Created
April 22, 2015 10:33
-
-
Save palcu/8d6473e6f2f5fc242f25 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [ ] = pr2() | |
m = 50; | |
for punct = 1:m | |
X(1, punct) = unifrnd(-1, 1); | |
X(2, punct) = unifrnd(-1, 1); | |
X(3, punct) = unifrnd(-1, 1); | |
end | |
for punct = 1:m | |
determinant = 2 * X(1, punct) - X(2, punct) + X(3, punct) | |
clasa = (determinant < 0) | |
if (clasa) | |
T(punct) = -1; | |
else | |
T(punct) = 1; | |
end | |
end | |
neuralnet1 = newp([-1 1; -1 1; -1 1], 1, 'hardlims', 'learnpn'); | |
neuralnet1.adaptParam.passes = 1000 | |
neuralnet1.adaptParam.showWindow = false; | |
neuralnet1 = adapt(neuralnet1, X, T); | |
plotpv(X, hardlim(T)); | |
plotpc(neuralnet1.IW{1, 1}, neuralnet1.b{1}); | |
Y1 = confusionmat(hardlim(T), hardlim(sim(neuralnet1, X))) | |
neuralnet2 = newp([-1 1; -1 1; -1 1], 1, 'hardlims', 'learnp'); | |
neuralnet2.adaptParam.passes = 1000 | |
neuralnet2.adaptParam.showWindow = false; | |
neuralnet2 = adapt(neuralnet2, X, T); | |
plotpv(X, hardlim(T)); | |
plotpc(net.IW{1, 1}, net.b{1}); | |
Y2 = confusionmat(hardlim(T), hardlim(sim(neuralnet2, X))) | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment