Created
October 11, 2012 12:15
-
-
Save oscarfonts/3871938 to your computer and use it in GitHub Desktop.
GeoServer WPS Script: Raster Classification Statistics
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from jarray import array | |
from geoserver.wps import process | |
from java.lang import String | |
from org.geotools.coverage.grid import GridCoverage2D | |
from java.awt.image import RenderedImage | |
from javax.media.jai import JAI | |
from javax.media.jai import ParameterBlockJAI | |
from javax.media.jai import RenderedOp | |
from org.jaitools.media.jai.classifiedstats import ClassifiedStats | |
from org.jaitools.media.jai.classifiedstats import ClassifiedStatsRIF | |
from org.jaitools.media.jai.classifiedstats import ClassifiedStatsDescriptor | |
from org.jaitools.numeric import Statistic | |
from org.geotools.image.jai import Registry | |
from javax.media.jai import JAI | |
@process( | |
title='Raster classification stats', | |
description='Calculate stats, use a couple of classification layers', | |
inputs={ | |
'data': (GridCoverage2D, 'Data to perform statistics on'), | |
'class1': (GridCoverage2D, 'A first classification layer'), | |
'class2': (GridCoverage2D, 'A second classification layer'), | |
}, | |
outputs={ | |
'result': (String, 'The statistic results') | |
} | |
) | |
def run(data, class1, class2): | |
Registry.registerRIF(JAI.getDefaultInstance(), ClassifiedStatsDescriptor(), ClassifiedStatsRIF(), Registry.JAI_TOOLS_PRODUCT) | |
dataImg = data.getRenderedImage() | |
class1Img = class1.getRenderedImage() | |
class2Img = class2.getRenderedImage() | |
pb = ParameterBlockJAI("ClassifiedStats") | |
pb.addSource(dataImg) | |
classifiers = array([class1Img, class2Img], RenderedImage) | |
pb.setParameter("classifiers", classifiers) | |
# Possible statistics are: MAX, MEAN, MEDIAN, MIN, RANGE, SDEV, SUM, VARIANCE | |
statistics = array([Statistic.SUM], Statistic) | |
pb.setParameter("stats", statistics) | |
statsOp = JAI.create("ClassifiedStats", pb) | |
stats = statsOp.getProperty(ClassifiedStatsDescriptor.CLASSIFIED_STATS_PROPERTY) | |
results = stats.results() | |
# Render the results | |
ret = "" | |
for result in results: | |
ret += str(class1.getName()) + " " + str(class2.getName()) + " " | |
for stat in result.get(result.keySet().iterator().next()): | |
ret += stat.getStatistic().name() + " " | |
ret += "\n" | |
for classes in result.keySet(): | |
statsList = result.get(classes) | |
for k in classes.getKeys(): | |
ret += str(k) + " " | |
for stat in statsList: | |
ret += str(stat.getValue()) + " " | |
ret += "\n" | |
return ret |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment