Created
December 12, 2016 13:58
-
-
Save ottokart/7335eccc688370fe6ee6937346150e1b to your computer and use it in GitHub Desktop.
Simple Self-Organizing Map
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import division | |
import numpy as np | |
import matplotlib.pyplot as plt | |
np.random.seed(1) | |
# Replace X with your own data if you wish | |
########################################## | |
N = 300 # num samples | |
NOISE_LEVEL = 100 # between 0 and 255 | |
COLORS = np.array([[255,0,0], [0,255,0], [0,0,255]], dtype=np.float32) | |
X = COLORS[np.random.choice(len(COLORS), N)] # dataset of random colors | |
X = np.clip(X + np.random.uniform(-NOISE_LEVEL, NOISE_LEVEL, size=(N, 3)), 0, 255) | |
X /= X.max() | |
########################################## | |
ROWS = 10 | |
COLS = 15 | |
NUM_NODES = ROWS*COLS | |
TMAX = 30 # Max number of iterations | |
R0 = max(ROWS, COLS) / 2. # Initial neighbourhood radius | |
L0 = 0.1 # Initial learning rate | |
neighbourhood_func = lambda w1, w2, t: np.exp(-((w1[0] - w2[0])**2 + (w1[1] - w2[1])**2) / (2. * decay_func(R0, t)**2)) | |
decay_func = lambda x0, t: x0 * np.exp(-2 * x0 * t / TMAX) | |
index_to_coords = lambda i: (int(i / COLS), i % COLS) | |
coords_to_index = lambda x, y: x * COLS + y | |
W = np.random.uniform(0, 1, size=(NUM_NODES, 3)) # randomize weights | |
for t in range(TMAX): | |
for x in X: | |
i = np.argmin(np.sum((x - W)**2, axis=1)) # find the node with the smallest distance from x | |
x_i, y_i = index_to_coords(i) | |
r = int(decay_func(R0, t)) | |
for x_j in range(max(x_i - r, 0), min(x_i + r + 1, ROWS)): | |
for y_j in range(max(y_i - r, 0), min(y_i + r + 1, COLS)): # update the nodes in the neighborhood of the winner by pulling them closer to the input vector | |
j = coords_to_index(x_j, y_j) | |
W[j] += decay_func(L0, t) * neighbourhood_func([x_i, y_i], [x_j, y_j], t) * (x - W[j]) | |
plt.imshow(W.reshape(ROWS,COLS,3), interpolation='none') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment