Last active
August 29, 2015 14:21
-
-
Save ohmrefresh/8d57a72455e1525e7f56 to your computer and use it in GitHub Desktop.
Weka Evaluation Classify #RandomForest #Android
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
InputStream is =getResources().openRawResource(R.raw.r4_reference); //arff | |
BufferedReader datafile = new BufferedReader(new InputStreamReader(is)); | |
try { | |
Instances m_Training = new Instances(datafile); | |
m_Training.setClassIndex(m_Training.numAttributes() - 1); | |
Filter m_Filter = ((Filter)Class.forName("weka.filters.unsupervised.instance.Randomize").newInstance()); | |
m_Filter.setInputFormat(m_Training); | |
Instances localInstances = Filter.useFilter(m_Training, m_Filter); | |
Classifier m_Classifier = Classifier.forName("weka.classifiers.trees.RandomForest", null); | |
m_Classifier.buildClassifier(localInstances); | |
Evaluation m_Evaluation = new Evaluation(localInstances); | |
m_Evaluation.crossValidateModel(m_Classifier, localInstances, 10, m_Training.getRandomNumberGenerator(1L), new Object[0]); | |
Log.e("Detail", m_Evaluation.toClassDetailsString()); | |
Log.e("Summary",m_Evaluation.toSummaryString()); | |
Log.e("Result","Correct:"+ m_Evaluation.correct()+":Wrong:"+m_Evaluation.incorrect()+":Correct(%):"+m_Evaluation.pctCorrect()); | |
}catch (Exception e){ | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment