-
-
Save onewheelskyward/12744bf7bb9f13e4e4cb6a648809a6ed to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<?xml version='1.0' encoding='UTF-8'?> | |
<queryresult success='true' | |
error='false' | |
numpods='16' | |
datatypes='' | |
timedout='' | |
timedoutpods='' | |
timing='6.764' | |
parsetiming='0.228' | |
parsetimedout='false' | |
recalculate='' | |
id='MSP487523h005d7ihcg97g200002d298c6db0i6i3f0' | |
host='https://www5a.wolframalpha.com' | |
server='24' | |
related='https://www5a.wolframalpha.com/api/v1/relatedQueries.jsp?id=MSPa487623h005d7ihcg97g2000053563e7ebg8g7e3e5106314412482791943' | |
version='2.6'> | |
<pod title='Input' | |
scanner='Identity' | |
id='Input' | |
position='100' | |
error='false' | |
numsubpods='1'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP487723h005d7ihcg97g200005fb800g9e53hc71d?MSPStoreType=image/gif&s=24' | |
alt='sin(x)' | |
title='sin(x)' | |
width='35' | |
height='18' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x)</plaintext> | |
</subpod> | |
<expressiontypes count='1'> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
</pod> | |
<pod title='Plots' | |
scanner='Plotter' | |
id='Plot' | |
position='200' | |
error='false' | |
numsubpods='2'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP487823h005d7ihcg97g200003g3c2c7bh74b2d5c?MSPStoreType=image/gif&s=24' | |
alt='Plots' | |
title='' | |
width='335' | |
height='145' | |
type='2DMathPlot_1' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext></plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP487923h005d7ihcg97g2000012bd68c401b31304?MSPStoreType=image/gif&s=24' | |
alt='Plots' | |
title='' | |
width='349' | |
height='146' | |
type='2DMathPlot_1' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext></plaintext> | |
</subpod> | |
<expressiontypes count='2'> | |
<expressiontype name='2DMathPlot' /> | |
<expressiontype name='2DMathPlot' /> | |
</expressiontypes> | |
</pod> | |
<pod title='Alternate form' | |
scanner='Simplification' | |
id='AlternateForm' | |
position='300' | |
error='false' | |
numsubpods='1'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP488023h005d7ihcg97g2000064cfhd52ieicchb8?MSPStoreType=image/gif&s=24' | |
alt='1/2 i e^(-i x) - 1/2 i e^(i x)' | |
title='1/2 i e^(-i x) - 1/2 i e^(i x)' | |
width='105' | |
height='36' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>1/2 i e^(-i x) - 1/2 i e^(i x)</plaintext> | |
</subpod> | |
<expressiontypes count='1'> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
</pod> | |
<pod title='Roots' | |
scanner='Reduce' | |
id='SymbolicSolution' | |
position='400' | |
error='false' | |
numsubpods='1' | |
primary='true'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP488123h005d7ihcg97g200004if459b2g1ha07g3?MSPStoreType=image/gif&s=24' | |
alt='x = π n, n element Z' | |
title='x = π n, n element Z' | |
width='550' | |
height='22' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>x = π n, n element Z</plaintext> | |
</subpod> | |
<expressiontypes count='1'> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
<states count='2'> | |
<state name='Approximate form' | |
input='SymbolicSolution__Approximate form' /> | |
<state name='Step-by-step solution' | |
input='SymbolicSolution__Step-by-step solution' | |
stepbystep='true' /> | |
</states> | |
<infos count='1'> | |
<info text='Z is the set of integers'> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP488223h005d7ihcg97g2000019b65efcbc958bi5?MSPStoreType=image/gif&s=24' | |
alt='Z is the set of integers' | |
title='Z is the set of integers' | |
width='144' | |
height='18' /> | |
<link url='http://reference.wolfram.com/language/ref/Integers.html' | |
text='Documentation' | |
title='Documentation' /> | |
<link url='http://mathworld.wolfram.com/Z.html' | |
text='Definition' | |
title='MathWorld' /> | |
</info> | |
</infos> | |
</pod> | |
<pod title='Properties as a real function' | |
scanner='FunctionProperties' | |
id='PropertiesAsARealFunction' | |
position='500' | |
error='false' | |
numsubpods='4'> | |
<subpod title='Domain'> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP488323h005d7ihcg97g200003086c9gih0f80552?MSPStoreType=image/gif&s=24' | |
alt='R (all real numbers)' | |
title='R (all real numbers)' | |
width='134' | |
height='18' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>R (all real numbers)</plaintext> | |
</subpod> | |
<subpod title='Range'> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP488423h005d7ihcg97g200001ha082522hbeecde?MSPStoreType=image/gif&s=24' | |
alt='{y element R : -1<=y<=1}' | |
title='{y element R : -1<=y<=1}' | |
width='122' | |
height='18' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>{y element R : -1<=y<=1}</plaintext> | |
</subpod> | |
<subpod title='Periodicity'> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP488523h005d7ihcg97g2000060f1ic44cai41581?MSPStoreType=image/gif&s=24' | |
alt='periodic in x with period 2 π' | |
title='periodic in x with period 2 π' | |
width='184' | |
height='20' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>periodic in x with period 2 π</plaintext> | |
</subpod> | |
<subpod title='Parity'> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP488623h005d7ihcg97g200002a927651b87b97f0?MSPStoreType=image/gif&s=24' | |
alt='odd' | |
title='odd' | |
width='24' | |
height='18' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>odd</plaintext> | |
</subpod> | |
<expressiontypes count='4'> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
<states count='1'> | |
<state name='Approximate forms' | |
input='PropertiesAsARealFunction__Approximate forms' /> | |
</states> | |
<infos count='1'> | |
<info text='R is the set of real numbers'> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP488723h005d7ihcg97g200004ecf386f45a96ie7?MSPStoreType=image/gif&s=24' | |
alt='R is the set of real numbers' | |
title='R is the set of real numbers' | |
width='179' | |
height='18' /> | |
<link url='http://reference.wolfram.com/language/ref/Reals.html' | |
text='Documentation' | |
title='Documentation' /> | |
<link url='http://mathworld.wolfram.com/R.html' | |
text='Definition' | |
title='MathWorld' /> | |
</info> | |
</infos> | |
</pod> | |
<pod title='Series expansion at x = 0' | |
scanner='Series' | |
id='SeriesExpansionAt `1`x=0.' | |
position='600' | |
error='false' | |
numsubpods='1'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP488823h005d7ihcg97g20000397b8319ei591b6b?MSPStoreType=image/gif&s=24' | |
alt='x - x^3/6 + x^5/120 + O(x^6) | |
(Taylor series)' | |
title='x - x^3/6 + x^5/120 + O(x^6) | |
(Taylor series)' | |
width='132' | |
height='58' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>x - x^3/6 + x^5/120 + O(x^6) | |
(Taylor series)</plaintext> | |
</subpod> | |
<expressiontypes count='1'> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
<infos count='1'> | |
<info> | |
<link url='http://mathworld.wolfram.com/Big-ONotation.html' | |
text='Big‐O notation' /> | |
</info> | |
</infos> | |
</pod> | |
<pod title='Derivative' | |
scanner='Derivative' | |
id='Derivative' | |
position='700' | |
error='false' | |
numsubpods='1'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP488923h005d7ihcg97g20000408129777bei9ef4?MSPStoreType=image/gif&s=24' | |
alt='d/dx(sin(x)) = cos(x)' | |
title='d/dx(sin(x)) = cos(x)' | |
width='119' | |
height='36' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>d/dx(sin(x)) = cos(x)</plaintext> | |
</subpod> | |
<expressiontypes count='1'> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
<states count='1'> | |
<state name='Step-by-step solution' | |
input='Derivative__Step-by-step solution' | |
stepbystep='true' /> | |
</states> | |
</pod> | |
<pod title='Indefinite integral' | |
scanner='Integral' | |
id='IndefiniteIntegral' | |
position='800' | |
error='false' | |
numsubpods='1' | |
primary='true'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP489023h005d7ihcg97g200003hae4i65ga7g839f?MSPStoreType=image/gif&s=24' | |
alt='integral sin(x) dx = -cos(x) + constant' | |
title='integral sin(x) dx = -cos(x) + constant' | |
width='209' | |
height='32' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>integral sin(x) dx = -cos(x) + constant</plaintext> | |
</subpod> | |
<expressiontypes count='1'> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
<states count='1'> | |
<state name='Step-by-step solution' | |
input='IndefiniteIntegral__Step-by-step solution' | |
stepbystep='true' /> | |
</states> | |
</pod> | |
<pod title='Identities' | |
scanner='FunctionProperties' | |
id='Identities' | |
position='900' | |
error='false' | |
numsubpods='8'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP489123h005d7ihcg97g2000037e5c2i7e1eb218c?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = -i sinh(π - i x)' | |
title='sin(x) = -i sinh(π - i x)' | |
width='141' | |
height='18' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = -i sinh(π - i x)</plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP489223h005d7ihcg97g2000051c69iac0cig2h67?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = i sinh(π + i x)' | |
title='sin(x) = i sinh(π + i x)' | |
width='132' | |
height='18' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = i sinh(π + i x)</plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP489323h005d7ihcg97g2000051e9icih860a8204?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = i sinh(2 π - i x)' | |
title='sin(x) = i sinh(2 π - i x)' | |
width='143' | |
height='18' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = i sinh(2 π - i x)</plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP489423h005d7ihcg97g200002ag65be223e852a7?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = -i sinh(2 π + i x)' | |
title='sin(x) = -i sinh(2 π + i x)' | |
width='152' | |
height='18' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = -i sinh(2 π + i x)</plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP489523h005d7ihcg97g20000536g46egbhag9e35?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = 3 sin(x/3) - 4 sin^3(x/3)' | |
title='sin(x) = 3 sin(x/3) - 4 sin^3(x/3)' | |
width='179' | |
height='33' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = 3 sin(x/3) - 4 sin^3(x/3)</plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP489623h005d7ihcg97g200004hg847ffcf68b3g2?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = 2 cos(x/2) sin(x/2)' | |
title='sin(x) = 2 cos(x/2) sin(x/2)' | |
width='152' | |
height='33' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = 2 cos(x/2) sin(x/2)</plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP489723h005d7ihcg97g20000233cg868429319b4?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = i (-1)^m sinh(m π - i x) for m element Z' | |
title='sin(x) = i (-1)^m sinh(m π - i x) for m element Z' | |
width='255' | |
height='18' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = i (-1)^m sinh(m π - i x) for m element Z</plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP489823h005d7ihcg97g200004heg6g38hc4i2e52?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = 1/2 sec(b) (-sin(b - x) + sin(b + x))' | |
title='sin(x) = 1/2 sec(b) (-sin(b - x) + sin(b + x))' | |
width='253' | |
height='36' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = 1/2 sec(b) (-sin(b - x) + sin(b + x))</plaintext> | |
</subpod> | |
<expressiontypes count='8'> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
<infos count='2'> | |
<info text='sinh(x) is the hyperbolic sine function'> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP489923h005d7ihcg97g20000425aaide8fb495ig?MSPStoreType=image/gif&s=24' | |
alt='sinh(x) is the hyperbolic sine function' | |
title='sinh(x) is the hyperbolic sine function' | |
width='244' | |
height='18' /> | |
<link url='http://reference.wolfram.com/language/ref/Sinh.html' | |
text='Documentation' | |
title='Mathematica' /> | |
<link url='http://functions.wolfram.com/ElementaryFunctions/Sinh' | |
text='Properties' | |
title='Wolfram Functions Site' /> | |
<link url='http://mathworld.wolfram.com/HyperbolicSine.html' | |
text='Definition' | |
title='MathWorld' /> | |
</info> | |
<info text='sec(x) is the secant function'> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP490023h005d7ihcg97g2000014i56f97f2b2dhei?MSPStoreType=image/gif&s=24' | |
alt='sec(x) is the secant function' | |
title='sec(x) is the secant function' | |
width='180' | |
height='18' /> | |
<link url='http://reference.wolfram.com/language/ref/Sec.html' | |
text='Documentation' | |
title='Mathematica' /> | |
<link url='http://functions.wolfram.com/ElementaryFunctions/Sec' | |
text='Properties' | |
title='Wolfram Functions Site' /> | |
<link url='http://mathworld.wolfram.com/Secant.html' | |
text='Definition' | |
title='MathWorld' /> | |
</info> | |
</infos> | |
</pod> | |
<pod title='Global maxima' | |
scanner='GlobalExtrema' | |
id='GlobalMaximum' | |
position='1000' | |
error='false' | |
numsubpods='1'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP490123h005d7ihcg97g20000113f6a563d635a1h?MSPStoreType=image/gif&s=24' | |
alt='max{sin(x)} = 1 at x = 2 π n + π/2 for integer n' | |
title='max{sin(x)} = 1 at x = 2 π n + π/2 for integer n' | |
width='296' | |
height='32' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>max{sin(x)} = 1 at x = 2 π n + π/2 for integer n</plaintext> | |
</subpod> | |
<expressiontypes count='1'> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
<states count='2'> | |
<state name='Approximate form' | |
input='GlobalMaximum__Approximate form' /> | |
<state name='Step-by-step solution' | |
input='GlobalMaximum__Step-by-step solution' | |
stepbystep='true' /> | |
</states> | |
</pod> | |
<pod title='Global minima' | |
scanner='GlobalExtrema' | |
id='GlobalMinimum' | |
position='1100' | |
error='false' | |
numsubpods='2'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP490223h005d7ihcg97g200001h39d0g28ib6b914?MSPStoreType=image/gif&s=24' | |
alt='min{sin(x)} = -1 at x = 2 π n - π/2 for integer n' | |
title='min{sin(x)} = -1 at x = 2 π n - π/2 for integer n' | |
width='302' | |
height='32' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>min{sin(x)} = -1 at x = 2 π n - π/2 for integer n</plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP490323h005d7ihcg97g2000029i28c1ahcd696a7?MSPStoreType=image/gif&s=24' | |
alt='min{sin(x)} = -1 at x = 2 π n + (3 π)/2 for integer n' | |
title='min{sin(x)} = -1 at x = 2 π n + (3 π)/2 for integer n' | |
width='312' | |
height='36' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>min{sin(x)} = -1 at x = 2 π n + (3 π)/2 for integer n</plaintext> | |
</subpod> | |
<expressiontypes count='2'> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
<states count='2'> | |
<state name='Approximate forms' | |
input='GlobalMinimum__Approximate forms' /> | |
<state name='Step-by-step solution' | |
input='GlobalMinimum__Step-by-step solution' | |
stepbystep='true' /> | |
</states> | |
</pod> | |
<pod title='Alternative representations' | |
scanner='MathematicalFunctionData' | |
id='AlternativeRepresentations:MathematicalFunctionIdentityData' | |
position='1200' | |
error='false' | |
numsubpods='3'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP490423h005d7ihcg97g200000h121iie41i1758g?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = 1/csc(x)' | |
title='sin(x) = 1/csc(x)' | |
width='94' | |
height='46' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = 1/csc(x)</plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP490523h005d7ihcg97g200005b65eife3i0fc50a?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = cos(π/2 - x)' | |
title='sin(x) = cos(π/2 - x)' | |
width='119' | |
height='39' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = cos(π/2 - x)</plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP490623h005d7ihcg97g200000hei26fce8855hf4?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = -cos(π/2 + x)' | |
title='sin(x) = -cos(π/2 + x)' | |
width='128' | |
height='39' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = -cos(π/2 + x)</plaintext> | |
</subpod> | |
<expressiontypes count='3'> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
<states count='1'> | |
<state name='More' | |
input='AlternativeRepresentations:MathematicalFunctionIdentityData__More' /> | |
</states> | |
<infos count='2'> | |
<info text='csc(x) is the cosecant function'> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP490723h005d7ihcg97g200005c2ci581e0410i30?MSPStoreType=image/gif&s=24' | |
alt='csc(x) is the cosecant function' | |
title='csc(x) is the cosecant function' | |
width='195' | |
height='18' /> | |
<link url='http://reference.wolfram.com/language/ref/Csc.html' | |
text='Documentation' | |
title='Mathematica' /> | |
<link url='http://functions.wolfram.com/ElementaryFunctions/Csc' | |
text='Properties' | |
title='Wolfram Functions Site' /> | |
<link url='http://mathworld.wolfram.com/Cosecant.html' | |
text='Definition' | |
title='MathWorld' /> | |
</info> | |
<info> | |
<link url='http://functions.wolfram.com/ElementaryFunctions/Sin/27/ShowAll.html' | |
text='More information' /> | |
</info> | |
</infos> | |
</pod> | |
<pod title='Series representations' | |
scanner='MathematicalFunctionData' | |
id='SeriesRepresentations:MathematicalFunctionIdentityData' | |
position='1300' | |
error='false' | |
numsubpods='3'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP490823h005d7ihcg97g20000223d2ba6ch9cg993?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = sum_(k=0)^∞ ((-1)^k x^(1 + 2 k))/((1 + 2 k)!)' | |
title='sin(x) = sum_(k=0)^∞ ((-1)^k x^(1 + 2 k))/((1 + 2 k)!)' | |
width='148' | |
height='57' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = sum_(k=0)^∞ ((-1)^k x^(1 + 2 k))/((1 + 2 k)!)</plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP490923h005d7ihcg97g20000333518hfbeief76d?MSPStoreType=image/gif&s=24' | |
alt='sin(x)∝( sum_(k=0)^∞ (-1)^k (d^(2 k) δ(x))/(dx^(2 k)))/θ(x)' | |
title='sin(x)∝( sum_(k=0)^∞ (-1)^k (d^(2 k) δ(x))/(dx^(2 k)))/θ(x)' | |
width='163' | |
height='62' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x)∝( sum_(k=0)^∞ (-1)^k (d^(2 k) δ(x))/(dx^(2 k)))/θ(x)</plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP491023h005d7ihcg97g200002fh72048bh406344?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = 2 sum_(k=0)^∞ (-1)^k J_(1 + 2 k)(x)' | |
title='sin(x) = 2 sum_(k=0)^∞ (-1)^k J_(1 + 2 k)(x)' | |
width='170' | |
height='54' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = 2 sum_(k=0)^∞ (-1)^k J_(1 + 2 k)(x)</plaintext> | |
</subpod> | |
<expressiontypes count='3'> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
<states count='1'> | |
<state name='More' | |
input='SeriesRepresentations:MathematicalFunctionIdentityData__More' /> | |
</states> | |
<infos count='5'> | |
<info text='n! is the factorial function'> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP491123h005d7ihcg97g200004c0f017be19b7f0c?MSPStoreType=image/gif&s=24' | |
alt='n! is the factorial function' | |
title='n! is the factorial function' | |
width='171' | |
height='18' /> | |
<link url='http://reference.wolfram.com/language/ref/Factorial.html' | |
text='Documentation' | |
title='Mathematica' /> | |
<link url='http://functions.wolfram.com/GammaBetaErf/Factorial' | |
text='Properties' | |
title='Wolfram Functions Site' /> | |
<link url='http://mathworld.wolfram.com/Factorial.html' | |
text='Definition' | |
title='MathWorld' /> | |
</info> | |
<info text='θ(x) is the Heaviside step function'> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP491223h005d7ihcg97g2000010c59697b2a111h4?MSPStoreType=image/gif&s=24' | |
alt='θ(x) is the Heaviside step function' | |
title='θ(x) is the Heaviside step function' | |
width='216' | |
height='18' /> | |
<link url='http://reference.wolfram.com/language/ref/HeavisideTheta.html' | |
text='Documentation' | |
title='Mathematica' /> | |
<link url='http://functions.wolfram.com/GeneralizedFunctions/UnitStep' | |
text='Properties' | |
title='Wolfram Functions Site' /> | |
<link url='http://mathworld.wolfram.com/HeavisideStepFunction.html' | |
text='Definition' | |
title='MathWorld' /> | |
</info> | |
<info text='δ(x) is the Dirac delta function'> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP491323h005d7ihcg97g200002e85433e829ie851?MSPStoreType=image/gif&s=24' | |
alt='δ(x) is the Dirac delta function' | |
title='δ(x) is the Dirac delta function' | |
width='195' | |
height='18' /> | |
<link url='http://reference.wolfram.com/language/ref/DiracDelta.html' | |
text='Documentation' | |
title='Mathematica' /> | |
<link url='http://functions.wolfram.com/GeneralizedFunctions/DiracDelta' | |
text='Properties' | |
title='Wolfram Functions Site' /> | |
<link url='http://mathworld.wolfram.com/DeltaFunction.html' | |
text='Definition' | |
title='MathWorld' /> | |
</info> | |
<info text='J_n(z) is the Bessel function of the first kind'> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP491423h005d7ihcg97g200002e2e43553cff291h?MSPStoreType=image/gif&s=24' | |
alt='J_n(z) is the Bessel function of the first kind' | |
title='J_n(z) is the Bessel function of the first kind' | |
width='278' | |
height='18' /> | |
<link url='http://reference.wolfram.com/language/ref/BesselJ.html' | |
text='Documentation' | |
title='Mathematica' /> | |
<link url='http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ' | |
text='Properties' | |
title='Wolfram Functions Site' /> | |
<link url='http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html' | |
text='Definition' | |
title='MathWorld' /> | |
</info> | |
<info> | |
<link url='http://functions.wolfram.com/ElementaryFunctions/Sin/06/ShowAll.html' | |
text='More information' /> | |
</info> | |
</infos> | |
</pod> | |
<pod title='Integral representations' | |
scanner='MathematicalFunctionData' | |
id='IntegralRepresentations:MathematicalFunctionIdentityData' | |
position='1400' | |
error='false' | |
numsubpods='3'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP491523h005d7ihcg97g2000037i4feh0a12ai85g?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = x integral_0^1 cos(t x) dt' | |
title='sin(x) = x integral_0^1 cos(t x) dt' | |
width='150' | |
height='41' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = x integral_0^1 cos(t x) dt</plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP491623h005d7ihcg97g200003bh805d217ca2213?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = -(i x)/(4 sqrt(π)) integral_(-i ∞ + γ)^(i ∞ + γ) e^(s - x^2/(4 s))/s^(3/2) ds for γ>0' | |
title='sin(x) = -(i x)/(4 sqrt(π)) integral_(-i ∞ + γ)^(i ∞ + γ) e^(s - x^2/(4 s))/s^(3/2) ds for γ>0' | |
width='289' | |
height='55' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = -(i x)/(4 sqrt(π)) integral_(-i ∞ + γ)^(i ∞ + γ) e^(s - x^2/(4 s))/s^(3/2) ds for γ>0</plaintext> | |
</subpod> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP491723h005d7ihcg97g200000d65b6198f68gfa2?MSPStoreType=image/gif&s=24' | |
alt='sin(x) = -i/(2 sqrt(π)) integral_(-i ∞ + γ)^(i ∞ + γ) (2^(-1 + 2 s) x^(1 - 2 s) Γ(s))/Γ(3/2 - s) ds for (0<γ<1 and x>0)' | |
title='sin(x) = -i/(2 sqrt(π)) integral_(-i ∞ + γ)^(i ∞ + γ) (2^(-1 + 2 s) x^(1 - 2 s) Γ(s))/Γ(3/2 - s) ds for (0<γ<1 and x>0)' | |
width='431' | |
height='58' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>sin(x) = -i/(2 sqrt(π)) integral_(-i ∞ + γ)^(i ∞ + γ) (2^(-1 + 2 s) x^(1 - 2 s) Γ(s))/Γ(3/2 - s) ds for (0<γ<1 and x>0)</plaintext> | |
</subpod> | |
<expressiontypes count='3'> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
<infos count='2'> | |
<info text='Γ(x) is the gamma function'> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP491823h005d7ihcg97g200004dh85520h4d848d8?MSPStoreType=image/gif&s=24' | |
alt='Γ(x) is the gamma function' | |
title='Γ(x) is the gamma function' | |
width='176' | |
height='18' /> | |
<link url='http://reference.wolfram.com/language/ref/Gamma.html' | |
text='Documentation' | |
title='Mathematica' /> | |
<link url='http://functions.wolfram.com/GammaBetaErf/Gamma' | |
text='Properties' | |
title='Wolfram Functions Site' /> | |
<link url='http://mathworld.wolfram.com/GammaFunction.html' | |
text='Definition' | |
title='MathWorld' /> | |
</info> | |
<info> | |
<link url='http://functions.wolfram.com/ElementaryFunctions/Sin/07/ShowAll.html' | |
text='More information' /> | |
</info> | |
</infos> | |
</pod> | |
<pod title='Definite integral over a half-period' | |
scanner='InterestingDefiniteIntegrals' | |
id='DefiniteIntegralOverAHalfPeriod' | |
position='1500' | |
error='false' | |
numsubpods='1'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP491923h005d7ihcg97g20000214fi1a3fic6gg59?MSPStoreType=image/gif&s=24' | |
alt='integral_0^π sin(x) dx = 2' | |
title='integral_0^π sin(x) dx = 2' | |
width='103' | |
height='33' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>integral_0^π sin(x) dx = 2</plaintext> | |
</subpod> | |
<expressiontypes count='1'> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
</pod> | |
<pod title='Definite integral mean square' | |
scanner='InterestingDefiniteIntegrals' | |
id='DefiniteIntegralMeanSquare' | |
position='1600' | |
error='false' | |
numsubpods='1'> | |
<subpod title=''> | |
<img src='https://www5a.wolframalpha.com/Calculate/MSP/MSP492023h005d7ihcg97g200002bb00a8600a3i444?MSPStoreType=image/gif&s=24' | |
alt='integral_0^(2 π) (sin^2(x))/(2 π) dx = 1/2 = 0.5' | |
title='integral_0^(2 π) (sin^2(x))/(2 π) dx = 1/2 = 0.5' | |
width='165' | |
height='39' | |
type='Default' | |
themes='1,2,3,4,5,6,7,8,9,10,11,12' | |
colorinvertable='true' /> | |
<plaintext>integral_0^(2 π) (sin^2(x))/(2 π) dx = 1/2 = 0.5</plaintext> | |
</subpod> | |
<expressiontypes count='1'> | |
<expressiontype name='Default' /> | |
</expressiontypes> | |
</pod> | |
</queryresult> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment