- Ubuntu 24.04 LTS
- Python 3.10.14
git submodule update --init
pip install -r requirements.txt
The notebooks in this Gist compare the following operations and demonstrate their equivalent outputs:
For pandas 1.3.0:
input_data.groupby(group_by_column).mean()[[expression_column]]
library(igraph) # to work with graphs | |
library(RColorBrewer) # to use a color palette | |
library(plotrix) # to rescale variables | |
# Read the data | |
raw_data <- read.csv("network_data.csv") | |
names(raw_data) <- c("Source", "Target", "Count", "Money") | |
# reformat data for igraph library |
import os | |
import sys | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from pandas import DataFrame | |
from pandas.util.testing import set_trace | |
dirs = [] |
from sklearn.metrics import confusion_matrix | |
def print_cm(cm, labels, hide_zeroes=False, hide_diagonal=False, hide_threshold=None): | |
"""pretty print for confusion matrixes""" | |
columnwidth = max([len(x) for x in labels]+[5]) # 5 is value length | |
empty_cell = " " * columnwidth | |
# Print header | |
print " " + empty_cell, | |
for label in labels: | |
print "%{0}s".format(columnwidth) % label, |
{ | |
"metadata": { | |
"name": "exploring_a_single_data_file" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ |