I hereby claim:
- I am ozancaglayan on github.
- I am ozancaglayan (https://keybase.io/ozancaglayan) on keybase.
- I have a public key whose fingerprint is 2C3B 4DA8 7E9B B14C 2B6B CB51 E96D AF7F F229 6D8C
To claim this, I am signing this object:
I hereby claim:
To claim this, I am signing this object:
--- c384-ce12288-pe1536-h256-bs256-lr0.03.log 2015-10-29 22:28:40.539747323 +0100 | |
+++ c384-ce12288-pe1536-h256-bs256-lr0.03-repeatbug.log 2015-11-13 15:41:20.820063590 +0100 | |
@@ -12,6 +12,7 @@ | |
6: Tesla K40c with 15 CPUs x 192 threads running at 0.74 Ghz, 11519 MBytes of memory, use -arch=sm_35, utilization 0% | |
7: Tesla K40c with 15 CPUs x 192 threads running at 0.74 Ghz, 11519 MBytes of memory, use -arch=sm_35, utilization 0% | |
- using 8 devices in parallel: 0 1 2 3 4 5 6 7 | |
+ - repeating these 1 machine(s) 32 times | |
#### GPU allocate local data for 8 GPU | |
#### GPU 0: use local data_in from MachSplit | |
#### GPU 1: allocate local data_in=0x2162a0000 |
Creating a new machine | |
- initializing projections with random values in the range 0.1 | |
- initializing weights with random values in the range 0.1 | |
Initializing Nvidia GPU card | |
- found 8 cards: | |
0: Tesla K40c with 15 CPUs x 192 threads running at 0.74 Ghz, 11519 MBytes of memory, use -arch=sm_35, utilization 0% | |
1: Tesla K40c with 15 CPUs x 192 threads running at 0.74 Ghz, 11519 MBytes of memory, use -arch=sm_35, utilization 0% | |
2: Tesla K40c with 15 CPUs x 192 threads running at 0.74 Ghz, 11519 MBytes of memory, use -arch=sm_35, utilization 0% | |
3: Tesla K40c with 15 CPUs x 192 threads running at 0.74 Ghz, 11519 MBytes of memory, use -arch=sm_35, utilization 0% | |
4: Tesla K40c with 15 CPUs x 192 threads running at 0.74 Ghz, 11519 MBytes of memory, use -arch=sm_35, utilization 0% |
#!/usr/bin/env python | |
from keras.layers.core import Dense | |
from keras.models import Sequential | |
from keras.optimizers import RMSprop, Adadelta, Adagrad, Adam, SGD | |
from keras.callbacks import Callback | |
import numpy as np | |
class Test(Callback): |
# pp: (batch, sequence_step, target vocabulary probabilities) | |
# yy: (batch, sequence_step's true label) | |
# Soru: pp[yy] gibi dogru yerlerden dogru olasiliklari nasi cekebilirim? | |
In [211]: pp.shape | |
Out[211]: (256, 33, 20004) | |
In [212]: yy.shape | |
Out[212]: (256, 33) |
#!/usr/bin/env python | |
import sys | |
import numpy as np | |
import time | |
import theano | |
import theano.tensor as T |
#!/usr/bin/env python | |
import sys | |
import time | |
def model(): | |
print "model" | |
try: | |
while 1: | |
print "loop" | |
time.sleep(2) |
losses = [57.4, 50.7, 40.9, 39.6 ,37.9, 37.5, 36.3, 35.7, 36.5, 35.13, 36.33, 34.37, 34.78, 34.67, 34.44, 35.2, 35.66, 32.47, 34.6, 34.7, 35.14, 34.5] | |
import numpy as np | |
vhist = [] | |
patience = 10 | |
bad_c = 0 | |
use_bleu = False | |
for i in range(len(losses)): | |
loss = losses[i] |
local argparse = require "argparse" | |
local moses = require "moses" | |
local parser = argparse("build_dictionary", "example") | |
parser:argument("input", "Input text file"):args('+') | |
parser:option('-o --output', 'Output directory', '.') | |
parser:option('-m --minfreq', 'Filter out words occuring < m times.', 0) | |
local args = parser:parse() |
Wemb_enc, -0.05387, 0.05577 | |
Wemb_dec, -0.05280, 0.05521 | |
encoder_W, -0.05016, 0.04749 | |
encoder_b, 0.00000, 0.00000 | |
encoder_U, -0.17179, 0.16453 | |
encoder_Wx, -0.04784, 0.04707 | |
encoder_bx, 0.00000, 0.00000 | |
encoder_Ux, -0.15236, 0.15887 | |
encoder_r_W, -0.04918, 0.04668 | |
encoder_r_b, 0.00000, 0.00000 |