Created
February 24, 2012 04:25
-
-
Save ohofmann/1897630 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(lumi) | |
library(arrayQualityMetrics) | |
setwd('D:/Storage/My Dropbox/Shared/Mike_LungCancer/') | |
#setwd('~/Dropbox/Shared/Mike_LungCancer/') | |
data <- lumiR.batch(c('Batch1_EA10095_20101202_FinalReportNonNormNoBack.txt', | |
'Batch2_EA10095_20110729_FinalReportNonNormNoBack_clean.txt'), | |
sampleInfoFile='SampleDesc.txt') | |
png('density.png', width=1200, height=800) | |
density(data) | |
dev.off() | |
# Basic normalization for QC | |
data.T <- lumiT(data, method='log2', | |
ifPlot=T, verbose=T) | |
data.N <- lumiN(data.T) | |
arrayQualityMetrics(data.N, | |
outdir='log2_report') | |
png('before_after.png', width=1600, height=2200) | |
par(mfrow=c(2,1)) | |
boxplot(exprs(data.T)) | |
boxplot(exprs(data.N)) | |
dev.off() | |
# Trying Levi's ffpe package with the unnormalized data | |
library(ffpe) | |
# 25-75th percentile of expression intensities, sorted by | |
# smallest to largest inter-quartile range | |
png('sortedIQR.png') | |
sortedIqrPlot(data, dolog2=T) | |
dev.off() | |
# Use IQR as a QC metric vs all chips | |
png('iqrMetrics.png') | |
par(mfrow=c(2,1)) | |
sampleQC(data, | |
logtransform=F, | |
xaxis='index', | |
cor.to='pseudochip', | |
QCmeasure='IQR') | |
# Again, but using +/- 5 arrays | |
qc <- sampleQC(data, | |
logtransform=F, | |
xaxis='index', | |
cor.to='similar', | |
goby=5, | |
QCmeasure='IQR') | |
dev.off() | |
# Why am I getting different results for notindex? | |
png('iqrMetrics_notIndex.png') | |
sampleQC(data, | |
logtransform=F, | |
xaxis='notindex', | |
cor.to='pseudochip', | |
QCmeasure='IQR') | |
dev.off() | |
# Carry on with the 11 array sliding window; can filter more | |
# stringently on the probe level to compensate | |
data.filtered <- data[, !qc$rejectQC] | |
data.filtered.T <- lumiT(data.filtered, method='log2') | |
data.filtered.N <- lumiN(data.filtered.T) | |
# No technical replicates; not much that can be done in checking | |
# probe variance. Just filter for basic variance | |
probe.var <- apply(exprs(data.filtered.N), 1, var) | |
data.variance <- data.filtered.N[probe.var > median(probe.var),] | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment