Created
February 15, 2019 08:27
-
-
Save ox1111/e2370c827e1b6b7eb43335b9cbc05a38 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.models import Sequential | |
from keras.layers import Dense | |
import numpy | |
# fix random seed for reproducibility | |
numpy.random.seed(7) | |
# load pima indians dataset | |
dataset = numpy.loadtxt("pima-indians-diabetes.data.csv", delimiter=",") | |
# split into input (X) and output (Y) variables | |
X = dataset[:,0:8] | |
Y = dataset[:,8] | |
# create model | |
model = Sequential() | |
model.add(Dense(12, input_dim=8, activation='relu')) | |
model.add(Dense(8, activation='relu')) | |
model.add(Dense(1, activation='sigmoid')) | |
# Compile model | |
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) | |
# Fit the model | |
model.fit(X, Y, epochs=150, batch_size=10) | |
# evaluate the model | |
scores = model.evaluate(X, Y) | |
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment