Created
September 10, 2019 03:14
-
-
Save ortsed/efcc99b810fd040bc3f8a3f4519c4f48 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from nltk.corpus import stopwords | |
stopwords_list = stopwords.words('english') | |
from string import punctuation | |
stopwords_list += list(punctuation) | |
from nltk import word_tokenize | |
tokens = word_tokenize(some_text_data) | |
stopped_tokens = [w.lower() for w in tokens if w not in stopwords_list] | |
nltk.FreqDist(tokens) | |
# http://www.nltk.org/howto/stem.html | |
from nltk.stem.porter import PorterStemmer, SnowballStemmer | |
stemmer = PorterStemmer() #SnowballStemmer("english", ignore_stopwords=True) | |
stemmer.stem("generously") | |
from nltk.stem.wordnet import WordNetLemmatizer | |
lemmatizer = WordNetLemmatizer() | |
lemmatizer.lemmatize('feet') | |
# http://www.nltk.org/howto/collocations.html | |
from nltk.collocations import BigramCollocationFinder, BigramAssocMeasures | |
bigram_measures = nltk.collocations.BigramAssocMeasures() | |
finder = BigramCollocationFinder.from_words(words_stopped) | |
scored = finder.score_ngrams(bigram_measures.raw_freq) | |
finder.apply_freq_filter(5) | |
finder.score_ngrams(bigram_measures.pmi) | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
tfid = TfidfVectorizer() | |
tf_idf_data_train = tfid.fit_transform(data) | |
# keras tokenizations | |
from keras.preprocessing.text import Tokenizer | |
tokenizer = Tokenizer(num_words=2000) | |
tokenizer.fit_on_texts(complaints) | |
sequences = tokenizer.texts_to_sequences(complaints) | |
one_hot_results= tokenizer.texts_to_matrix(complaints, mode='binary') #Similar to sequences, but returns a numpy array | |
tokenizer = Tokenizer(num_words=2000) | |
tokenizer.fit_on_texts(complaints) | |
one_hot_results= tokenizer.texts_to_matrix(complaints, mode='binary') | |
word_index = tokenizer.word_index | |
np.shape(one_hot_results) | |
from sklearn.preprocessing import LabelEncoder | |
keras.utils.to_categorical | |
le = preprocessing.LabelEncoder() | |
le.fit(product) | |
product_cat = le.transform(product) | |
product_onehot = to_categorical(product_cat) | |
import gensim | |
text = [] | |
for entry in data: | |
sentence = entry.translate(str.maketrans('', '', | |
string.punctuation)).split(' ') | |
new_sent = [] | |
for word in sentence: | |
new_sent.append(word.lower()) | |
text.append(new_sent) | |
model = gensim.models.Word2Vec(text, sg=1) | |
model.train(text, total_examples=model.corpus_count, epochs=model.epochs) | |
model.wv.most_similar('happiness') | |
model.wv.most_similar(positive=['president', 'germany'], negative='usa') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment