Last active
August 29, 2015 14:05
-
-
Save okeuday/6d7ace47011bf73f4fb5 to your computer and use it in GitHub Desktop.
streams module
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-module(streams). | |
-author('[email protected]'). | |
%% | |
%% Author: Torbjorn Tornkvist | |
%% http://forum.trapexit.org/viewtopic.php?p=22424#22424 | |
%% | |
%% Date: 27 Nov 1995 | |
%% | |
%% Try this: | |
%% | |
%% 1> streams:first(10,streams:map(fun(X)-> round(X) end,streams:scale(100,streams:random_numbers(random:seed())))). | |
%% [9,44,72,95,50,31,60,92,67,48] | |
%% | |
%% 2> streams:first(10, streams:primes()). | |
%% [2,3,5,7,11,13,17,19,23,29] | |
%% | |
%% 3> hd(lists:reverse(streams:first(2000, streams:pi()))). | |
%% 3.14399 | |
%% | |
%%-export([start/0]). | |
-compile(export_all). | |
-define( cons_stream(H,T) , [H|fun() -> T end] ). | |
head(S) -> hd(S). | |
tail(S) -> NS=tl(S),NS(). | |
first(0,_) -> []; | |
first(N,S) -> [head(S)|first(N-1,tail(S))]. | |
all([]) -> []; | |
all(S) -> [head(S)|all(tail(S))]. | |
nth(0,S) -> head(S); | |
nth(N,S) -> nth(N-1,tail(S)). | |
map(F,S) -> | |
?cons_stream(F(head(S)),map(F,tail(S))). | |
scale(C,S) -> | |
map(fun(X) -> X*C end,S). | |
double(S) -> scale(2,S). | |
naturals() -> integers_starting_from(0). | |
integers_starting_from(N) -> | |
?cons_stream(N,integers_starting_from(N+1)). | |
filter(Pred,S) -> | |
HS = head(S), | |
case Pred(HS) of | |
true -> | |
?cons_stream(HS,filter(Pred,tail(S))); | |
_ -> | |
filter(Pred,tail(S)) | |
end. | |
primes() -> sieve(integers_starting_from(2)). | |
sieve(S) -> | |
HS = head(S), | |
Pred = fun(X) -> 'not'(divisible(X,HS)) end, | |
?cons_stream(HS,sieve(filter(Pred,tail(S)))). | |
divisible(X,Y) -> | |
if | |
X rem Y == 0 -> true; | |
true -> false | |
end. | |
'not'(true) -> false; | |
'not'(_) -> true. | |
gcd(A,0) -> A; | |
gcd(A,B) -> gcd(B,A rem B). | |
random_numbers(Seed) -> | |
?cons_stream(random:uniform(),random_numbers(Seed)). | |
cesaro_stream() -> | |
F = fun(R1,R2) -> case gcd(R1,R2) of 1 -> true; _ -> false end end, | |
map_successive_pairs(F,map(fun(X)-> round(X) end,scale(100,random_numbers(random:seed())))). | |
map_successive_pairs(F,S) -> | |
?cons_stream(F(head(S),head(tail(S))), | |
map_successive_pairs(F,tail(tail(S)))). | |
monte_carlo(ExperimentS,Nt,Nf) -> | |
Next = fun(Nnt,Nnf) -> | |
?cons_stream(Nnt/(Nnt+Nnf), | |
monte_carlo(tail(ExperimentS),Nnt,Nnf)) | |
end, | |
case head(ExperimentS) of | |
true -> Next(Nt+1,Nf); | |
false -> Next(Nt,Nf+1) | |
end. | |
%% An approximation of pi. | |
%% We will use the fact that the probability that | |
%% two integers choosen at random will have no factors | |
%% in common (i.e their GCD is 1) is 6/pi**2. The | |
%% fraction of times the test is passed gives us an | |
%% estimate of this probability. So the further you | |
%% look into the stream, the better approximation you'll get. | |
pi() -> | |
map(fun(P) -> math:sqrt(6/P) end, | |
monte_carlo(cesaro_stream(),0,0)). |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment