprocal'> | |
@pytest.mark.parametrize("ufunc", UNARY_OBJECT_UFUNCS) | |
def test_unary_PyUFunc_O_O_method_full(self, ufunc): | |
"""Compare the result of the object loop with non-object one""" | |
val = np.float64(np.pi/4) | |
class MyFloat(np.float64): | |
def __getattr__(self, attr): | |
try: | |
return super().__getattr__(attr) | |
except AttributeError: | |
return lambda: getattr(np.core.umath, attr)(val) | |
num_arr = np.array([val], dtype=np.float64) | |
obj_arr = np.array([MyFloat(val)], dtype="O") | |
with np.errstate(all="raise"): | |
try: | |
> res_num = ufunc(num_arr) | |
E FloatingPointError: divide by zero encountered in reciprocal | |
MyFloat = <class 'numpy.core.tests.test_ufunc.TestUfuncGenericLoops.test_unary_PyUFunc_O_O_method_full.<locals>.MyFloat'> | |
num_arr = array([0.78539816]) | |
obj_arr = array([0.7853981633974483], dtype=object) | |
self = <numpy.core.tests.test_ufunc.TestUfuncGenericLoops object at 0x156fa9040> | |
ufunc = <ufunc 'reciprocal'> | |
val = 0.7853981633974483 | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_ufunc.py:172: FloatingPointError | |
During handling of the above exception, another exception occurred: | |
self = <numpy.core.tests.test_ufunc.TestUfuncGenericLoops object at 0x156fa9040> | |
ufunc = <ufunc 'reciprocal'> | |
@pytest.mark.parametrize("ufunc", UNARY_OBJECT_UFUNCS) | |
def test_unary_PyUFunc_O_O_method_full(self, ufunc): | |
"""Compare the result of the object loop with non-object one""" | |
val = np.float64(np.pi/4) | |
class MyFloat(np.float64): | |
def __getattr__(self, attr): | |
try: | |
return super().__getattr__(attr) | |
except AttributeError: | |
return lambda: getattr(np.core.umath, attr)(val) | |
num_arr = np.array([val], dtype=np.float64) | |
obj_arr = np.array([MyFloat(val)], dtype="O") | |
with np.errstate(all="raise"): | |
try: | |
res_num = ufunc(num_arr) | |
except Exception as exc: | |
with assert_raises(type(exc)): | |
> ufunc(obj_arr) | |
MyFloat = <class 'numpy.core.tests.test_ufunc.TestUfuncGenericLoops.test_unary_PyUFunc_O_O_method_full.<locals>.MyFloat'> | |
num_arr = array([0.78539816]) | |
obj_arr = array([0.7853981633974483], dtype=object) | |
self = <numpy.core.tests.test_ufunc.TestUfuncGenericLoops object at 0x156fa9040> | |
ufunc = <ufunc 'reciprocal'> | |
val = 0.7853981633974483 | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_ufunc.py:175: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
miniforge3/envs/sklearn-0241/lib/python3.9/unittest/case.py:226: in __exit__ | |
self._raiseFailure("{} not raised".format(exc_name)) | |
exc_name = 'FloatingPointError' | |
exc_type = None | |
exc_value = None | |
self = <unittest.case._AssertRaisesContext object at 0x156fbab80> | |
tb = None | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
self = <unittest.case._AssertRaisesContext object at 0x156fbab80> | |
standardMsg = 'FloatingPointError not raised' | |
def _raiseFailure(self, standardMsg): | |
msg = self.test_case._formatMessage(self.msg, standardMsg) | |
> raise self.test_case.failureException(msg) | |
E AssertionError: FloatingPointError not raised | |
msg = 'FloatingPointError not raised' | |
self = <unittest.case._AssertRaisesContext object at 0x156fbab80> | |
standardMsg = 'FloatingPointError not raised' | |
miniforge3/envs/sklearn-0241/lib/python3.9/unittest/case.py:163: AssertionError | |
_____________ TestSharedMemory.test_in_from_2casttype[LONGDOUBLE] ______________ | |
self = <numpy.f2py.tests.test_array_from_pyobj.TestSharedMemory object at 0x17ce272b0> | |
def test_in_from_2casttype(self): | |
for t in self.type.cast_types(): | |
obj = array(self.num2seq, dtype=t.dtype) | |
> a = self.array([len(self.num2seq)], intent.in_, obj) | |
a = <numpy.f2py.tests.test_array_from_pyobj.Array object at 0x17ce27370> | |
obj = array([1, 2]) | |
self = <numpy.f2py.tests.test_array_from_pyobj.TestSharedMemory object at 0x17ce272b0> | |
t = <numpy.f2py.tests.test_array_from_pyobj.Type object at 0x16c3d8100> | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/f2py/tests/test_array_from_pyobj.py:322: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/f2py/tests/test_array_from_pyobj.py:313: in <lambda> | |
Array(Type(request.param), dims, intent, obj) | |
dims = [2] | |
intent = Intent(['in']) | |
obj = array([1, 2]) | |
request = <SubRequest 'setup_type' for <Function test_in_from_2seq[LONGDOUBLE]>> | |
self = <numpy.f2py.tests.test_array_from_pyobj.TestSharedMemory object at 0x17ce272b0> | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
self = <numpy.f2py.tests.test_array_from_pyobj.Array object at 0x17ce275e0> | |
typ = <numpy.f2py.tests.test_array_from_pyobj.Type object at 0x16c3d83a0> | |
dims = [2], intent = Intent(['in']), obj = array([1, 2]) | |
def __init__(self, typ, dims, intent, obj): | |
self.type = typ | |
self.dims = dims | |
self.intent = intent | |
self.obj_copy = copy.deepcopy(obj) | |
self.obj = obj | |
# arr.dtypechar may be different from typ.dtypechar | |
self.arr = wrap.call(typ.type_num, dims, intent.flags, obj) | |
assert_(isinstance(self.arr, ndarray), repr(type(self.arr))) | |
self.arr_attr = wrap.array_attrs(self.arr) | |
if len(dims) > 1: | |
if self.intent.is_intent('c'): | |
assert_(intent.flags & wrap.F2PY_INTENT_C) | |
assert_(not self.arr.flags['FORTRAN'], | |
repr((self.arr.flags, getattr(obj, 'flags', None)))) | |
assert_(self.arr.flags['CONTIGUOUS']) | |
assert_(not self.arr_attr[6] & wrap.FORTRAN) | |
else: | |
assert_(not intent.flags & wrap.F2PY_INTENT_C) | |
assert_(self.arr.flags['FORTRAN']) | |
assert_(not self.arr.flags['CONTIGUOUS']) | |
assert_(self.arr_attr[6] & wrap.FORTRAN) | |
if obj is None: | |
self.pyarr = None | |
self.pyarr_attr = None | |
return | |
if intent.is_intent('cache'): | |
assert_(isinstance(obj, ndarray), repr(type(obj))) | |
self.pyarr = array(obj).reshape(*dims).copy() | |
else: | |
self.pyarr = array(array(obj, dtype=typ.dtypechar).reshape(*dims), | |
order=self.intent.is_intent('c') and 'C' or 'F') | |
assert_(self.pyarr.dtype == typ, | |
repr((self.pyarr.dtype, typ))) | |
assert_(self.pyarr.flags['OWNDATA'], (obj, intent)) | |
self.pyarr_attr = wrap.array_attrs(self.pyarr) | |
if len(dims) > 1: | |
if self.intent.is_intent('c'): | |
assert_(not self.pyarr.flags['FORTRAN']) | |
assert_(self.pyarr.flags['CONTIGUOUS']) | |
assert_(not self.pyarr_attr[6] & wrap.FORTRAN) | |
else: | |
assert_(self.pyarr.flags['FORTRAN']) | |
assert_(not self.pyarr.flags['CONTIGUOUS']) | |
assert_(self.pyarr_attr[6] & wrap.FORTRAN) | |
assert_(self.arr_attr[1] == self.pyarr_attr[1]) # nd | |
assert_(self.arr_attr[2] == self.pyarr_attr[2]) # dimensions | |
if self.arr_attr[1] <= 1: | |
assert_(self.arr_attr[3] == self.pyarr_attr[3], | |
repr((self.arr_attr[3], self.pyarr_attr[3], | |
self.arr.tobytes(), self.pyarr.tobytes()))) # strides | |
assert_(self.arr_attr[5][-2:] == self.pyarr_attr[5][-2:], | |
repr((self.arr_attr[5], self.pyarr_attr[5]))) # descr | |
assert_(self.arr_attr[6] == self.pyarr_attr[6], | |
repr((self.arr_attr[6], self.pyarr_attr[6], | |
flags2names(0 * self.arr_attr[6] - self.pyarr_attr[6]), | |
flags2names(self.arr_attr[6]), intent))) # flags | |
if intent.is_intent('cache'): | |
assert_(self.arr_attr[5][3] >= self.type.elsize, | |
repr((self.arr_attr[5][3], self.type.elsize))) | |
else: | |
assert_(self.arr_attr[5][3] == self.type.elsize, | |
repr((self.arr_attr[5][3], self.type.elsize))) | |
assert_(self.arr_equal(self.pyarr, self.arr)) | |
if isinstance(self.obj, ndarray): | |
if typ.elsize == Type(obj.dtype).elsize: | |
if not intent.is_intent('copy') and self.arr_attr[1] <= 1: | |
> assert_(self.has_shared_memory()) | |
E AssertionError | |
dims = [2] | |
intent = Intent(['in']) | |
obj = array([1, 2]) | |
self = <numpy.f2py.tests.test_array_from_pyobj.Array object at 0x17ce275e0> | |
typ = <numpy.f2py.tests.test_array_from_pyobj.Type object at 0x16c3d83a0> | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/f2py/tests/test_array_from_pyobj.py:272: AssertionError | |
____________ TestSharedMemory.test_f_in_from_23casttype[LONGDOUBLE] ____________ | |
self = <numpy.f2py.tests.test_array_from_pyobj.TestSharedMemory object at 0x17cf34160> | |
def test_f_in_from_23casttype(self): | |
for t in self.type.cast_types(): | |
obj = array(self.num23seq, dtype=t.dtype, order='F') | |
a = self.array([len(self.num23seq), len(self.num23seq[0])], | |
intent.in_, obj) | |
if t.elsize == self.type.elsize: | |
> assert_(a.has_shared_memory(), repr(t.dtype)) | |
E AssertionError: <class 'numpy.int64'> | |
a = <numpy.f2py.tests.test_array_from_pyobj.Array object at 0x17cf34970> | |
obj = array([[1, 2, 3], | |
[4, 5, 6]]) | |
self = <numpy.f2py.tests.test_array_from_pyobj.TestSharedMemory object at 0x17cf34160> | |
t = <numpy.f2py.tests.test_array_from_pyobj.Type object at 0x16c3d8100> | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/f2py/tests/test_array_from_pyobj.py:391: AssertionError | |
____________ TestSharedMemory.test_c_in_from_23casttype[LONGDOUBLE] ____________ | |
self = <numpy.f2py.tests.test_array_from_pyobj.TestSharedMemory object at 0x17ce4aa90> | |
def test_c_in_from_23casttype(self): | |
for t in self.type.cast_types(): | |
obj = array(self.num23seq, dtype=t.dtype) | |
a = self.array([len(self.num23seq), len(self.num23seq[0])], | |
intent.in_.c, obj) | |
if t.elsize == self.type.elsize: | |
> assert_(a.has_shared_memory(), repr(t.dtype)) | |
E AssertionError: <class 'numpy.int64'> | |
a = <numpy.f2py.tests.test_array_from_pyobj.Array object at 0x17ce4a580> | |
obj = array([[1, 2, 3], | |
[4, 5, 6]]) | |
self = <numpy.f2py.tests.test_array_from_pyobj.TestSharedMemory object at 0x17ce4aa90> | |
t = <numpy.f2py.tests.test_array_from_pyobj.Type object at 0x16c3d8100> | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/f2py/tests/test_array_from_pyobj.py:401: AssertionError | |
__ TestMaskedArrayInPlaceArithmetics.test_inplace_floor_division_scalar_type ___ | |
self = <numpy.ma.tests.test_core.TestMaskedArrayInPlaceArithmetics object at 0x17f0ced00> | |
def test_inplace_floor_division_scalar_type(self): | |
# Test of inplace division | |
for t in self.othertypes: | |
with warnings.catch_warnings(record=True) as w: | |
warnings.filterwarnings("always") | |
(x, y, xm) = (_.astype(t) for _ in self.uint8data) | |
x = arange(10, dtype=t) * t(2) | |
xm = arange(10, dtype=t) * t(2) | |
xm[2] = masked | |
x //= t(2) | |
xm //= t(2) | |
assert_equal(x, y) | |
assert_equal(xm, y) | |
> assert_equal(len(w), 0, "Failed on type=%s." % t) | |
self = <numpy.ma.tests.test_core.TestMaskedArrayInPlaceArithmetics object at 0x17f0ced00> | |
t = <class 'numpy.complex64'> | |
w = [<warnings.WarningMessage object at 0x17f0cefd0>, <warnings.WarningMessage object at 0x17f0e7040>, <warnings.WarningMessage object at 0x17f0e7070>, <warnings.WarningMessage object at 0x17f0e70a0>] | |
x = masked_array(data=[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 5.+0.j, 6.+0.j, | |
7.+0.j, 8.+0.j, 9.+0.j], | |
mask=False, | |
fill_value=(1e+20+0j), | |
dtype=complex64) | |
xm = masked_array(data=[0j, (1+0j), --, (3+0j), (4+0j), (5+0j), (6+0j), (7+0j), | |
(8+0j), (9+0j)], | |
...alse, False, False, False, | |
False, False], | |
fill_value=(1e+20+0j), | |
dtype=complex64) | |
y = masked_array(data=[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 5.+0.j, 6.+0.j, | |
7.+0.j, 8.+0.j, 9.+0.j], | |
mask=False, | |
fill_value=(1e+20+0j), | |
dtype=complex64) | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/ma/tests/test_core.py:2848: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
actual = 4, desired = 0, err_msg = "Failed on type=<class 'numpy.complex64'>." | |
def assert_equal(actual, desired, err_msg=''): | |
""" | |
Asserts that two items are equal. | |
""" | |
# Case #1: dictionary ..... | |
if isinstance(desired, dict): | |
if not isinstance(actual, dict): | |
raise AssertionError(repr(type(actual))) | |
assert_equal(len(actual), len(desired), err_msg) | |
for k, i in desired.items(): | |
if k not in actual: | |
raise AssertionError(f"{k} not in {actual}") | |
assert_equal(actual[k], desired[k], f'key={k!r}\n{err_msg}') | |
return | |
# Case #2: lists ..... | |
if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): | |
return _assert_equal_on_sequences(actual, desired, err_msg='') | |
if not (isinstance(actual, ndarray) or isinstance(desired, ndarray)): | |
msg = build_err_msg([actual, desired], err_msg,) | |
if not desired == actual: | |
> raise AssertionError(msg) | |
E AssertionError: | |
E Items are not equal: Failed on type=<class 'numpy.complex64'>. | |
E ACTUAL: 4 | |
E DESIRED: 0 | |
actual = 4 | |
desired = 0 | |
err_msg = "Failed on type=<class 'numpy.complex64'>." | |
msg = "\nItems are not equal: Failed on type=<class 'numpy.complex64'>.\n ACTUAL: 4\n DESIRED: 0" | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/ma/testutils.py:129: AssertionError | |
___ TestMaskedArrayInPlaceArithmetics.test_inplace_floor_division_array_type ___ | |
self = <numpy.ma.tests.test_core.TestMaskedArrayInPlaceArithmetics object at 0x17f16de80> | |
def test_inplace_floor_division_array_type(self): | |
# Test of inplace division | |
for t in self.othertypes: | |
with warnings.catch_warnings(record=True) as w: | |
warnings.filterwarnings("always") | |
(x, y, xm) = (_.astype(t) for _ in self.uint8data) | |
m = xm.mask | |
a = arange(10, dtype=t) | |
a[-1] = masked | |
x //= a | |
xm //= a | |
assert_equal(x, y // a) | |
assert_equal(xm, y // a) | |
assert_equal( | |
xm.mask, | |
mask_or(mask_or(m, a.mask), (a == t(0))) | |
) | |
> assert_equal(len(w), 0, f'Failed on type={t}.') | |
a = masked_array(data=[0j, (1+0j), (2+0j), (3+0j), (4+0j), (5+0j), (6+0j), | |
(7+0j), (8+0j), --], | |
...alse, False, False, False, | |
False, True], | |
fill_value=(1e+20+0j), | |
dtype=complex64) | |
m = array([ True, False, True, False, False, False, False, False, False, | |
True]) | |
self = <numpy.ma.tests.test_core.TestMaskedArrayInPlaceArithmetics object at 0x17f16de80> | |
t = <class 'numpy.complex64'> | |
w = [<warnings.WarningMessage object at 0x17f16da90>, <warnings.WarningMessage object at 0x17f16da60>, <warnings.WarningMessage object at 0x17f16da30>, <warnings.WarningMessage object at 0x17f16dd00>] | |
x = masked_array(data=[--, (1+0j), (1+0j), (1+0j), (1+0j), (1+0j), (1+0j), | |
(1+0j), (1+0j), --], | |
...alse, False, False, False, | |
False, True], | |
fill_value=(1e+20+0j), | |
dtype=complex64) | |
xm = masked_array(data=[--, (1+0j), --, (1+0j), (1+0j), (1+0j), (1+0j), (1+0j), | |
(1+0j), --], | |
...alse, False, False, False, | |
False, True], | |
fill_value=(1e+20+0j), | |
dtype=complex64) | |
y = masked_array(data=[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 5.+0.j, 6.+0.j, | |
7.+0.j, 8.+0.j, 9.+0.j], | |
mask=False, | |
fill_value=(1e+20+0j), | |
dtype=complex64) | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/ma/tests/test_core.py:2868: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
actual = 4, desired = 0, err_msg = "Failed on type=<class 'numpy.complex64'>." | |
def assert_equal(actual, desired, err_msg=''): | |
""" | |
Asserts that two items are equal. | |
""" | |
# Case #1: dictionary ..... | |
if isinstance(desired, dict): | |
if not isinstance(actual, dict): | |
raise AssertionError(repr(type(actual))) | |
assert_equal(len(actual), len(desired), err_msg) | |
for k, i in desired.items(): | |
if k not in actual: | |
raise AssertionError(f"{k} not in {actual}") | |
assert_equal(actual[k], desired[k], f'key={k!r}\n{err_msg}') | |
return | |
# Case #2: lists ..... | |
if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): | |
return _assert_equal_on_sequences(actual, desired, err_msg='') | |
if not (isinstance(actual, ndarray) or isinstance(desired, ndarray)): | |
msg = build_err_msg([actual, desired], err_msg,) | |
if not desired == actual: | |
> raise AssertionError(msg) | |
E AssertionError: | |
E Items are not equal: Failed on type=<class 'numpy.complex64'>. | |
E ACTUAL: 4 | |
E DESIRED: 0 | |
actual = 4 | |
desired = 0 | |
err_msg = "Failed on type=<class 'numpy.complex64'>." | |
msg = "\nItems are not equal: Failed on type=<class 'numpy.complex64'>.\n ACTUAL: 4\n DESIRED: 0" | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/ma/testutils.py:129: AssertionError | |
=============================== warnings summary =============================== | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_scalarmath.py::TestBaseMath::test_blocked | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_scalarmath.py:88: RuntimeWarning: divide by zero encountered in reciprocal | |
assert_almost_equal(np.reciprocal(inp2), | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py::TestDivision::test_floor_division_complex | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py:286: RuntimeWarning: divide by zero encountered in floor_divide | |
y = np.floor_divide(x**2, x) | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py::TestPower::test_power_float | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py:558: RuntimeWarning: divide by zero encountered in reciprocal | |
assert_almost_equal(x**(-1), [1., 0.5, 1./3]) | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py:1006: RuntimeWarning: divide by zero encountered in reciprocal | |
y_true128 = myfunc(x_f128) | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py:1013: RuntimeWarning: divide by zero encountered in reciprocal | |
assert_array_max_ulp(myfunc(x_f64), np.float64(y_true128), | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py:1020: RuntimeWarning: divide by zero encountered in reciprocal | |
assert_equal(myfunc(x_f64[::jj]), y_true64[::jj]) | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py:1011: RuntimeWarning: divide by zero encountered in reciprocal | |
assert_array_max_ulp(myfunc(x_f32), np.float32(y_true128), | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py:1017: RuntimeWarning: divide by zero encountered in reciprocal | |
y_true32 = myfunc(x_f32) | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py:1018: RuntimeWarning: divide by zero encountered in reciprocal | |
y_true64 = myfunc(x_f64) | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_umath.py:1021: RuntimeWarning: divide by zero encountered in reciprocal | |
assert_equal(myfunc(x_f32[::jj]), y_true32[::jj]) | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/tests/test_linalg.py::TestDet::test_types[complex64] | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/tests/test_linalg.py::TestDet::test_types[complex128] | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/linalg.py:2158: RuntimeWarning: divide by zero encountered in det | |
r = _umath_linalg.det(a, signature=signature) | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/tests/test_linalg.py::TestDet::test_types[complex64] | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/tests/test_linalg.py::TestDet::test_types[complex128] | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/linalg.py:2158: RuntimeWarning: invalid value encountered in det | |
r = _umath_linalg.det(a, signature=signature) | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/tests/test_linalg.py::TestDet::test_types[complex64] | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/tests/test_linalg.py::TestDet::test_types[complex128] | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/linalg.py:2098: RuntimeWarning: divide by zero encountered in slogdet | |
sign, logdet = _umath_linalg.slogdet(a, signature=signature) | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/tests/test_linalg.py::TestDet::test_types[complex64] | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/tests/test_linalg.py::TestDet::test_types[complex128] | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/linalg.py:2098: RuntimeWarning: invalid value encountered in slogdet | |
sign, logdet = _umath_linalg.slogdet(a, signature=signature) | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/tests/test_linalg.py::TestNormDouble::test_axis | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/tests/test_linalg.py::TestNormSingle::test_axis | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/tests/test_linalg.py::TestNormInt64::test_axis | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/linalg.py:2569: RuntimeWarning: divide by zero encountered in reciprocal | |
ret **= (1 / ord) | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/tests/test_linalg.py::TestNormDouble::test_axis | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/tests/test_linalg.py::TestNormSingle::test_axis | |
miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/tests/test_linalg.py::TestNormInt64::test_axis | |
/Users/ogrisel/miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/linalg/linalg.py:2567: RuntimeWarning: divide by zero encountered in reciprocal | |
absx **= ord | |
-- Docs: https://docs.pytest.org/en/stable/warnings.html | |
=========================== short test summary info ============================ | |
FAILED miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/core/tests/test_ufunc.py::TestUfuncGenericLoops::test_unary_PyUFunc_O_O_method_full[reciprocal] | |
FAILED miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/f2py/tests/test_array_from_pyobj.py::TestSharedMemory::test_in_from_2casttype[LONGDOUBLE] | |
FAILED miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/f2py/tests/test_array_from_pyobj.py::TestSharedMemory::test_f_in_from_23casttype[LONGDOUBLE] | |
FAILED miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/f2py/tests/test_array_from_pyobj.py::TestSharedMemory::test_c_in_from_23casttype[LONGDOUBLE] | |
FAILED miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/ma/tests/test_core.py::TestMaskedArrayInPlaceArithmetics::test_inplace_floor_division_scalar_type | |
FAILED miniforge3/envs/sklearn-0241/lib/python3.9/site-packages/numpy/ma/tests/test_core.py::TestMaskedArrayInPlaceArithmetics::test_inplace_floor_division_array_type | |
6 failed, 12284 passed, 102 skipped, 1205 deselected, 19 xfailed, 3 xpassed, 24 warnings in 87.73s (0:01:27) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Note a previous version of this log was run in a not properly initialized environment. This has been fixed for the new version of the test logs.