Base Refelence at melito
Before Setup coremltools
$ export PATH="$HOME/miniconda2/bin:$PATH"
$ source activate coreml
edit input_dim of pose_deploy_linevec.prototxt.
320 = multiple of 16.
input: "image"
input_dim: 1
input_dim: 3
input_dim: 320 # This value will be defined at runtime
input_dim: 320 # This value will be defined at runtime
$ python convert.py
================= Starting Conversion from Caffe to CoreML ======================
Layer 0: Type: 'Input', Name: 'input'. Output(s): 'image'.
Ignoring batch size and retaining only the trailing 3 dimensions for conversion.
Layer 1: Type: 'Convolution', Name: 'conv1_1'. Input(s): 'image'. Output(s): 'conv1_1'.
Layer 2: Type: 'ReLU', Name: 'relu1_1'. Input(s): 'conv1_1'. Output(s): 'conv1_1'.
Layer 3: Type: 'Convolution', Name: 'conv1_2'. Input(s): 'conv1_1'. Output(s): 'conv1_2'.
Layer 4: Type: 'ReLU', Name: 'relu1_2'. Input(s): 'conv1_2'. Output(s): 'conv1_2'.
...
Layer 181: Type: 'Concat', Name: 'concat_stage7'. Input(s): 'Mconv7_stage6_L2', 'Mconv7_stage6_L1'. Output(s): 'net_output'.
================= Summary of the conversion: ===================================
Detected input(s) and shape(s) (ignoring batch size):
'image' : 3, 320, 320
Network Input name(s): 'image'.
Network Output name(s): 'net_output'.
- Cap512.jpg at エネルギー波を繰り出す女子高生
- Add Library CoreMLHelpers
I am also getting output as MLMutilArray 1 x 1 x 22 x 40 x 40 array how to convert it to UIImage or cv::Mat