Created
August 10, 2018 12:55
-
-
Save oscarbg/97bf1f5a502d286de4e5fc96f17d3ddb to your computer and use it in GitHub Desktop.
Simple *deprecated* WinML with MNIST ONNX digit detection..
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <wrl/client.h> | |
#include <winml.h> | |
#include <stdio.h> | |
using Microsoft::WRL::ComPtr; | |
#include"cnpy.h" | |
#define PRINTDBG | |
int main(int argc,char**argv) | |
{ | |
//load model | |
ComPtr<IWinMLRuntime> spRuntime; | |
HRESULT res= WinMLCreateRuntime(&spRuntime); | |
printf("%d\n", res); | |
ComPtr<IWinMLModel> spModel; | |
res=spRuntime->LoadModel(L"C:\\src4\\winml\\mnist.onnx", &spModel); | |
printf("%d\n", res); | |
//view graph metadata | |
WINML_MODEL_DESC *desc; | |
res = spModel->GetDescription(&desc); | |
printf("%d\n", res); | |
int count = 0; | |
LPCWSTR key,value; | |
res=spModel->EnumerateMetadata(count, &key, &value); | |
printf("%d\n", res); | |
WINML_VARIABLE_DESC *desc3; | |
res = spModel->EnumerateModelInputs(count, &desc3); | |
printf("%d\n", res); | |
printf("%S %d %d %d %d %d\n", desc3->Name,desc3->Tensor.NumDimensions, desc3->Tensor.pShape[0], desc3->Tensor.pShape[1], desc3->Tensor.pShape[2], desc3->Tensor.pShape[3]); | |
WINML_VARIABLE_DESC *desc2; | |
res = spModel->EnumerateModelOutputs(count, &desc2); | |
printf("%S %d %d %d %d %d\n", desc2->Name,desc2->Tensor.NumDimensions, desc2->Tensor.pShape[0], desc2->Tensor.pShape[1], desc2->Tensor.pShape[2], desc2->Tensor.pShape[3]); | |
printf("%d\n", res); | |
//bind resources | |
//setup device to use for inferencing | |
ComPtr<IWinMLEvaluationContext> spContext; | |
ComPtr<ID3D12Device> spDevice; | |
res=spRuntime->CreateEvaluationContext(spDevice.Get(), &spContext); | |
printf("%d\n", res); | |
//connect I/O data | |
WINML_BINDING_DESC bindDescriptor; | |
bindDescriptor.BindType = WINML_BINDING_TYPE::WINML_BINDING_TENSOR; | |
bindDescriptor.Tensor.DataType=WINML_TENSOR_DATA_TYPE::WINML_TENSOR_FLOAT; | |
bindDescriptor.Tensor.NumDimensions = 4; | |
INT64 shape[4] = { 1,1,28,28 }; | |
bindDescriptor.Tensor.pShape = reinterpret_cast<INT64*>(&shape); | |
//void *data=(void *)malloc(28 * 28 * sizeof(float)); | |
bindDescriptor.Tensor.DataSize = 28 * 28 * sizeof(float); | |
char datafile[100] = { 0 }; | |
int nt = 0; | |
if (argc == 2) | |
nt = atoi(argv[1]); | |
sprintf_s(datafile,99,"C:\\src4\\winml\\test_data_%d.npz", nt); | |
//"C:\\src4\\winml\\test_data_0.npz" | |
cnpy::NpyArray arr2 = cnpy::npz_load(datafile, "inputs"); | |
int comp = 0; | |
comp = arr2.word_size == sizeof(float); | |
comp = arr2.shape.size() == 3; | |
comp = arr2.shape[0] == 1; | |
comp = arr2.shape[1] == 28; | |
comp = arr2.shape[2] == 28; | |
float* mv1 = arr2.data<float>(); | |
for (int i = 0; i < 28; i++) | |
{ | |
for (int j = 0; j < 28; j++) | |
{ | |
char c = ' '; | |
if (mv1[i * 28 + j] > 0.10) | |
c = '*'; | |
else | |
c = ' '; | |
printf("%c", c); | |
//printf("%.1f ", mv1[i*28+j]); | |
} | |
printf("\n"); | |
} | |
bindDescriptor.Tensor.pData = /*data*/mv1; | |
bindDescriptor.Name = desc3->Name;// LPCWSTR("hola"); | |
res=spContext->BindValue(&bindDescriptor); | |
printf("%d\n", res); | |
WINML_BINDING_DESC bindDescriptor2; | |
bindDescriptor2.BindType = WINML_BINDING_TYPE::WINML_BINDING_TENSOR; | |
bindDescriptor2.Tensor.DataType = WINML_TENSOR_DATA_TYPE::WINML_TENSOR_FLOAT; | |
bindDescriptor2.Tensor.NumDimensions = 2; | |
INT64 shape2[2] = { 1,10 }; | |
bindDescriptor2.Tensor.pShape = reinterpret_cast<INT64*>(&shape2); | |
float *data2 = (float *)calloc(1 * 10 , sizeof(float)); | |
#ifdef PRINTDBG | |
for (int i = 0; i < 10; i++) | |
{ | |
printf("%f ", data2[i]); | |
} | |
printf("\n"); | |
#endif | |
bindDescriptor2.Tensor.DataSize = 1 * 10 * sizeof(float); | |
bindDescriptor2.Tensor.pData = data2; | |
bindDescriptor2.Name = desc2->Name;// LPCWSTR("hola"); | |
res = spContext->BindValue(&bindDescriptor2); | |
printf("%d\n", res); | |
cnpy::NpyArray arr3 = cnpy::npz_load(datafile, "outputs"); | |
comp = 0; | |
comp = arr3.word_size == sizeof(float); | |
comp = arr3.shape.size() == 2; | |
comp = arr3.shape[0] == 1; | |
comp = arr3.shape[1] == 10; | |
float* mv2 = arr3.data<float>(); | |
#ifdef PRINTDBG | |
for (int i = 0; i < 10; i++) | |
{ | |
printf("%.2f ", mv2[i]); | |
} | |
printf("\n"); | |
#endif | |
//Evaluate model (inference) | |
res=spRuntime->EvaluateModel(spContext.Get()); | |
//process results | |
for (int i = 0; i < 10; i++) | |
{ | |
printf("%.2f ", data2[i]); | |
} | |
printf("\n"); | |
int maxIndex = 0; | |
float maxProbability = 0.0; | |
for (int i = 0; i < 10 ; i++) | |
{ | |
if (data2[i] > maxProbability) | |
{ | |
maxIndex = i; | |
maxProbability = data2[i]; | |
} | |
} | |
printf("numero detectado %d\n", maxIndex); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment