Skip to content

Instantly share code, notes, and snippets.

@ozsvart-karoly-nx
Created November 15, 2024 06:39
Show Gist options
  • Select an option

  • Save ozsvart-karoly-nx/30cf43120860c0dcaa54b5b5a31468fb to your computer and use it in GitHub Desktop.

Select an option

Save ozsvart-karoly-nx/30cf43120860c0dcaa54b5b5a31468fb to your computer and use it in GitHub Desktop.
DecorrelatedJitterBackoffV2 retry delay calculator-simulator
using Polly.Contrib.WaitAndRetry;
namespace proba;
internal sealed class Program
{
public static void Main()
{
List<double> delaysums = new();
bool pause = false;
Task.Run(() =>
{
Thread.Sleep(5000);
while (true)
{
pause = true;
Thread.Sleep(10);
var copy = delaysums.ToList();
pause = false;
int average = (int) copy.Average();
int median = (int) copy.Median();
int min = (int) copy.Min();
int max = (int) copy.Max();
Console.Clear();
Console.WriteLine("Counter: " + copy.Count);
Console.WriteLine("Min: " + min);
Console.WriteLine("Max: " + max);
Console.WriteLine("Average: " + average);
Console.WriteLine("Median: " + median);
Thread.Sleep(1000);
}
});
for (int i = 0; i < int.MaxValue; i++)
{
while (pause)
{
Thread.Sleep(1);
}
IEnumerable<TimeSpan> delays = Backoff.DecorrelatedJitterBackoffV2(
medianFirstRetryDelay: TimeSpan.FromMilliseconds(5000),
retryCount: 2)
.ToArray();
delaysums.Add(delays.Sum(x => x.TotalMilliseconds));
}
Console.ReadLine();
}
}
public static class MathExt
{
/// <summary>
/// Partitions the given list around a pivot element such that all elements on left of pivot are <= pivot
/// and the ones at thr right are > pivot. This method can be used for sorting, N-order statistics such as
/// as median finding algorithms.
/// Pivot is selected ranodmly if random number generator is supplied else its selected as last element in the list.
/// Reference: Introduction to Algorithms 3rd Edition, Corman et al, pp 171
/// </summary>
private static int Partition<T>(this IList<T> list, int start, int end, Random rnd = null) where T : IComparable<T>
{
if (rnd != null)
list.Swap(end, rnd.Next(start, end + 1));
var pivot = list[end];
var lastLow = start - 1;
for (var i = start; i < end; i++)
{
if (list[i].CompareTo(pivot) <= 0)
list.Swap(i, ++lastLow);
}
list.Swap(end, ++lastLow);
return lastLow;
}
/// <summary>
/// Returns Nth smallest element from the list. Here n starts from 0 so that n=0 returns minimum, n=1 returns 2nd smallest element etc.
/// Note: specified list would be mutated in the process.
/// Reference: Introduction to Algorithms 3rd Edition, Corman et al, pp 216
/// </summary>
public static T NthOrderStatistic<T>(this IList<T> list, int n, Random rnd = null) where T : IComparable<T>
{
return NthOrderStatistic(list, n, 0, list.Count - 1, rnd);
}
private static T NthOrderStatistic<T>(this IList<T> list, int n, int start, int end, Random rnd)
where T : IComparable<T>
{
while (true)
{
var pivotIndex = list.Partition(start, end, rnd);
if (pivotIndex == n)
return list[pivotIndex];
if (n < pivotIndex)
end = pivotIndex - 1;
else
start = pivotIndex + 1;
}
}
public static void Swap<T>(this IList<T> list, int i, int j)
{
if (i == j) //This check is not required but Partition function may make many calls so its for perf reason
return;
var temp = list[i];
list[i] = list[j];
list[j] = temp;
}
/// <summary>
/// Note: specified list would be mutated in the process.
/// </summary>
public static T Median<T>(this IList<T> list) where T : IComparable<T>
{
return list.NthOrderStatistic((list.Count - 1) / 2);
}
public static double Median<T>(this IEnumerable<T> sequence, Func<T, double> getValue)
{
var list = sequence.Select(getValue).ToList();
var mid = (list.Count - 1) / 2;
return list.NthOrderStatistic(mid);
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment