Skip to content

Instantly share code, notes, and snippets.

# https://ax.dev/tutorials/multiobjective_optimization.html
import warnings
import ax
import torch
import numpy as np
from ax.metrics.noisy_function import NoisyFunctionMetric
import numpy as np
import torch
if torch.cuda.is_available():
print('Using CUDA...')
torch.set_default_tensor_type(torch.cuda.FloatTensor)
# Ax Service API seems like the right level of abstraction?
from ax.service.ax_client import AxClient
import pygmo as pg
class TestProblem:
def fitness(self, x):
param_1 = x[0]
param_2 = x[1]
metric_1 = 2 * param_1
metric_2 = 2 * param_2
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
import numpy as np
BATCH_SIZE = 8
WINDOW_SIZE = 5
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import tensorflow as tf
root_dir = os.path.dirname(os.path.abspath(__file__))
os.makedirs('test_files', exist_ok=True)
for i_dummy_file in range(10):
@optiluca
optiluca / bad_indexing.ipynb
Last active August 14, 2020 08:24
bad_indexing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
import numpy as np
import tensorflow as tf
# Write test tfrecord
def _serialise_element(value):
elements = {'label_1': _float_feature(float(value))}
elements_proto = tf.train.Example(features=tf.train.Features(feature=elements))
return elements_proto.SerializeToString()
@optiluca
optiluca / cudnnlstm_to_lstm_repro.py
Created December 3, 2018 09:48
Repro for cudnnlstm_to_lstm failure
import numpy as np
from keras.layers.core import Dense, Activation, Dropout
from keras.layers import CuDNNLSTM, LSTM
from keras.models import Sequential
from keras.models import load_model
from keras import optimizers
from keras.engine.saving import preprocess_weights_for_loading
sample_size = 100