-
-
Save oluies/a1c57e80f9fd71f8c354b336662bb5d2 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Licensed to the Apache Software Foundation (ASF) under one or more | |
* contributor license agreements. See the NOTICE file distributed with | |
* this work for additional information regarding copyright ownership. | |
* The ASF licenses this file to You under the Apache License, Version 2.0 | |
* (the "License"); you may not use this file except in compliance with | |
* the License. You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
*/ | |
// scalastyle:off println | |
package com.combient.sparkjob.tedsds | |
import org.apache.spark.ml.feature.StringIndexer | |
import org.apache.spark.ml.classification.RandomForestClassifier | |
import org.apache.spark.ml.{PipelineModel, Pipeline} | |
import org.apache.spark.ml.feature.StringIndexer | |
import org.apache.spark.mllib.evaluation.MulticlassMetrics | |
import org.apache.spark.mllib.linalg.Vector | |
import org.apache.spark.mllib.regression.LabeledPoint | |
import org.apache.spark.mllib.tree.RandomForest | |
import org.apache.spark.mllib.tree.model.RandomForestModel | |
import org.apache.spark.rdd.RDD | |
import org.apache.spark.sql.{Row, SQLContext} | |
import org.apache.spark.{SparkConf, SparkContext} | |
import scopt.OptionParser | |
object RunRandomForest2 { | |
case class Params(input: String = null,model: String = null) | |
def main(args: Array[String]): Unit = { | |
val defaultParams = Params() | |
val parser = new OptionParser[Params]("MulticlassMetricsFortedsds") { | |
head("RunRandomForest: a http://spark.apache.org/docs/latest/mllib-linear-methods.html example app for ALS on dataset A. Saxena and K. Goebel (2008). “Turbofan Engine Degradation Simulation Data Set”, NASA Ames Prognostics Data Repository (http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/), NASA Ames Research Center, Moffett Field, CA.") | |
arg[String]("<input>") | |
.required() | |
.text("hdfs input paths to a parquet dataset ") | |
.action((x, c) => c.copy(input = x.trim)) | |
arg[String]("<modelsave>") | |
.optional() | |
.text("hdfs output paths saved model ") | |
.action((x, c) => c.copy(model = x.trim)) | |
note( | |
""" | |
|For example, the following command runs this app on a dataset: | |
| | |
| bin/spark-submit --class com.combient.sparkjob.tedsds.RunRandomForest2 \ | |
| jarfile.jar \ | |
| /share/tedsds/scaledd \ | |
| /share/tedsds/savedmodel | |
""".stripMargin) | |
} | |
parser.parse(args, defaultParams).map { params => | |
run(params) | |
} getOrElse { | |
System.exit(1) | |
} | |
} | |
def run(params: Params) { | |
val conf = new SparkConf().setAppName(s"RunRandomForest2 with $params") | |
val sc = new SparkContext(conf) | |
val input = params.input | |
println(s"Input dataset = $input") | |
// see https://spark.apache.org/docs/latest/mllib-evaluation-metrics.html | |
val sqlContext = new SQLContext(sc) | |
import sqlContext.implicits._ | |
// Load training data | |
val scaledDF = sqlContext.read.parquet(input) | |
// Index labels, adding metadata to the label column. | |
// Fit on whole dataset to include all labels in index. | |
val labelIndexer = new StringIndexer() | |
.setInputCol("label2") | |
.setOutputCol("indexedLabel") | |
.fit(scaledDF) | |
val indexed = labelIndexer.transform(scaledDF) | |
val trainRDD : RDD[LabeledPoint] = indexed | |
.select($"indexedLabel", $"scaledFeatures") | |
.map{case Row(indexedLabel: Double, scaledFeatures: Vector) => LabeledPoint(indexedLabel, scaledFeatures)} | |
trainRDD.cache() | |
// Train a RandomForest model. | |
// Empty categoricalFeaturesInfo indicates all features are continuous. | |
val numClasses = 3 // 0-2 | |
val categoricalFeaturesInfo = Map[Int, Int]() | |
val numTrees = 666 | |
val featureSubsetStrategy = "auto" // Let the algorithm choose. | |
val impurity = "gini" | |
val maxDepth = 6 | |
val maxBins = 32 | |
val model: RandomForestModel = RandomForest.trainClassifier(trainRDD, numClasses, | |
categoricalFeaturesInfo, numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins) | |
// Compute raw scores on the test set | |
val predictionAndLabels = trainRDD.map { case LabeledPoint(label, features) => | |
val prediction = model.predict(features) | |
(prediction, label) | |
} | |
// Instantiate metrics object | |
val metrics = new MulticlassMetrics(predictionAndLabels) | |
// Confusion matrix | |
println("Confusion matrix:") | |
println(metrics.confusionMatrix) | |
if(params.model != ""){ | |
model.save(sc,"%s".format(params.model)) | |
print("Saved model as %s".format(params.model)) | |
} | |
sc.stop() | |
} | |
} | |
// scalastyle:on println |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment