Last active
December 26, 2018 13:29
-
-
Save okomarov/9709976f3a7edfb211b1df5947506c8f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
%matplotlib notebook | |
import pandas_datareader as pdr | |
from sklearn.linear_model import LinearRegression | |
from sklearn.metrics import mean_squared_error | |
# Download gold data (ETF) | |
gld = pdr.get_data_yahoo('GLD',start='1984-01-01') | |
# Use AR(1), i.e. previous price predicts next | |
gld['Prev'] = gld['Adj Close'].shift(1) | |
X = gld['Prev'] | |
y = gld['Adj Close'] | |
# 80% train, 20% test | |
t = int(0.8*len(gld)) | |
X_train = X[1:t] | |
y_train = y[1:t] | |
X_test = X[t:] | |
y_test = y[t:] | |
# Fit and predict | |
linear = LinearRegression().fit(X_train.values[:,None],y_train.values[:,None]) | |
predicted_price = linear.predict(X_test.values[:,None]) | |
print(mean_squared_error(y_test.values[:,None], predicted_price)) | |
y.plot() | |
plt.plot(X_test.index, predicted_price) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment