Skip to content

Instantly share code, notes, and snippets.

@ox1111
Created February 15, 2019 08:28
Show Gist options
  • Save ox1111/9ac601907197fc0e1d1e26ae7e395750 to your computer and use it in GitHub Desktop.
Save ox1111/9ac601907197fc0e1d1e26ae7e395750 to your computer and use it in GitHub Desktop.
# Create first network with Keras
from keras.models import Sequential
from keras.layers import Dense
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.data.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, epochs=150, batch_size=10, verbose=2)
# calculate predictions
predictions = model.predict(X)
# round predictions
rounded = [round(x[0]) for x in predictions]
print(rounded)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment