Created
November 8, 2019 03:13
-
-
Save oskimura/248f9eab8257388311ff5a1d1afdc76f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Travel by Car | |
#include <iostream> | |
#include <vector> | |
#include <math.h> | |
#include <string> | |
#include <map> | |
#include <stdio.h> | |
#include <string.h> | |
#include <initializer_list> | |
#include <algorithm> | |
#include <numeric> | |
#include <iomanip> | |
#include <queue> | |
#include <set> | |
using namespace std; | |
struct Edge { | |
int to; | |
int cost; | |
}; | |
vector< vector <int> > graph; | |
vector<bool> visited; | |
//vector<int> distance; | |
int dijkstra(vector< vector<int> > graph, int N, int from, int to) | |
{ | |
vector<int> distance = vector<int>(graph.size(), 100000); | |
distance[from] = 0; | |
priority_queue<int> q; | |
q.push(from); | |
while (!q.empty()) { | |
int p = q.top(); | |
q.pop(); | |
/* | |
for (auto e = graph[p]; e != graph[p].end(); e++) { | |
if (!visited[p] && distance[e->to] > (distance[p] + e->cost)) { | |
distance[e->to] = distance[p] + e->cost; | |
} | |
} | |
*/ | |
for (int i = graph[p][0]; i < N; i++) { | |
if (graph[p][i] == 100000) { | |
continue; | |
} | |
if (!visited[p] && distance[i] > distance[p] + graph[p][i] ) { | |
distance[i] = distance[p] + graph[p][i]; | |
q.push(i); | |
} | |
} | |
if (p != 100000) { | |
visited[p] = true; | |
} | |
} | |
return distance[to]; | |
} | |
int dp[303][303]; | |
void WarshallFloyd(vector< vector <int> > graph, int N) | |
{ | |
//int dp[N][N]; | |
// init | |
for (int i = 0; i < N; i++) { | |
for (int j = 0; j < N; j++) { | |
if (graph[i][j]) { | |
dp[i][j] = graph[i][j]; | |
} | |
else { | |
dp[i][j] = 0; | |
} | |
} | |
} | |
for (int i = 0; i < N; i++) { | |
for (int k = 0; k < N ; k++) { | |
for (int j = 0; j < N ; j++) { | |
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]); | |
} | |
} | |
} | |
} | |
int traverse(vector< vector <Edge> > graph, int from, int to, int cost) | |
{ | |
if (from == to) { | |
return 0; | |
} | |
for (auto e = graph[from].begin(); e != graph[from].end(); e++) { | |
cost = min(cost,traverse(graph,e->to,to,cost+e->cost)); | |
} | |
visited[from] = true; | |
return cost; | |
} | |
int main() | |
{ | |
int N, M, L; | |
cin >> N >> M >> L; | |
cout << "1"; | |
graph = vector<vector<int> >(N, vector<int>(N,100000)); | |
cout << "2"; | |
for (int i = 0; i < M; i++) { | |
int from, to ,cost; | |
cin >> from >> to >> cost; | |
from--; | |
to--; | |
graph[from][to] = cost; | |
graph[to][from] = cost; | |
} | |
cout << "3"; | |
int Q; | |
cin >> Q; | |
cout << "4" << Q; | |
for (int i = 0; i < Q; i++) { | |
int from, to; | |
cin >> from >> to; | |
from--; | |
to--; | |
cout << "5"; | |
visited = vector<bool>(N,false); | |
cout << "6"; | |
int cost = dijkstra(graph, N, from, to); | |
cout << "7"; | |
WarshallFloyd(graph, N); | |
cout << endl; | |
cout << cost << endl; | |
} | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment