Last active
December 13, 2015 18:06
-
-
Save ozancaglayan/ebe2fa5ba420622ed5e1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import sys | |
import numpy as np | |
import time | |
import theano | |
import theano.tensor as T | |
np.random.seed(1) | |
n_samples = int(sys.argv[1]) | |
seq_steps = 32 | |
vocab_size = 20000 | |
def numpy_loss(preds_, labels_): | |
true_idxs = np.arange(labels_.size) * preds_.shape[2] + labels_.flatten() | |
return -np.log(preds_.flatten()[true_idxs]).mean() | |
def theano_loss(preds_, labels_): | |
true_idxs = T.cast(T.arange(labels_.size) * preds_.shape[2] + labels_.flatten(), dtype="int32") | |
return -T.log(preds_.flatten()[true_idxs]).mean() | |
def naive_loss(preds_, labels_): | |
loss = 0.0 | |
batch_size = labels_.shape[0] | |
seq_len = labels_.shape[1] | |
for i in xrange(batch_size): | |
for j in xrange(seq_len): | |
loss += np.log(preds[i, j, labels[i, j]]) | |
return -loss / (seq_len * batch_size) | |
# Predictions | |
t = time.time() | |
preds = np.random.uniform(size=(n_samples, seq_steps, vocab_size)).astype(np.float32) | |
print "preds array took %.5f seconds to create" % (time.time() - t) | |
# Labels | |
t = time.time() | |
labels = np.random.randint(0, vocab_size, size=(n_samples, \ | |
seq_steps)).astype(np.int32) | |
print "labels array took %.5f seconds to create" % (time.time() - t) | |
t = time.time() | |
loss_1 = naive_loss(preds, labels) | |
print "naive_loss took %.5f seconds to compute: %5.5f" % ((time.time() - t), loss_1) | |
t = time.time() | |
loss_3 = numpy_loss(preds, labels) | |
print "numpy_loss took %.5f seconds to compute: %5.5f" % ((time.time() - t), loss_3) | |
preds_ = T.tensor3("preds", dtype=theano.config.floatX) | |
labels_= T.matrix("labels", dtype="int32") | |
loss_2_fun = theano.function(inputs=[preds_, labels_], | |
outputs=[theano_loss(preds_, labels_)]) | |
t = time.time() | |
loss_2 = loss_2_fun(preds, labels) | |
print "theano_loss took %.5f seconds to compute: %5.5f" % ((time.time() - t), loss_2[0]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment