-
-
Save okeefm/926718 to your computer and use it in GitHub Desktop.
Matrix Multiplication code for BlueGene/L using MPI.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdio.h> | |
#include <stdlib.h> | |
#include <unistd.h> | |
#include <mpi.h> | |
#include <string.h> | |
#if defined(__i386__) | |
static __inline__ unsigned long long rdtsc(void) | |
{ | |
unsigned long long int x; | |
__asm__ volatile (".byte 0x0f, 0x31" : "=A" (x)); | |
return x; | |
} | |
#elif defined(__x86_64__) | |
static __inline__ unsigned long long rdtsc(void) | |
{ | |
unsigned hi, lo; | |
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi)); | |
return ( (unsigned long long)lo)|( ((unsigned long long)hi)<<32 ); | |
} | |
#elif defined(__powerpc__) | |
static __inline__ unsigned long long rdtsc(void) | |
{ | |
unsigned long long int result=0; | |
unsigned long int upper, lower,tmp; | |
__asm__ volatile( | |
"0: \n" | |
"\tmftbu %0 \n" | |
"\tmftb %1 \n" | |
"\tmftbu %2 \n" | |
"\tcmpw %2,%0 \n" | |
"\tbne 0b \n" | |
: "=r"(upper),"=r"(lower),"=r"(tmp) | |
); | |
result = upper; | |
result = result<<32; | |
result = result|lower; | |
return(result); | |
} | |
#endif | |
/***********************************************************************/ | |
/* START: MT 19937******************************************************/ | |
/***********************************************************************/ | |
/* Period parameters */ | |
#define N 624 | |
#define M 397 | |
#define MATRIX_A 0x9908b0dfUL /* constant vector a */ | |
#define UPPER_MASK 0x80000000UL /* most significant w-r bits */ | |
#define LOWER_MASK 0x7fffffffUL /* least significant r bits */ | |
static unsigned long mt[N]; /* the array for the state vector */ | |
static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */ | |
/* initializes mt[N] with a seed */ | |
void init_genrand(unsigned long s) | |
{ | |
mt[0]= s & 0xffffffffUL; | |
for (mti=1; mti<N; mti++) { | |
mt[mti] = | |
(1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti); | |
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ | |
/* In the previous versions, MSBs of the seed affect */ | |
/* only MSBs of the array mt[]. */ | |
/* 2002/01/09 modified by Makoto Matsumoto */ | |
mt[mti] &= 0xffffffffUL; | |
/* for >32 bit machines */ | |
} | |
} | |
/* initialize by an array with array-length */ | |
/* init_key is the array for initializing keys */ | |
/* key_length is its length */ | |
/* slight change for C++, 2004/2/26 */ | |
void init_by_array(unsigned long init_key[], int key_length) | |
{ | |
int i, j, k; | |
init_genrand(19650218UL); | |
i=1; j=0; | |
k = (N>key_length ? N : key_length); | |
for (; k; k--) { | |
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL)) | |
+ init_key[j] + j; /* non linear */ | |
mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ | |
i++; j++; | |
if (i>=N) { mt[0] = mt[N-1]; i=1; } | |
if (j>=key_length) j=0; | |
} | |
for (k=N-1; k; k--) { | |
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) | |
- i; /* non linear */ | |
mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ | |
i++; | |
if (i>=N) { mt[0] = mt[N-1]; i=1; } | |
} | |
mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ | |
} | |
/* generates a random number on [0,0xffffffff]-interval */ | |
unsigned long genrand_int32(void) | |
{ | |
unsigned long y; | |
static unsigned long mag01[2]={0x0UL, MATRIX_A}; | |
/* mag01[x] = x * MATRIX_A for x=0,1 */ | |
if (mti >= N) { /* generate N words at one time */ | |
int kk; | |
if (mti == N+1) /* if init_genrand() has not been called, */ | |
init_genrand(5489UL); /* a default initial seed is used */ | |
for (kk=0;kk<N-M;kk++) { | |
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); | |
mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL]; | |
} | |
for (;kk<N-1;kk++) { | |
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); | |
mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL]; | |
} | |
y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK); | |
mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL]; | |
mti = 0; | |
} | |
y = mt[mti++]; | |
/* Tempering */ | |
y ^= (y >> 11); | |
y ^= (y << 7) & 0x9d2c5680UL; | |
y ^= (y << 15) & 0xefc60000UL; | |
y ^= (y >> 18); | |
return y; | |
} | |
/* generates a random number on [0,0x7fffffff]-interval */ | |
long genrand_int31(void) | |
{ | |
return (long)(genrand_int32()>>1); | |
} | |
/* generates a random number on [0,1]-real-interval */ | |
double genrand_real1(void) | |
{ | |
return genrand_int32()*(1.0/4294967295.0); | |
/* divided by 2^32-1 */ | |
} | |
/* generates a random number on [0,1)-real-interval */ | |
double genrand_real2(void) | |
{ | |
return genrand_int32()*(1.0/4294967296.0); | |
/* divided by 2^32 */ | |
} | |
/* generates a random number on (0,1)-real-interval */ | |
double genrand_real3(void) | |
{ | |
return (((double)genrand_int32()) + 0.5)*(1.0/4294967296.0); | |
/* divided by 2^32 */ | |
} | |
/* generates a random number on [0,1) with 53-bit resolution*/ | |
double genrand_res53(void) | |
{ | |
unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6; | |
return(a*67108864.0+b)*(1.0/9007199254740992.0); | |
} | |
/* These real versions are due to Isaku Wada, 2002/01/09 added */ | |
/***********************************************************************/ | |
/* END: MT 19937 *******************************************************/ | |
/***********************************************************************/ | |
/* Standard matrix multiplication */ | |
/* Arrays start at 0 */ | |
char DEBUG_ON = 0; | |
double **A=NULL; | |
double **C=NULL; | |
double *B_buf_in = NULL; | |
double *B_buf_out = NULL; | |
unsigned int Nc=8000; | |
unsigned long rng_init_seeds[6]={0x0, 0x123, 0x234, 0x345, 0x456, 0x789}; | |
unsigned long rng_init_length=6; | |
double clock_rateK=2666700000.0; // Kratos | |
double clock_rateBGL=700000000.0; // Blue Gene/L | |
double clock_rate = 0; // set for BGL or Kratos | |
double matrix_multiply( double **A, double *B, double **C, int B_start, int NP ) | |
{ | |
int i=0, j=0, k=0; | |
unsigned long long start=rdtsc(); | |
unsigned long long end=rdtsc(); | |
for (i = 0; i< NP; i++) | |
for( j = 0; j < NP; j++ ) | |
for( k = 0; k < Nc; k++ ) { | |
C[ i ][ j+B_start ] += A[i][k] * B[k*NP + j]; | |
//C[ i+A_start ][ j+B_start ] += A[i+A_start][k] * B[k*NP + j]; //A_start only needed when allocating all of A and C for each process | |
} | |
end = rdtsc(); | |
return ((double)end - (double)start)/clock_rate; | |
} | |
void main( int argc, char* argv[]) | |
{ | |
int i, j; | |
int taskid, numtasks, dest; | |
int intsize,dbsize; | |
int P,NP,sizeB; | |
int count = 0; | |
double mult_time_l = 0, send_time_l = 0; | |
double mult_time[1024]; | |
double send_time[1024]; | |
double mult[3]; | |
double send[3]; | |
double total_time = 0; | |
double data; | |
int Use_nodes = 0; //max nodes to use for a job, use all if 0 | |
unsigned long long start,start_a, end,end_a; | |
MPI_Status status; | |
MPI_Request recv_req[16], send_req[16]; | |
int recv_index[16], recv_count = 0; | |
intsize = sizeof(int); | |
dbsize = sizeof(double); | |
start_a = rdtsc(); | |
MPI_Init(&argc, &argv); | |
MPI_Comm_rank(MPI_COMM_WORLD, &taskid); | |
MPI_Comm_size(MPI_COMM_WORLD, &numtasks); | |
clock_rate = clock_rateBGL; // set for BGL | |
if(argc > 1) { | |
Use_nodes = atoi(argv[1]); | |
numtasks = Use_nodes | |
} | |
if(argc > 2) { | |
if (argv[2] == "k" || argv[2] == "K") | |
clock_rate = clock_rateK; // set for Kratos | |
} | |
if(argc > 3) { | |
Nc = atoi(argv[3]); | |
} | |
if(argc > 4) { | |
DEBUG_ON = (char)atoi(argv[4]); | |
} | |
if (Use_nodes > 0 && taskid < Use_nodes) { | |
P = numtasks; | |
NP = Nc/P; | |
sizeB = NP*Nc; | |
if(taskid==0 && DEBUG_ON > 1) { | |
printf("sizeB:%d\n",sizeB); | |
printf("taskid:%d\n",taskid); | |
printf("NP:%d\n", NP); | |
printf("P:%d\n",P); | |
} | |
dest = (taskid+1)%numtasks; | |
// WHEN USING MPI DO: rng_init_seeds[0] = my_rank; | |
rng_init_seeds[0] = taskid; | |
init_by_array(rng_init_seeds, rng_init_length); | |
//Allocate space | |
B_buf_in = (double*)calloc(sizeB, dbsize); | |
B_buf_out = (double*)calloc(sizeB, dbsize); | |
A = (double **)calloc( NP, sizeof(double*)); | |
for( i = 0; i < NP; i++ ) | |
A[i] = (double *)calloc( Nc, sizeof(double)); | |
C = (double **)calloc( NP, sizeof(double*)); | |
for( i = 0; i < NP; i++ ) | |
C[i] = (double *)calloc( Nc, sizeof(double)); | |
//Initialize A and B | |
for( i = 0; i < NP; i++ ) { | |
for( j = 0; j < Nc; j++ ) { | |
A[i][j] = genrand_res53(); | |
B_buf_in[(j*NP)+i] = genrand_res53(); | |
} | |
} | |
if(DEBUG_ON > 1) { | |
printf("\nA:\n"); | |
for( i=0; i<NP; i++) { | |
for (j=0; j<Nc; j++) { | |
printf("%f ",A[i][j]); | |
} | |
printf("--%d\n",taskid); | |
} | |
printf("\nB:\n"); | |
for( i=0; i<Nc; i++) { | |
for (j=0; j<NP; j++) { | |
printf("%f ",B_buf_in[i*NP + j]); | |
} | |
printf("--%d\n",taskid); | |
} | |
} | |
for (count = 0; count < P; count++) { | |
//move B to sending buffer | |
memcpy(B_buf_out, B_buf_in, sizeB*dbsize); | |
//send B to next process | |
MPI_Isend(B_buf_out, sizeB, MPI_DOUBLE, dest, 0, MPI_COMM_WORLD, &(send_req[0])); | |
//perform multiplication | |
mult_time_l += matrix_multiply( A, B_buf_in, C, ((count+taskid)%P)*NP, NP ); | |
//receive B from previous process | |
start = rdtsc(); | |
MPI_Irecv(B_buf_in, sizeB, MPI_CHAR, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &(recv_req[0])); | |
//wait for new B | |
while (recv_count == 0) { | |
MPI_Testsome(0, recv_req, &recv_count, recv_index, MPI_STATUSES_IGNORE); | |
} | |
recv_count = 0; | |
end = rdtsc(); | |
send_time_l += ((double)end - (double)start)/clock_rate; | |
if(DEBUG_ON) { | |
printf("\nC(%d):\n",count); | |
for( i=0; i<NP; i++) { | |
for (j=0; j<Nc; j++) { | |
printf("%d ",(int)C[i][j]); | |
} | |
printf("--%d\n",taskid); | |
} | |
} | |
} | |
// Collect stats | |
MPI_Allreduce(&send_time_l, send_time, numtasks, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | |
MPI_Allreduce(&mult_time_l, mult_time, numtasks, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | |
mult[0] = mult_time[0]; | |
send[0] = send_time[0]; | |
MPI_Allreduce(&send_time_l, send_time, numtasks, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD); | |
MPI_Allreduce(&mult_time_l, mult_time, numtasks, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD); | |
mult[1] = mult_time[0]; | |
send[1] = send_time[0]; | |
MPI_Allreduce(&send_time_l, send_time, numtasks, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD); | |
MPI_Allreduce(&mult_time_l, mult_time, numtasks, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD); | |
mult[1] = mult_time[0]; | |
send[1] = send_time[0]; | |
} | |
//Finalize | |
MPI_Finalize(); | |
//report stats | |
if (taskid == 0) { | |
end_a = rdtsc(); | |
total_time = ((double)end_a - (double)start_a)/clock_rate; | |
data = sizeB*P; | |
printf("NUM CORES --- AVG MULT --- AVG SEND --- MIN MULT --- MIN SEND --- MAX MULT --- MAX SEND --- TOTAL EXE\n"); | |
printf("%d \t%lf \t%f \t%lf \t%lf \t%lf \t%lf \t%lf\n",P,data/mult[0],data/send[0],data/mult[1],data/send[0],data/mult[1],data/send[0],total_time); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment