Last active
July 12, 2023 08:59
-
-
Save oliviergimenez/5ee33af9c8d947b72a39ed1764040bf3 to your computer and use it in GitHub Desktop.
Visualise Metropolis algorithm with binomial likelihood and beta prior
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# load packages | |
library(tidyverse) | |
theme_set(theme_light(base_size = 16)) | |
library(gganimate) | |
library(magick) | |
# deer data, 19 "success" out of 57 "attempts" | |
survived <- 19 | |
released <- 57 | |
# log-likelihood function | |
loglikelihood <- function(x, p){ | |
dbinom(x = x, size = released, prob = p, log = TRUE) | |
} | |
# prior density | |
logprior <- function(p){ | |
dunif(x = p, min = 0, max = 1, log = TRUE) | |
} | |
# posterior density function (log scale) | |
posterior <- function(x, p){ | |
loglikelihood(x, p) + logprior(p) # - log(Pr(data)) | |
} | |
# propose candidate value | |
move <- function(x, away = .2){ | |
logitx <- log(x / (1 - x)) | |
logit_candidate <- logitx + rnorm(1, 0, away) | |
candidate <- plogis(logit_candidate) | |
return(candidate) | |
} | |
metropolis <- function(steps = 100, inits = 0.5){ | |
# pre-alloc memory | |
theta.post <- rep(NA, steps) | |
# start | |
theta.post[1] <- inits | |
for (t in 2:steps){ | |
# propose candidate value for prob of success | |
theta_star <- move(theta.post[t-1]) | |
# calculate ratio R | |
pstar <- posterior(survived, p = theta_star) | |
pprev <- posterior(survived, p = theta.post[t-1]) | |
logR <- pstar - pprev | |
R <- exp(logR) | |
# decide to accept candidate value or to keep current value | |
accept <- rbinom(1, 1, prob = min(R, 1)) | |
theta.post[t] <- ifelse(accept == 1, theta_star, theta.post[t-1]) | |
} | |
theta.post | |
} | |
#---------- apply Metropolis | |
steps <- 1000 | |
chain1 <- metropolis(steps = steps, inits = 0.2) | |
chain2 <- metropolis(steps = steps, inits = 0.5) | |
chain3 <- metropolis(steps = steps, inits = 0.7) | |
df <- data.frame(iter = rep(1:steps, 3), | |
value = c(chain1, chain2, chain3), | |
chain = c(rep("chain1", steps), | |
rep("chain2", steps), | |
rep("chain3", steps))) | |
#---------- time series | |
static_tsplot <- df %>% | |
mutate(posterior_mean = mean(value)) %>% | |
ggplot(aes(x = iter, y = value, group = chain, color = chain)) + | |
geom_line(size = 1, alpha = 0.7) + | |
geom_hline(aes(yintercept = posterior_mean, linetype = "posterior mean")) + | |
scale_linetype_manual(name = "", values = c(2,2)) + | |
labs(color = "", x = "iteration", y = "probability of success") | |
static_tsplot | |
# animate | |
animated_tsplot <- static_tsplot + | |
transition_reveal(along = iter, | |
range = as.integer(c(1, max(df$iter) + 50))) # trick to pause | |
animated_tsplot | |
# save | |
a_gif <- animate(animated_tsplot, | |
width = 600, | |
height = 300) | |
#---------- histogram | |
# histogram | |
static_hist <- df %>% | |
mutate(posterior_mean = mean(value)) %>% | |
split(.$iter) %>% | |
accumulate(~ bind_rows(.x, .y)) %>% | |
bind_rows(.id = "frame") %>% | |
mutate(frame = as.integer(frame)) %>% | |
ggplot(aes(x = value, fill = chain)) + | |
geom_histogram(color = "white", bins = 15, alpha = 0.7, position = "identity") + | |
labs(x = "probability of success", fill = "") + | |
geom_vline(aes(xintercept = posterior_mean), lty = 2) | |
static_hist | |
# animate | |
anim_hist <- static_hist + | |
transition_manual(frame) + | |
ease_aes("linear") + | |
enter_fade() + | |
exit_fade() | |
anim_hist | |
# save | |
b_gif <- animate(anim_hist, | |
width = 600, | |
height = 300) | |
#---------- put side-by-side | |
new_gif <- image_append(c(a_gif[1], b_gif[1])) | |
for(i in 2:100){ | |
combined <- image_append(c(a_gif[i], b_gif[i])) | |
new_gif <- c(new_gif, combined) | |
} | |
new_gif | |
Author
oliviergimenez
commented
Mar 25, 2021
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment