Skip to content

Instantly share code, notes, and snippets.

@ortsed
Created January 21, 2020 16:31
Show Gist options
  • Save ortsed/1b086df367a1059beee4ff46310389e6 to your computer and use it in GitHub Desktop.
Save ortsed/1b086df367a1059beee4ff46310389e6 to your computer and use it in GitHub Desktop.
t-Stochastic Neighbor Embedding Example
Python
from sklearn import datasets
import seaborn as sn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
#import the digits dataset
digits = datasets.load_digits()
X = digits.data
y = digits.target
tsne = TSNE(n_components=2, random_state=0)
tsne_data = tsne.fit_transform(X)
#creating a new dataframe for plotting
tsne_data = np.vstack((tsne_data.T, y)).T
tsne_df = pd.DataFrame(data=tsne_data, columns=("Dim_1", "Dim_2", "label"))
#Plotting the result
sn.FacetGrid(tsne_df, hue="label", size=6).map(plt.scatter, 'Dim_1', 'Dim_2').add_legend()
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from sklearn import datasets
import seaborn as sn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
#import the digits dataset
digits = datasets.load_digits()
X = digits.data
y = digits.target
tsne = TSNE(n_components=2, random_state=0)
tsne_data = tsne.fit_transform(X)
#creating a new dataframe for plotting
tsne_data = np.vstack((tsne_data.T, y)).T
tsne_df = pd.DataFrame(data=tsne_data, columns=("Dim_1", "Dim_2", "label"))
#Plotting the result
sn.FacetGrid(tsne_df, hue="label", size=6).map(plt.scatter, 'Dim_1', 'Dim_2').add_legend()
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment