Last active
December 19, 2017 23:32
-
-
Save padpadpadpad/3e02688f23de1811949c637b83fdf052 to your computer and use it in GitHub Desktop.
Quick bootstrap of a nls model using dplyr and broom
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# quick bootstrap of a TPC model | |
# load packages | |
library(ggplot2) | |
library(dplyr) | |
library(tidyr) | |
library(nls.multstart) # devtools::install_github('padpadpadpad/nls.multstart') | |
library(broom) | |
library(purrr) | |
library(patchwork) # devtools::install_github('thomasp85/patchwork') | |
# write function for schoolfield high | |
schoolfield_high <- function(lnc, E, Eh, Th, temp, Tc) { | |
Tc <- 273.15 + Tc | |
k <- 8.62e-5 | |
boltzmann.term <- lnc + log(exp(E/k*(1/Tc - 1/temp))) | |
inactivation.term <- log(1/(1 + exp(Eh/k*(1/Th - 1/temp)))) | |
return(boltzmann.term + inactivation.term) | |
} | |
# load in data | |
data(Chlorella_TRC) | |
# filter for one curve | |
d_1 <- filter(Chlorella_TRC, curve_id == 1) | |
d_8 <- filter(Chlorella_TRC, curve_id == 8) | |
d_32 <- filter(Chlorella_TRC, curve_id == 32) | |
d_boots <- d_32 %>% bootstrap(m = 500) %>% | |
do(model1 = nls_multstart(ln.rate ~ schoolfield_high(lnc, E, Eh, Th, temp = K, Tc = 20), | |
data = ., | |
iter = 10, | |
param_bds = c(-10, 10, 0.1, 2, 0.5, 5, 285, 330), | |
lower = c(lnc=-10, E=0, Eh=0, Th=0), | |
upper = c(lnc = 5, E = 10, Eh = 30, Th = 350), | |
supp_errors = 'Y') | |
) | |
# get parameters #### | |
d_param_boot <- tidy(d_boots, model1) %>% | |
ungroup() | |
# plot | |
p1 <- ggplot(d_param_boot, aes(estimate)) + | |
geom_histogram(col = 'black', fill = 'white') + | |
facet_wrap(~ term, scales = 'free_x') | |
# get predictions #### | |
d_pred_boot <- augment(d_boots, model1) %>% | |
ungroup() | |
# get mean and upper and lower quantiles of each prediction #### | |
d_mean_boot <- group_by(d_pred_boot, K) %>% | |
summarise(., mu = mean(.fitted), | |
lwr_CI = quantile(.fitted, 0.025), | |
upr_CI = quantile(.fitted, 0.975)) %>% | |
ungroup() | |
# plot | |
p2 <- ggplot() + | |
geom_point(aes(K, ln.rate), d_pred_boot, alpha = .01) + | |
geom_line(aes(K, .fitted, group = factor(replicate)), d_pred_boot, alpha = .01) + | |
geom_line(aes(K, mu), d_mean_boot) + | |
geom_line(aes(K, lwr_CI), d_mean_boot, linetype = 2) + | |
geom_line(aes(K, upr_CI), d_mean_boot, linetype = 2) | |
# plot both | |
p3 <- p1 + p2 | |
#ggsave('~/Desktop/boot_plot.pdf', p3, height = 6, width = 12) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment