-
-
Save ox1111/9ac601907197fc0e1d1e26ae7e395750 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Create first network with Keras | |
from keras.models import Sequential | |
from keras.layers import Dense | |
import numpy | |
# fix random seed for reproducibility | |
seed = 7 | |
numpy.random.seed(seed) | |
# load pima indians dataset | |
dataset = numpy.loadtxt("pima-indians-diabetes.data.csv", delimiter=",") | |
# split into input (X) and output (Y) variables | |
X = dataset[:,0:8] | |
Y = dataset[:,8] | |
# create model | |
model = Sequential() | |
model.add(Dense(12, input_dim=8, init='uniform', activation='relu')) | |
model.add(Dense(8, init='uniform', activation='relu')) | |
model.add(Dense(1, init='uniform', activation='sigmoid')) | |
# Compile model | |
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) | |
# Fit the model | |
model.fit(X, Y, epochs=150, batch_size=10, verbose=2) | |
# calculate predictions | |
predictions = model.predict(X) | |
# round predictions | |
rounded = [round(x[0]) for x in predictions] | |
print(rounded) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment