Last active
August 12, 2019 14:46
-
-
Save orenbenkiki/66986fecd1c85280e48e2babdb945a4e to your computer and use it in GitHub Desktop.
Plotly Dash Fast Large Heatmap
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import dash | |
import dash_core_components as dcc | |
import dash_html_components as html | |
from dash.dependencies import Input, Output | |
import plotly.graph_objs as go | |
import pandas as pd | |
import numpy as np | |
from math import ceil | |
from math import floor | |
df = pd.DataFrame(np.random.randn(10000, 10000)) | |
selected_x0 = 0 | |
selected_x1 = len(df.columns) | |
selected_y0 = 0 | |
selected_y1 = len(df.index) | |
def select_df(selection): | |
global selected_x0 | |
global selected_x1 | |
global selected_y0 | |
global selected_y1 | |
if 'xaxis.range[0]' in selection and 'xaxis.range[1]' in selection: | |
x0 = int(floor((selection['xaxis.range[0]']))) | |
x1 = int(ceil((selection['xaxis.range[1]']))) | |
selected_x0 = max(x0, 0) | |
selected_x1 = min(x1, len(df.columns)) | |
elif not selection or 'xaxis.autorange' in selection: | |
selected_x0 = 0 | |
selected_x1 = len(df.columns) | |
if 'yaxis.range[0]' in selection and 'yaxis.range[1]' in selection: | |
y0 = int(floor((selection['yaxis.range[0]']))) | |
y1 = int(ceil((selection['yaxis.range[1]']))) | |
selected_y0 = max(y0, 0) | |
selected_y1 = min(y1, len(df.columns)) | |
elif not selection or 'yaxis.autorange' in selection: | |
selected_y0 = 0 | |
selected_y1 = len(df.index) | |
if selected_x1 - selected_x0 <= 11: | |
x_scale = 1 | |
else: | |
x_scale = int(ceil(selected_x1 - selected_x0) / 10) | |
x_scale = int(2 * round(x_scale / 2)) | |
selected_x0 = int(floor(selected_x0 / x_scale)) | |
selected_x1 = int(ceil(selected_x1 / x_scale)) | |
selected_x0 *= x_scale | |
selected_x1 *= x_scale | |
if selected_x1 > len(df.columns): | |
selected_x1 = len(df.columns) | |
selected_x0 = selected_x1 - x_scale * 10 | |
assert selected_x0 >= 0 | |
if selected_y1 - selected_y0 <= 11: | |
y_scale = 1 | |
else: | |
y_scale = int(ceil(selected_y1 - selected_y0) / 10) | |
y_scale = int(2 * round(y_scale / 2)) | |
selected_y0 = int(floor(selected_y0 / y_scale)) | |
selected_y1 = int(ceil(selected_y1 / y_scale)) | |
selected_y0 *= y_scale | |
selected_y1 *= y_scale | |
if selected_y1 > len(df.columns): | |
selected_y1 = len(df.columns) | |
selected_y0 = selected_y1 - y_scale * 10 | |
assert selected_y0 >= 0 | |
selected_df = df.iloc[range(selected_y0, selected_y1), range(selected_x0, selected_x1)] | |
if x_scale > 1: | |
x_groups = np.array([x_scale * (column // x_scale) | |
for column in range(len(selected_df.columns))]) | |
selected_df = selected_df.groupby(by=x_groups, axis=1, sort=False).mean() | |
selected_df.set_axis([int(ceil(selected_x0 + x_scale * (column + 0.5))) | |
for column in range(len(selected_df.columns))], | |
axis=1, inplace=True) | |
if y_scale > 1: | |
y_groups = np.array([y_scale * (index // y_scale) | |
for index in range(len(selected_df.index))]) | |
selected_df = selected_df.groupby(by=y_groups, axis=0, sort=False).mean() | |
selected_df.set_axis([int(ceil(selected_y0 + y_scale * (index + 0.5))) | |
for index in range(len(selected_df.index))], | |
axis=0, inplace=True) | |
return selected_df | |
app = dash.Dash(__name__) | |
selected_df = select_df({}) | |
figure = { | |
'data': [{ | |
'x': selected_df.columns, | |
'y': selected_df.index, | |
'z': selected_df.values, | |
'type': 'heatmap', | |
}], | |
'layout': { | |
'xaxis': { | |
'scaleanchor': 'y', | |
} | |
}, | |
} | |
app.layout = html.Div( | |
style={ | |
'background-color': 'red', | |
'height': '100vmin', | |
'width': '100vmin', | |
'overflow': 'hidden', | |
'position': 'relative', | |
}, | |
children=[ | |
# dcc.Loading(children=[ # WILL NOT WORK | |
dcc.Graph( | |
id='graph', | |
figure=figure, | |
style={ | |
'position': 'absolute', | |
'top': 0, | |
'left': 0, | |
'background-color': 'blue', | |
'width': '100%', | |
'height': '100%', | |
'overflow': 'hidden', | |
}, | |
), | |
# ]), | |
], | |
) | |
@app.callback(Output('graph', 'figure'), | |
[Input('graph', 'relayoutData')]) | |
def selected_df_figure(selection): | |
selected_df = select_df(selection or {}) | |
figure['data'][0]['x'] = selected_df.columns | |
figure['data'][0]['y'] = selected_df.index | |
figure['data'][0]['z'] = selected_df.values | |
return figure | |
if __name__ == '__main__': | |
app.run_server(debug=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment