Created
May 22, 2012 19:11
-
-
Save pachacamac/2771021 to your computer and use it in GitHub Desktop.
Cluster algorithm for n-dimensional data and a given number of clusters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# A | |
# B | |
# | |
# D | |
# | |
# C | |
# E | |
# | |
# F | |
# | |
# # # # # # # # # # # | |
# 1 2 3 4 5 6 7 8 9 10 | |
#http://www.psychstat.missouristate.edu/multibook/mlt04.htm | |
data = { [1,1] => [:A], [2,2] => [:B], [5,6] => [:C], | |
[8,4] => [:D], [7,7] => [:E], [1,9] => [:F] } | |
# Euclidean distance between two n-dimensional points | |
def distance(a,b) | |
Math.sqrt(a.zip(b).reduce(0.0){|s,e| s+=(e[0]-e[1])**2}) | |
end | |
# Center point between two n-dimensional points | |
def centroid(a,b) | |
a.zip(b).map!{|e| ((e[0]+e[1]) / 2.0).round } | |
end | |
# Iteratively create clusters inside n-dimendional data | |
def clusterize!(h) | |
a,b = h.keys.combination(2).min_by{|e| distance(*e)} | |
v = h[a] + h[b] | |
h.delete a | |
h.delete b | |
h[centroid(a,b)] = v | |
end | |
p data | |
# {[1, 1]=>[:A], [2, 2]=>[:B], [5, 6]=>[:C], [8, 4]=>[:D], [7, 7]=>[:E], [1, 9]=>[:F]} | |
# let's create 3 clusters ... | |
clusterize!(data) while data.size > 3 | |
p data | |
# {[1, 9]=>[:F], [2, 2]=>[:A, :B], [7, 6]=>[:D, :C, :E]} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment