-
-
Save orsonadams/d56de68a8fdf8ec884b8ee1662cf5eef to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.engine.topology import Layer | |
from keras import initializations | |
from keras import backend as K | |
class Attention(Layer): | |
'''Attention operation for temporal data. | |
# Input shape | |
3D tensor with shape: `(samples, steps, features)`. | |
# Output shape | |
2D tensor with shape: `(samples, features)`. | |
''' | |
def __init__(self, attention_dim, **kwargs): | |
self.init = initializations.get('glorot_uniform') | |
self.attention_dim = attention_dim | |
super(Attention, self).__init__(**kwargs) | |
def build(self, input_shape): | |
self.W = self.init((self.attention_dim, self.attention_dim), | |
name='{}_W'.format(self.name)) | |
self.b = K.zeros((self.attention_dim,), name='{}_b'.format(self.name)) | |
self.u = self.init((self.attention_dim,), name='{}_u'.format(self.name)) | |
self.trainable_weights += [self.W, self.b, self.u] | |
self.built = True | |
def get_output_shape_for(self, input_shape): | |
return (input_shape[0], input_shape[2]) | |
def call(self, x, mask=None): | |
# Calculate the first hidden activations | |
a1 = K.tanh(K.dot(x, self.W) + self.b) # [n_samples, n_steps, n_hidden] | |
# K.dot won't let us dot a 3D with a 1D so we do it with mult + sum | |
mul_a1_u = a1 * self.u # [n_samples, n_steps, n_hidden] | |
dot_a1_u = K.sum(mul_a1_u, axis=2) # [n_samples, n_steps] | |
# Calculate the per step attention weights | |
a2 = K.softmax(dot_a1_u) | |
a2 = K.expand_dims(a2) # [n_samples, n_steps, 1] so div broadcasts | |
# Apply attention weights to steps | |
weighted_input = x * a2 # [n_samples, n_steps, n_features] | |
# Sum across the weighted steps to get the pooled activations | |
return K.sum(weighted_input, axis=1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment