Created
January 12, 2019 23:55
-
-
Save oisdk/037862acb385f30257a1c594fd5a616e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Scratch where | |
open import Data.Nat as ℕ using (ℕ; suc; zero) | |
open import Data.Product | |
open import Function | |
open import Relation.Nullary | |
open import Relation.Nullary.Decidable | |
open import Data.Empty | |
module GTE where | |
infix 4 _≥_ | |
data _≥_ (m : ℕ) : ℕ → Set where | |
m≥m : m ≥ m | |
m≥p : ∀ {n} → m ≥ suc n → m ≥ n | |
s≥s : ∀ {n m} → n ≥ m → suc n ≥ suc m | |
s≥s m≥m = m≥m | |
s≥s (m≥p n≥m) = m≥p (s≥s n≥m) | |
p≥p : ∀ {n m} → suc n ≥ suc m → n ≥ m | |
p≥p m≥m = m≥m | |
p≥p (m≥p n≥m) = m≥p (p≥p n≥m) | |
z≯n : ∀ {n} → zero ≥ suc n → ⊥ | |
z≯n (m≥p z≥sn) = z≯n z≥sn | |
n≥z : ∀ {n} → n ≥ zero | |
n≥z = go _ m≥m | |
where | |
go : ∀ {n} m → n ≥ m → n ≥ zero | |
go zero n≥m = n≥m | |
go (suc m) n≥m = go m (m≥p n≥m) | |
_≥?_ : ∀ n m → Dec (n ≥ m) | |
zero ≥? zero = yes m≥m | |
zero ≥? suc m = no (⊥-elim ∘ z≯n) | |
suc n ≥? zero = yes n≥z | |
suc n ≥? suc m with n ≥? m | |
... | yes p = yes (s≥s p) | |
... | no ¬p = no (¬p ∘ p≥p) | |
open GTE using (_≥_; m≥m; m≥p; _≥?_) | |
Mod : ℕ → Set | |
Mod = ∃ ∘ _≥_ | |
infixl 6 _+_ | |
_+_ : ∀ {n} → Mod n → Mod n → Mod n | |
_+_ (_ , x) = go x | |
where | |
go : ∀ {n m} → n ≥ m → Mod n → Mod n | |
go m≥m y = y | |
go (m≥p x) (zero , y) = _ , x | |
go (m≥p x) (suc s , y) = go x (s , m≥p y) | |
space : ∀ {n m} → n ≥ m → ℕ | |
space m≥m = zero | |
space (m≥p n≥m) = suc (space n≥m) | |
toNat : ∀ {n} → Mod n → ℕ | |
toNat = space ∘ proj₂ | |
open import Relation.Binary.PropositionalEquality | |
open import Data.Empty | |
import Data.Empty.Irrelevant as Irrel | |
fromNat-≡ : ∀ {n} m | |
→ .(n≥m : n ≥ m) | |
→ Σ[ n-m ∈ Mod n ] m ≡ toNat n-m | |
fromNat-≡ zero n≥m = ( _ , m≥m) , refl | |
fromNat-≡ (suc n) n≥m with fromNat-≡ n (m≥p n≥m) | |
... | (suc space , n-1), x≡m = (space , m≥p n-1), cong suc x≡m | |
... | (zero , n≥0), x≡m rewrite x≡m = Irrel.⊥-elim (contra _ zero n≥0 n≥m) | |
where | |
import Data.Nat.Properties as Prop | |
n≱sk+n : ∀ n k {sk+n} → sk+n ≡ suc k ℕ.+ n → n ≥ sk+n → ⊥ | |
n≱sk+n n k wit (m≥p n≥sk+n) = n≱sk+n n (suc k) (cong suc wit) n≥sk+n | |
n≱sk+n n k wit m≥m with Prop.+-cancelʳ-≡ 0 (suc k) wit | |
... | () | |
contra : ∀ n m → (n≥m : n ≥ m) → n ≥ suc (m ℕ.+ space n≥m) → ⊥ | |
contra n m m≥m n≥st = n≱sk+n n zero (cong suc (Prop.+-identityʳ n)) n≥st | |
contra n m (m≥p n≥m) n≥st = | |
contra n (suc m) n≥m (subst (λ x → n ≥ suc x) (Prop.+-suc m (space n≥m)) n≥st) | |
modFromNat : ∀ {n} m → .{n≥m : True (n ≥? m)} → Mod n | |
modFromNat m {n≥m} = proj₁ (fromNat-≡ m (toWitness n≥m)) | |
open import Agda.Builtin.FromNat | |
instance | |
number : ∀ {n} → Number (Mod n) | |
number {n} = record | |
{ Constraint = λ m → (True (n ≥? m)) | |
; fromNat = λ m ⦃ n≥m ⦄ → modFromNat m {n≥m} } | |
import Data.Nat.Literals as NatLit | |
instance | |
numberNat : Number ℕ | |
numberNat = NatLit.number | |
-_ : ∀ {n} → Mod n → Mod n | |
- (s , p) = modFromNat s { fromWitness p } | |
example : 4 + 8 ≡ (Mod 9 ∋ 2) | |
example = refl |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment