Created
November 5, 2020 15:36
-
-
Save ottomata/5799557cc1f1bd48440740234f607ea7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// sudo -u analytics kerberos-run-command spark2-shell --files /etc/hive/conf/hive-site.xml,/etc/refinery/refine/refine_eventlogging_analytics.properties,/srv/deployment/analytics/refinery/artifacts/hive-jdbc-1.1.0-cdh5.10.0.jar,/srv/deployment/analytics/refinery/artifacts/hive-service-1.1.0-cdh5.10.0.jar --master yarn --deploy-mode client --jars /srv/deployment/analytics/refinery/artifacts/refinery-job.jar --driver-java-options='-Dhttp.proxyHost=webproxy.eqiad.wmnet -Dhttp.proxyPort=8080 -Dhttps.proxyHost=webproxy.eqiad.wmnet -Dhttps.proxyPort=8080' | |
import org.wikimedia.analytics.refinery.job.refine._ | |
import org.wikimedia.eventutilities.core.event.{EventSchemaLoader, EventLoggingSchemaLoader} | |
import org.wikimedia.analytics.refinery.spark.sql.PartitionedDataFrame | |
import com.github.nscala_time.time.Imports._ | |
import scala.util.matching.Regex | |
import org.apache.hadoop.fs.{FileSystem, Path} | |
import org.wikimedia.analytics.refinery.spark.sql._ | |
import org.apache.spark.sql.types._ | |
import org.wikimedia.analytics.refinery.spark.connectors.DataFrameToHive | |
case class ELSchemaNameSchemaLoader() extends SparkSchemaLoader { | |
val elSchemaLoader = new EventLoggingSchemaLoader() | |
def elToSparkSchema(schemaName: String): StructType = { | |
JsonSchemaConverter.toSparkSchema(elSchemaLoader.getEventLoggingSchema(schemaName)) | |
} | |
def loadSchema(target: RefineTarget): Option[StructType] = { | |
val schemaName = target.tableName.split('.').last.replaceAll("`", "") | |
Some(elToSparkSchema(schemaName)) | |
} | |
} | |
val transformFunctions: Seq[DataFrameToHive.TransformFunction] = Seq( | |
org.wikimedia.analytics.refinery.job.refine.filter_allowed_domains.apply, | |
org.wikimedia.analytics.refinery.job.refine.event_transforms.apply | |
) | |
spark.conf.set("spark.sql.parquet.compression.codec", "snappy") | |
val targets = RefineTarget.find( | |
spark, | |
new Path("/wmf/data/raw/eventlogging"), | |
new Path("/wmf/data/event"), | |
"event", | |
DateTimeFormat.forPattern("'hourly'/yyyy/MM/dd/HH"), | |
new Regex( | |
"eventlogging_(.+)/hourly/(\\d+)/(\\d+)/(\\d+)/(\\d+)", | |
"table", "year", "month", "day", "hour" | |
), | |
DateTime.now - 24.hours, | |
DateTime.now - 1.hours, | |
new ELSchemaNameSchemaLoader() | |
) | |
val targetsToRefine = targets.filter(_.shouldRefine(Some("(ContentTranslationAbuseFilter|NewcomerTask)".r), None, true, false)) | |
println(s"Will refine ${targetsToRefine.size} targets") | |
val results = Refine.refineTargets( | |
spark, | |
targetsToRefine, | |
transformFunctions, | |
Map(), | |
true | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment