Created
May 22, 2021 15:39
-
-
Save oskarryn/3b3cb145b4027ec11711e6f23c9e1429 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scipy.stats import skewnorm | |
import numpy as np | |
from pyspark.sql import SparkSession | |
spark = SparkSession.builder.getOrCreate() | |
def generate_cycle_randomly(unit_id, cycle, model_variant, label): | |
temp = 50+skewnorm.rvs(-8, size=1).item() + np.random.normal(0, 5) | |
pressure = np.random.uniform(900,1200) + np.random.normal(0, 50) | |
return (unit_id, cycle, model_variant, round(temp, 2), round(pressure, 2), label) | |
def generate_cycles(unit_id, model_variant, init_rul): | |
res = [] | |
rul = init_rul | |
for cycle, vals in enumerate(range(rul)): | |
res.append(generate_cycle_randomly(unit_id=unit_id, cycle=cycle, model_variant=model_variant, label=rul)) | |
rul -= 1 | |
return res | |
data = generate_cycles(unit_id=0, model_variant='A', init_rul=45) + generate_cycles(unit_id=1, model_variant='B', init_rul=40) | |
df = spark.createDataFrame(data, schema=["unit_id", "cycle", "model_variant", "temp", "pressure", "label"]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment