Skip to content

Instantly share code, notes, and snippets.

@ollewelin
Created September 14, 2016 04:39
Show Gist options
  • Save ollewelin/3f142b6115dd31a857414c87d8ee2e58 to your computer and use it in GitHub Desktop.
Save ollewelin/3f142b6115dd31a857414c87d8ee2e58 to your computer and use it in GitHub Desktop.
<?xml version="1.0"?>
<opencv_storage>
<cascade>
<stageType>BOOST</stageType>
<featureType>LBP</featureType>
<height>24</height>
<width>32</width>
<stageParams>
<boostType>LB</boostType>
<minHitRate>9.9500000476837158e-01</minHitRate>
<maxFalseAlarm>1.0000000149011612e-01</maxFalseAlarm>
<weightTrimRate>9.4999999999999996e-01</weightTrimRate>
<maxDepth>1</maxDepth>
<maxWeakCount>100</maxWeakCount></stageParams>
<featureParams>
<maxCatCount>256</maxCatCount>
<featSize>1</featSize></featureParams>
<stageNum>8</stageNum>
<stages>
<!-- stage 0 -->
<_>
<maxWeakCount>2</maxWeakCount>
<stageThreshold>-7.8849297761917114e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 22 8348195 540971153 -2113978398 -1602125824 620756991
889192447 -24577 905936895</internalNodes>
<leafValues>
-1.9395769834518433e+00 1.9538542032241821e+00</leafValues></_>
<_>
<internalNodes>
0 -1 11 33448 32896 -2139062272 9011328 10526895 8421514
-2000189201 28246191</internalNodes>
<leafValues>
-1.2459266185760498e+00 1.1510840654373169e+00</leafValues></_></weakClassifiers></_>
<!-- stage 1 -->
<_>
<maxWeakCount>2</maxWeakCount>
<stageThreshold>-8.1493711471557617e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 26 -1 -1073285569 -1073528576 -1073561600 -2004629470
-1 -1065091076 -319357064</internalNodes>
<leafValues>
-1.9478435516357422e+00 1.9663689136505127e+00</leafValues></_>
<_>
<internalNodes>
0 -1 24 -671613953 -1063222712 268468232 32768 -774911601
32768 46514350 1078119330</internalNodes>
<leafValues>
-1.2118173837661743e+00 1.1329064369201660e+00</leafValues></_></weakClassifiers></_>
<!-- stage 2 -->
<_>
<maxWeakCount>3</maxWeakCount>
<stageThreshold>5.4881459474563599e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 6 -134217729 -524291 -276561921 -196609 8958207 -32895
-134219778 -145475756</internalNodes>
<leafValues>
-1.7422037124633789e+00 1.7936016321182251e+00</leafValues></_>
<_>
<internalNodes>
0 -1 16 -716790368 -171732672 1358963471 -716505085
-1073620801 -1767309184 -2120181606 -1081349238</internalNodes>
<leafValues>
-1.5884633064270020e+00 1.1522661447525024e+00</leafValues></_>
<_>
<internalNodes>
0 -1 9 -104377545 2039546057 -2013171431 -10534775
-536862377 -1198899190 -669372857 -9693</internalNodes>
<leafValues>
-1.4807320833206177e+00 1.1387522220611572e+00</leafValues></_></weakClassifiers></_>
<!-- stage 3 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-1.1921599507331848e-02</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 20 -783169027 -982415 26280285 -2618305 -1061056001
-1147430749 -1450980134 143169470</internalNodes>
<leafValues>
-1.7166086435317993e+00 1.6076507568359375e+00</leafValues></_>
<_>
<internalNodes>
0 -1 23 1346491861 1972471446 -721157481 -678434417
840610811 832283281 1061761767 1072659419</internalNodes>
<leafValues>
-1.8909164667129517e+00 1.0112648010253906e+00</leafValues></_>
<_>
<internalNodes>
0 -1 28 -643829249 -6716783 -788410113 -40189617 -1178359139
-1182037877 -1731352048 -355691556</internalNodes>
<leafValues>
-1.5556327104568481e+00 9.4044905900955200e-01</leafValues></_>
<_>
<internalNodes>
0 -1 7 -1794597638 -674131592 16810713 -581107407
-1995382055 -74743768 -2088589057 1054767246</internalNodes>
<leafValues>
-1.5561310052871704e+00 9.8282766342163086e-01</leafValues></_>
<_>
<internalNodes>
0 -1 31 -171445299 -2130214901 32768 -2012119038 -805183295
32896 -1073643000 -892360696</internalNodes>
<leafValues>
-1.2298544645309448e+00 9.5452111959457397e-01</leafValues></_></weakClassifiers></_>
<!-- stage 4 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>1.0285905003547668e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 8 -201884688 -234881027 1560355624 -102819881 -48221293
-134276741 2139045759 -67158017</internalNodes>
<leafValues>
-1.5271966457366943e+00 1.6769547462463379e+00</leafValues></_>
<_>
<internalNodes>
0 -1 2 -670367845 -793526133 -1726897917 -49954293 43763887
1686880403 1258896223 2012216303</internalNodes>
<leafValues>
-1.6475429534912109e+00 1.0945324897766113e+00</leafValues></_>
<_>
<internalNodes>
0 -1 0 -1009786161 -787963642 16450 -1065041782 134332482
32770 -1073511872 -272178682</internalNodes>
<leafValues>
-1.3718777894973755e+00 1.0743466615676880e+00</leafValues></_>
<_>
<internalNodes>
0 -1 25 -507120675 -1408532471 -2130638709 -1441431552
-2004628821 -1845329778 847530761 -319821307</internalNodes>
<leafValues>
-1.4640215635299683e+00 1.0023479461669922e+00</leafValues></_>
<_>
<internalNodes>
0 -1 10 -804733020 -774778659 1746077463 487135259
1627644075 2044411960 -2055137077 2140132283</internalNodes>
<leafValues>
-1.3450176715850830e+00 9.2519813776016235e-01</leafValues></_></weakClassifiers></_>
<!-- stage 5 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-2.4682232737541199e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 32 -269504705 -1342181377 -1342226642 -1342197778
-117440513 -1 -16628 -242</internalNodes>
<leafValues>
-1.5005476474761963e+00 1.5953699350357056e+00</leafValues></_>
<_>
<internalNodes>
0 -1 27 -237791009 -69230193 -989740829 -71303109
-1190944377 -1331502965 -1584664063 -67325636</internalNodes>
<leafValues>
-1.8342244625091553e+00 9.6464890241622925e-01</leafValues></_>
<_>
<internalNodes>
0 -1 12 -1110231245 1062568003 -1454306033 -1617222906
-106861613 -74202974 -1163444337 -5457</internalNodes>
<leafValues>
-1.2868440151214600e+00 1.0891709327697754e+00</leafValues></_>
<_>
<internalNodes>
0 -1 18 -515313228 -1257013097 -1744828276 -167178097
1745095675 -2128051558 -1996419703 -1315345713</internalNodes>
<leafValues>
-1.5948759317398071e+00 9.2406857013702393e-01</leafValues></_>
<_>
<internalNodes>
0 -1 19 -108975197 -86784101 671140767 -1958522229
-1719474773 -83164957 998263715 1118544803</internalNodes>
<leafValues>
-1.5229194164276123e+00 7.9478138685226440e-01</leafValues></_></weakClassifiers></_>
<!-- stage 6 -->
<_>
<maxWeakCount>6</maxWeakCount>
<stageThreshold>-4.2263180017471313e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 5 -640188545 -778993657 -805187075 -1315755805
-775275965 -267763574 -1158014095 -29813</internalNodes>
<leafValues>
-1.6368353366851807e+00 1.4382339715957642e+00</leafValues></_>
<_>
<internalNodes>
0 -1 21 -787483664 1374011808 -301557265 1373454759
-1924531718 -1548211054 -33228321 330300859</internalNodes>
<leafValues>
-2.4078054428100586e+00 8.2540184259414673e-01</leafValues></_>
<_>
<internalNodes>
0 -1 13 824283409 395640850 -1257238057 -549384111 184584355
-1199529847 -369063916 -276060023</internalNodes>
<leafValues>
-1.3460109233856201e+00 1.0494556427001953e+00</leafValues></_>
<_>
<internalNodes>
0 -1 29 -675226181 -217611965 548495525 -216874998
-2143256405 -1845034872 -475886744 -67446136</internalNodes>
<leafValues>
-1.4442169666290283e+00 9.4616609811782837e-01</leafValues></_>
<_>
<internalNodes>
0 -1 15 -238770520 1409774027 440406343 1680684771
-2100324118 -788290667 -129469369 2146423785</internalNodes>
<leafValues>
-1.5950627326965332e+00 8.0928045511245728e-01</leafValues></_>
<_>
<internalNodes>
0 -1 3 -104041481 -539245355 1342245006 -686946300 536873183
1964585182 -1476384760 1938639885</internalNodes>
<leafValues>
-1.2625271081924438e+00 8.1710666418075562e-01</leafValues></_></weakClassifiers></_>
<!-- stage 7 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-3.1976306438446045e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 30 -202378289 -511606650 -2129558526 -1068834750
-259274613 0 -687611447 -286856256</internalNodes>
<leafValues>
-1.8906475305557251e+00 1.4122449159622192e+00</leafValues></_>
<_>
<internalNodes>
0 -1 1 -842009633 -1064295801 32800 1078099975 -1060908498
-1052655487 -1324799744 -422671474</internalNodes>
<leafValues>
-1.7957835197448730e+00 9.8955881595611572e-01</leafValues></_>
<_>
<internalNodes>
0 -1 4 1346837402 273219678 272893145 1363252557 470163825
-820408895 268566679 -397018920</internalNodes>
<leafValues>
-1.4468674659729004e+00 1.0822215080261230e+00</leafValues></_>
<_>
<internalNodes>
0 -1 17 51462577 1899339925 -2050913121 889557136 -200685315
707396793 -1691800578 1066113182</internalNodes>
<leafValues>
-1.5856068134307861e+00 8.3175510168075562e-01</leafValues></_>
<_>
<internalNodes>
0 -1 14 -1711438813 1195465119 -2147461865 -922690809
-731790101 -2138783473 -1065103429 1722803595</internalNodes>
<leafValues>
-1.3326510190963745e+00 7.9779994487762451e-01</leafValues></_></weakClassifiers></_></stages>
<features>
<_>
<rect>
0 0 1 6</rect></_>
<_>
<rect>
0 2 1 6</rect></_>
<_>
<rect>
0 2 6 7</rect></_>
<_>
<rect>
0 12 7 4</rect></_>
<_>
<rect>
1 5 10 6</rect></_>
<_>
<rect>
1 21 1 1</rect></_>
<_>
<rect>
2 0 5 3</rect></_>
<_>
<rect>
2 3 10 4</rect></_>
<_>
<rect>
2 8 9 4</rect></_>
<_>
<rect>
2 21 1 1</rect></_>
<_>
<rect>
4 9 6 5</rect></_>
<_>
<rect>
5 7 9 4</rect></_>
<_>
<rect>
6 15 6 3</rect></_>
<_>
<rect>
6 21 3 1</rect></_>
<_>
<rect>
8 0 5 8</rect></_>
<_>
<rect>
8 3 6 7</rect></_>
<_>
<rect>
8 5 6 5</rect></_>
<_>
<rect>
8 15 8 3</rect></_>
<_>
<rect>
10 9 6 3</rect></_>
<_>
<rect>
11 0 6 8</rect></_>
<_>
<rect>
11 0 7 4</rect></_>
<_>
<rect>
11 4 7 5</rect></_>
<_>
<rect>
11 15 7 3</rect></_>
<_>
<rect>
14 9 5 5</rect></_>
<_>
<rect>
20 1 4 6</rect></_>
<_>
<rect>
26 15 2 3</rect></_>
<_>
<rect>
29 0 1 4</rect></_>
<_>
<rect>
29 1 1 1</rect></_>
<_>
<rect>
29 2 1 1</rect></_>
<_>
<rect>
29 4 1 1</rect></_>
<_>
<rect>
29 4 1 4</rect></_>
<_>
<rect>
29 8 1 5</rect></_>
<_>
<rect>
29 21 1 1</rect></_></features></cascade>
</opencv_storage>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment