Created
August 10, 2019 12:49
-
-
Save p208p2002/9e64fdaeaa18ef62f3bb44eff9870866 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from gensim.models.doc2vec import Doc2Vec, TaggedDocument | |
import csv | |
import jieba | |
# jieba初始化 | |
jieba.set_dictionary('dict/dict.txt.big') | |
jieba.load_userdict('dict/my_dict') | |
jieba.initialize() | |
# 讀入waimai_10k_tw.csv,並且使用jieba斷詞 | |
sentences = [] | |
with open('dataset/waimai_10k_tw.csv',newline='') as f: | |
rows = csv.reader(f) | |
for row in rows: | |
if(row[0] == 'label'): | |
continue | |
line = row[1].strip('\n') | |
sentence = jieba.cut(line, cut_all=False) | |
sentence = list(sentence) | |
sentences.append(sentence) | |
# 資料準備 | |
tagged_data = [TaggedDocument(sentence, [str(i)]) for i, sentence in enumerate(sentences)] | |
# train | |
max_epochs = 50 | |
vec_size = 200 | |
alpha = 0.03 | |
model = Doc2Vec(vector_size=vec_size, alpha=alpha, min_alpha=0.00025,min_count=1, dm =1) | |
model.build_vocab(tagged_data) | |
for epoch in range(max_epochs): | |
print('iteration {0}'.format(epoch),model.alpha) | |
model.train(tagged_data, | |
total_examples=model.corpus_count, | |
epochs=model.epochs) | |
# decrease the learning rate | |
model.alpha -= 0.0003 | |
# fix the learning rate, no decay | |
model.min_alpha = model.alpha | |
model.save('d2vmodel/d2vmodel.model') | |
print('finish') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment