Last active
May 1, 2019 06:35
-
-
Save ohadlights/8810d986708e1c7537a451a338950c17 to your computer and use it in GitHub Desktop.
Landmarks Recognition 2019: Download and resize train images
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import argparse | |
import time | |
import hashlib | |
import tarfile | |
import urllib.request | |
from functools import partial | |
from multiprocessing import Pool | |
import cv2 | |
from tqdm import tqdm | |
images_base_url = 'https://s3.amazonaws.com/google-landmark/train/images_{:03d}.tar' | |
md5_base_url = 'https://s3.amazonaws.com/google-landmark/md5sum/train/md5.images_{:03d}.txt' | |
def md5(path): | |
hash_md5 = hashlib.md5() | |
with open(path, "rb") as f: | |
for chunk in iter(lambda: f.read(4096), b""): | |
hash_md5.update(chunk) | |
return hash_md5.hexdigest() | |
def process_image(file, source_dir, target_dir): | |
source_path = os.path.join(source_dir, file) | |
image = cv2.imread(source_path) | |
image = cv2.resize(image, (448, 448)) | |
target_path = source_path.replace(source_dir, target_dir) | |
if not os.path.exists(os.path.dirname(target_path)): | |
try: | |
os.makedirs(os.path.dirname(target_path)) | |
except: | |
pass | |
cv2.imwrite(target_path, image) | |
os.remove(source_path) | |
def process_tar_file(index, target_dir, resized_dir): | |
tar_url = images_base_url.format(index) | |
md5_url = md5_base_url.format(index) | |
tar_path = os.path.join(*[target_dir, 'tars', os.path.basename(tar_url)]) | |
md5_path = os.path.join(*[target_dir, 'tars', os.path.basename(md5_url)]) | |
print('Downloading: ' + tar_path) | |
start_time = time.time() | |
if not os.path.exists(md5_path): | |
urllib.request.urlretrieve(md5_url, md5_path) | |
if not os.path.exists(tar_path): | |
urllib.request.urlretrieve(tar_url, tar_path) | |
print('{}'.format(time.strftime("%H:%M:%S", time.gmtime(time.time() - start_time)))) | |
# checksum | |
ref_checksum = open(md5_path).readlines()[0].split()[0] | |
tar_checksum = md5(tar_path) | |
if ref_checksum != tar_checksum: | |
print('{}: failed checksum'.format(index)) | |
return | |
# open tar file | |
extract_dir = os.path.join(target_dir, 'raw_images') | |
tar_file = tarfile.open(tar_path) | |
tar_file.extractall(extract_dir) | |
tar_file_members = [m.name for m in tar_file.getmembers()] | |
tar_file.close() | |
# delete tar file | |
os.remove(tar_path) | |
os.remove(md5_path) | |
# resize and move images | |
process_func = partial(process_image, source_dir=extract_dir, target_dir=resized_dir) | |
for file in tqdm(tar_file_members, desc='Files for tar {:03d}'.format(index)): | |
process_func(file) | |
def main(args): | |
if not os.path.exists(args.target_dir): | |
print('Please create target dir: {}'.format(args.target_dir)) | |
return | |
if not os.path.exists(os.path.join(args.target_dir, 'tars')): | |
os.mkdir(os.path.join(args.target_dir, 'tars')) | |
if not os.path.exists(os.path.join(args.target_dir, 'raw_images')): | |
os.mkdir(os.path.join(args.target_dir, 'raw_images')) | |
indexes = list(range(500)) | |
func = partial(process_tar_file, target_dir=args.target_dir, resized_dir=args.resized_dir) | |
with Pool(args.processes) as p: | |
for _ in tqdm(p.imap(func, indexes), total=len(indexes), desc='TAR files'): | |
pass | |
if __name__ == '__main__': | |
p = argparse.ArgumentParser() | |
p.add_argument('--target_dir', default=r'D:\temp\landmarks_recognition\images\train') | |
p.add_argument('--resized_dir', default=r'D:\temp\landmarks_recognition\images\train\images_448') | |
p.add_argument('--processes', type=int, default=10) | |
main(p.parse_args()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment