Last active
July 26, 2023 21:57
-
-
Save okram999/2a8e02cf8e2f43bc21d9cec3bafe5594 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
from langchain.document_loaders import TextLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import Pinecone | |
import pinecone | |
from langchain import VectorDBQA, OpenAI | |
from dotenv import load_dotenv | |
load_dotenv() | |
pinecone.init( | |
api_key=os.environ.get("PINECONE_API_KEY"), | |
environment=os.environ.get("PINECONE_ENVIRONMENT_REGION"), | |
) | |
if __name__ == "__main__": | |
print("Hello vectors") | |
loader = TextLoader("/Users/niris/Documents/mini-project/blogs/blog1.txt") | |
document = loader.load() | |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) | |
text = text_splitter.split_documents(document) | |
embeddings = OpenAIEmbeddings(openai_api_key=os.environ.get("OPENAI_API_KEY")) | |
docsearch = Pinecone.from_documents( | |
text, embeddings, index_name="blogs-embedding-vectors" | |
) | |
# take the query and embeded it into vector and plot it in the vector space | |
qa = VectorDBQA.from_chain_type( | |
llm=OpenAI(), | |
vectorstore=docsearch, | |
chain_type="stuff", | |
return_source_documents=True | |
) | |
query = "what is a vector? Give me a 10 word answer" | |
result = qa({"query": query}) | |
print(result) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment