Created
August 27, 2021 11:58
-
-
Save pablosjv/ef619b1a38027ca0ce54a6a93f4371af to your computer and use it in GitHub Desktop.
Large Scale Pytorch Inference Pipeline: Spark vs Dask - Code Examples
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import namedtuple | |
from torch.utils.data import Dataset | |
Tokens = namedtuple("Tokens", ["input_ids", "attention_mask"]) | |
class TokensDataset(Dataset): | |
def __init__(self, iids, amask): | |
self.input_ids = iids.to_numpy() | |
self.attention_mask = amask.to_numpy() | |
def __len__(self): | |
return len(self.input_ids) | |
def __getitem__(self, index): | |
input_ids = eval(self.input_ids[index]) | |
amask = eval(self.attention_mask[index]) | |
input_ids = np.array(np.pad(input_ids, | |
pad_width=[0, 512 - len(input_ids)], | |
mode='constant', | |
constant_values=[0])) | |
amask = np.array(np.pad(amask, | |
pad_width=[0, 512 - len(amask)], | |
mode='constant', | |
constant_values=[0])) | |
return Tokens(input_ids, amask) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment