Last active
July 9, 2019 16:15
Coq regexp matcher in Equations
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Require Import List. | |
Require Import Arith. | |
Require Import Wellfounded. | |
Require Import Relation_Definitions. | |
Require Import Relation_Operators. | |
Require Import Lia. | |
From Coq Require Export ssreflect. | |
Global Set SsrOldRewriteGoalsOrder. | |
Global Set Asymmetric Patterns. | |
Global Set Bullet Behavior "None". | |
Import ListNotations. | |
Section RegExp. | |
Variable char : Type. | |
Definition c := char. (*r character *) | |
Inductive re : Type := (*r regexp *) | |
| re_zero : re | |
| re_unit : re | |
| re_char (c5:c) | |
| re_plus (r:re) (r':re) | |
| re_times (r:re) (r':re) | |
| re_star (r:re). | |
Definition s : Type := list char. | |
(** definitions *) | |
(* defns regexp_ins *) | |
Inductive s_in_regexp_lang : s -> re -> Prop := (* defn s_in_regexp_lang *) | |
| s_in_regexp_lang_unit : | |
s_in_regexp_lang [] re_unit | |
| s_in_regexp_lang_char : forall (c5:c), | |
s_in_regexp_lang ( c5 :: []) (re_char c5) | |
| s_in_regexp_lang_plus_1 : forall (s5:s) (r1 r2:re), | |
s_in_regexp_lang s5 r1 -> | |
s_in_regexp_lang s5 (re_plus r1 r2) | |
| s_in_regexp_lang_plus_2 : forall (s5:s) (r1 r2:re), | |
s_in_regexp_lang s5 r2 -> | |
s_in_regexp_lang s5 (re_plus r1 r2) | |
| s_in_regexp_lang_times : forall (s5 s':s) (r1 r2:re), | |
s_in_regexp_lang s5 r1 -> | |
s_in_regexp_lang s' r2 -> | |
s_in_regexp_lang ( s5 ++ s' ) (re_times r1 r2) | |
| s_in_regexp_lang_star_1 : forall (r:re), | |
s_in_regexp_lang [] (re_star r) | |
| s_in_regexp_lang_star_2 : forall (s5 s':s) (r:re), | |
s_in_regexp_lang s5 r -> | |
s_in_regexp_lang s' (re_star r) -> | |
s_in_regexp_lang ( s5 ++ s' ) (re_star r). | |
(** definitions *) | |
(* defns regexp_ins_c *) | |
Inductive s_in_regexp_c_lang : s -> re -> c -> Prop := (* defn s_in_regexp_c_lang *) | |
| s_in_regexp_c_lang_cs : forall (s5:s) (r:re) (c5:c), | |
s_in_regexp_lang ( ( c5 :: []) ++ s5 ) r -> | |
s_in_regexp_c_lang s5 r c5. | |
End RegExp. | |
Arguments re_zero [char]. | |
Arguments re_unit [char]. | |
Arguments re_char [char] _. | |
Arguments re_plus [char] _ _. | |
Arguments re_times [char] _ _. | |
Arguments re_star [char] _. | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Section PListDec. | |
Variables A B : Type. | |
Variable ABlt : A * B -> A * B -> Prop. | |
Variable P : A * B -> Prop. | |
Variable ab : A * B. | |
Variable P_dec : forall ab', ABlt ab' ab -> { P ab' }+{ ~ P ab' }. | |
Variable f : A -> A * B. | |
Hypothesis f_ABlt : forall a' : A, ABlt (f a') ab. | |
Definition list_t (l : list A) := { a0 | In a0 l /\ P (f a0) }+{ (forall a', In a' l -> ~ P (f a')) }. | |
Fixpoint P_list_dec (l : list A) : list_t l. | |
refine | |
(match l as l0 return _ = l0 -> _ with | |
| [] => fun H_eq_l => inright _ | |
| a :: l' => | |
fun H_eq_l => | |
match @P_dec (f a) _ with | |
| left H_dec => inleft (exist _ a _) | |
| right H_dec => | |
match P_list_dec l' with | |
| inleft (exist a' H_l') => inleft (exist _ a' _) | |
| inright H_l' => inright _ | |
end | |
end | |
end (refl_equal _)). | |
- move => a' H_in H_p; subst. | |
by inversion H_in. | |
- subst. | |
exact: f_ABlt. | |
- subst. | |
by split; first by left. | |
- subst. | |
simpl in *. | |
move: H_l' => [H_l' H_p]. | |
by split; first by right. | |
- move => a' H_in H_p. | |
subst. | |
case: H_in => H_in; first by subst. | |
by apply H_l' in H_in. | |
Defined. | |
End PListDec. | |
Section lexprod'. | |
Variable A : Type. | |
Variable ltA : A -> A -> Prop. | |
Inductive lexprod' : A * A -> A * A -> Prop := | |
| left_lex' : forall (x1 x2 y1 y2 : A), ltA x1 x2 -> lexprod' (x1, y1) (x2, y2) | |
| right_lex' : forall (x y1 y2 : A), ltA y1 y2 -> lexprod' (x, y1) (x, y2). | |
Lemma lexprod'_Acc : well_founded ltA -> forall x, Acc ltA x -> forall y, Acc ltA y -> Acc lexprod' (x, y). | |
Proof. | |
intros H x Hx. | |
induction Hx as [x _ IHacc]. | |
intros y Hy. | |
induction Hy as [y _ IHacc0]. | |
apply Acc_intro. | |
intros (x1, y1) HA. | |
inversion HA; subst. | |
- apply IHacc; auto. | |
- apply IHacc0; auto. | |
Defined. | |
Theorem wf_lexprod' : well_founded ltA -> well_founded lexprod'. | |
Proof. | |
intros H_wf (x, y). | |
by auto using lexprod'_Acc. | |
Defined. | |
End lexprod'. | |
Section lexprod''. | |
Variable A : Type. | |
Variable ltA : A -> A -> Prop. | |
Inductive lexprod'' : A * A * A -> A * A * A -> Prop := | |
| left_lex'' : forall (x1 x2 y1 y2 z1 z2 : A), ltA x1 x2 -> lexprod'' (x1, y1, z1) (x2, y2, z2) | |
| mid_lex'' : forall (x y1 y2 z1 z2 : A), ltA y1 y2 -> lexprod'' (x, y1, z1) (x, y2, z2) | |
| right_lex'' : forall (x y z1 z2 : A), ltA z1 z2 -> lexprod'' (x, y, z1) (x, y, z2). | |
Lemma lexprod''_Acc : well_founded ltA -> forall x, Acc ltA x -> forall y, Acc ltA y -> forall z, Acc ltA z -> Acc lexprod'' (x, y, z). | |
Proof. | |
intros H x Hx. | |
induction Hx as [x _ IHacc]. | |
intros y Hy. | |
induction Hy as [y _ IHacc0]. | |
intros z Hz. | |
induction Hz as [z _ IHacc1]. | |
apply Acc_intro. | |
intros ((x1, y1), z1) HA. | |
inversion HA; subst; auto. | |
Defined. | |
Theorem wf_lexprod'' : well_founded ltA -> well_founded lexprod''. | |
Proof. | |
intros H_wf ((x, y), z). | |
by auto using lexprod''_Acc. | |
Defined. | |
End lexprod''. | |
Section Accept. | |
Variable char : Type. | |
Variable char_eq_dec : forall c0 c1 : char, {c0 = c1}+{c0 <> c1}. | |
Fixpoint regexp_size (r : re char) : nat := | |
match r with | |
| re_zero => 1 | |
| re_unit => 1 | |
| re_char _ => 1 | |
| re_plus r1 r2 => regexp_size r1 + regexp_size r2 + 1 | |
| re_times r1 r2 => regexp_size r1 + regexp_size r2 + 1 | |
| re_star r => regexp_size r + 1 | |
end. | |
Definition regexp_size_lt (r r' : re char) := regexp_size r < regexp_size r'. | |
Lemma regexp_size_wf : well_founded regexp_size_lt. | |
Proof. | |
exact: (well_founded_lt_compat _ (fun r => regexp_size r)). | |
Defined. | |
Fixpoint regexp_subsize (r : re char) : nat := | |
match r with | |
| re_times r1 r2 => regexp_size r1 | |
| _ => 0 | |
end. | |
Definition regexp_subsize_lt (r r' : re char) := regexp_subsize r < regexp_subsize r'. | |
Lemma regexp_subsize_wf : well_founded regexp_subsize_lt. | |
Proof. | |
exact: (well_founded_lt_compat _ (fun r => regexp_subsize r)). | |
Defined. | |
Definition regexp_lt_size_subsize_lexprod' (r r' : re char) := | |
lexprod' lt (regexp_size r, regexp_subsize r) (regexp_size r', regexp_subsize r'). | |
Lemma regexp_lt_size_subsize_lexprod'_wf : well_founded regexp_lt_size_subsize_lexprod'. | |
Proof. | |
intro. | |
apply (wf_inverse_image _ _ _ (fun r => (regexp_size r, regexp_subsize r))). | |
by apply wf_lexprod'; apply lt_wf. | |
Defined. | |
Inductive regexp_lt : re char -> re char -> Prop := | |
| regexp_lt_lt : forall r r' : re char, | |
regexp_size r < regexp_size r' -> | |
regexp_lt r r' | |
| regexp_lt_times_lt : forall r11 r12 r21 r22 : re char, | |
regexp_size (re_times r11 r12) = regexp_size (re_times r21 r22) -> | |
regexp_size r11 < regexp_size r21 -> | |
regexp_lt (re_times r11 r12) (re_times r21 r22). | |
Lemma regexp_lt_size_subsize_symprod_incl_impl : | |
forall r r' : re char, | |
regexp_lt r r' -> regexp_lt_size_subsize_lexprod' r r'. | |
Proof. | |
move => r r'. | |
elim => {r r'}. | |
- move => r r' H_lt. | |
rewrite /regexp_lt_size_subsize_lexprod'. | |
exact: left_lex'. | |
- move => r11 r12 r21 r22 H_eq H_lt. | |
rewrite /regexp_lt_size_subsize_lexprod' H_eq /=. | |
exact: right_lex'. | |
Defined. | |
Lemma regexp_lt_size_subsize_symprod_incl : inclusion _ regexp_lt regexp_lt_size_subsize_lexprod'. | |
Proof. | |
move => x y. | |
exact: regexp_lt_size_subsize_symprod_incl_impl. | |
Defined. | |
Lemma regexp_lt_well_founded : well_founded regexp_lt. | |
Proof. | |
apply (wf_incl _ _ _ regexp_lt_size_subsize_symprod_incl). | |
exact: regexp_lt_size_subsize_lexprod'_wf. | |
Defined. | |
Definition regexps_no_c_lt (rc rc' : re char * char) := regexp_lt (fst rc) (fst rc'). | |
Lemma regexps_no_c_lt_well_founded : well_founded regexps_no_c_lt. | |
Proof. | |
apply (wf_inverse_image _ _ _ (fun rs => fst rs)). | |
apply regexp_lt_well_founded. | |
Defined. | |
Definition regexps_no_c_t (rc : re char * char) := | |
{ l : list (re char) | (forall r : re char, In r l -> (forall s, s_in_regexp_lang char s r -> s_in_regexp_c_lang char s (fst rc) (snd rc))) /\ (forall s, s_in_regexp_c_lang char s (fst rc) (snd rc) -> exists r, In r l /\ s_in_regexp_lang char s r) }. | |
Lemma star_times : | |
forall (s' : list char) c r', | |
s_in_regexp_lang _ (c :: s') (re_star r') -> | |
s_in_regexp_lang _ (c :: s') (re_times r' (re_star r')). | |
Proof. | |
case => //=. | |
- move => c r' H_s. | |
inversion H_s; subst. | |
destruct s5. | |
simpl in *. | |
have ->: s' = [] ++ s' by []. | |
by apply s_in_regexp_lang_times. | |
injection H => H_eq H_eq_c; subst. | |
destruct s5 => //=. | |
have ->: c :: s' = [c] ++ s' by []. | |
by apply s_in_regexp_lang_times. | |
- move => c s' c' r' H_r'. | |
inversion H_r'; subst. | |
destruct s5. | |
* simpl in *. | |
have ->: s'0 = [] ++ s'0 by []. | |
by apply s_in_regexp_lang_times. | |
* injection H => H_eq H_eq_c. | |
subst. | |
by apply s_in_regexp_lang_times. | |
Qed. | |
Lemma regexp_star_split : forall r' s' c, | |
s_in_regexp_lang char (c :: s') (re_star r') -> | |
exists s1 s2, s' = s1 ++ s2 /\ s_in_regexp_lang char (c :: s1) r' /\ s_in_regexp_lang char s2 (re_star r'). | |
Proof. | |
intros. | |
remember (c0 :: s') as s0. | |
remember (re_star r') as r0. | |
revert r' s' c0 Heqs0 Heqr0. | |
induction H; intros; try congruence. | |
inversion Heqr0; subst; clear Heqr0. | |
destruct s5. | |
- apply IHs_in_regexp_lang2; auto. | |
- simpl in *. inversion Heqs0; subst; clear Heqs0. | |
eauto. | |
Qed. | |
Definition regexps_no_c_F : forall (rc : re char * char), | |
(forall rc' : re char * char, regexps_no_c_lt rc' rc -> regexps_no_c_t rc') -> regexps_no_c_t rc. | |
refine | |
(fun rc regexps_no_c_rec => | |
match fst rc as r0 return _ = r0 -> _ with | |
| re_zero => fun H_eq => exist _ [] _ | |
| re_unit => fun H_eq => exist _ [] _ | |
| re_char c => | |
fun H_eq => | |
match char_eq_dec c (snd rc) with | |
| left H_a => exist _ [re_unit] _ | |
| right H_a => exist _ [] _ | |
end | |
| re_plus r1 r2 => | |
fun H_eq => | |
match regexps_no_c_rec (r1, snd rc) _, regexps_no_c_rec (r2, snd rc) _ with | |
| exist l1 H_ex1, exist l2 H_ex2 => exist _ (l1 ++ l2) _ | |
end | |
| re_star r => | |
fun H_eq => | |
match regexps_no_c_rec (r, snd rc) _ with | |
| exist l H_ex => | |
exist _ (map (fun r' => re_times r' (re_star r)) l) _ | |
end | |
| re_times re_zero _ => fun H_eq => exist _ [] _ | |
| re_times re_unit r2 => | |
fun H_eq => | |
match regexps_no_c_rec (r2, snd rc) _ with | |
| exist l H_ex => exist _ l _ | |
end | |
| re_times (re_char c) r2 => | |
fun H_eq => | |
match char_eq_dec c (snd rc) with | |
| left H_a => exist _ [r2] _ | |
| right H_a => exist _ [] _ | |
end | |
| re_times (re_plus r11 r12) r2 => | |
fun H_eq => | |
match regexps_no_c_rec (re_times r11 r2, snd rc) _, regexps_no_c_rec (re_times r12 r2, snd rc) _ with | |
| exist l11 H_ex11, exist l12 H_ex12 => exist _ (l11 ++ l12) _ | |
end | |
| re_times (re_times r11 r12) r2 => | |
fun H_eq => | |
match regexps_no_c_rec (re_times r11 (re_times r12 r2), snd rc) _ with | |
| exist l H_ex => exist _ l _ | |
end | |
| re_times (re_star r1) r2 => | |
fun H_eq => | |
match regexps_no_c_rec (r2, snd rc) _, regexps_no_c_rec (r1, snd rc) _ with | |
| exist l2 H_ex2, exist l1 H_ex1 => | |
exist _ (l2 ++ (map (fun r' => re_times r' (re_times (re_star r1) r2)) l1)) _ | |
end | |
end (refl_equal _)); destruct rc; simpl in *; subst => //=. | |
- split => //. | |
move => s H_s. | |
inversion H_s; subst. | |
by inversion H. | |
- split => //. | |
move => s H_s. | |
inversion H_s; subst. | |
simpl in *. | |
by inversion H. | |
- split. | |
* move => r; case => //. | |
move => H_eq; subst. | |
move => s H_in. | |
inversion H_in; subst. | |
apply: s_in_regexp_c_lang_cs. | |
rewrite /=. | |
exact: s_in_regexp_lang_char. | |
* move => s' H_s. | |
inversion H_s; subst. | |
simpl in *. | |
inversion H; subst. | |
exists re_unit. | |
split; first by left. | |
exact: s_in_regexp_lang_unit. | |
- split => //=. | |
move => s' H_s. | |
inversion H_s; subst. | |
simpl in *. | |
by inversion H; subst. | |
- rewrite /regexps_no_c_lt /=. | |
by apply regexp_lt_lt => /=; lia. | |
- rewrite /regexps_no_c_lt /=. | |
by apply regexp_lt_lt => /=; lia. | |
- move: H_ex1 => [H_ex1 H_ex1']. | |
move: H_ex2 => [H_ex2 H_ex2']. | |
split. | |
* move => r H_in s H_s. | |
apply: s_in_regexp_c_lang_cs => /=. | |
apply in_app_or in H_in. | |
case: H_in => H_in. | |
+ have H_s' := H_ex1 _ H_in _ H_s. | |
inversion H_s'; subst. | |
simpl in *. | |
exact: s_in_regexp_lang_plus_1. | |
+ have H_s' := H_ex2 _ H_in _ H_s. | |
inversion H_s'; subst. | |
simpl in *. | |
exact: s_in_regexp_lang_plus_2. | |
* move => s' H_s'. | |
inversion H_s'; subst. | |
simpl in *. | |
inversion H; subst. | |
* apply s_in_regexp_c_lang_cs in H2. | |
have [r [H_in H_ex1'']] := H_ex1' _ H2. | |
exists r. split => //. | |
by apply in_or_app; left. | |
* apply s_in_regexp_c_lang_cs in H2. | |
have [r [H_in H_ex2'']] := H_ex2' _ H2. | |
exists r. split => //. | |
by apply in_or_app; right. | |
- split => //. | |
move => s H_s. | |
inversion H_s; subst. | |
simpl in *. | |
inversion H; subst. | |
by inversion H3. | |
- rewrite /regexps_no_c_lt /=. | |
by apply regexp_lt_lt => /=; lia. | |
- move: H_ex => [H_ex H_ex']. | |
split. | |
* move => r' H_in s H_s. | |
apply: s_in_regexp_c_lang_cs => /=. | |
have H_s' := H_ex _ H_in _ H_s. | |
inversion H_s'; subst. | |
simpl in *. | |
have ->: c0 :: s = [] ++ c0 :: s by []. | |
apply s_in_regexp_lang_times => //. | |
exact: s_in_regexp_lang_unit. | |
* move => s' H_s'. | |
inversion H_s'; subst. | |
simpl in *. | |
inversion H; subst. | |
inversion H3; subst. | |
simpl in *. | |
subst. | |
apply s_in_regexp_c_lang_cs in H4. | |
apply H_ex' in H4. | |
move: H4 => [r0 [H_in H_s0]]. | |
by exists r0. | |
- split. | |
* move => r'; case => // H_eq; subst. | |
move => s H_s. | |
apply: s_in_regexp_c_lang_cs => /=. | |
have ->: c0 :: s = [c0] ++ s by []. | |
apply s_in_regexp_lang_times => //. | |
exact: s_in_regexp_lang_char. | |
* move => s H_s. | |
inversion H_s; subst. | |
simpl in *. | |
inversion H; subst. | |
inversion H3; subst. | |
simpl in *. | |
injection H0 => H_eq. | |
subst. | |
exists r2. | |
by split; first by left. | |
- split => //. | |
move => s H_s. | |
inversion H_s; subst. | |
simpl in *. | |
inversion H; subst. | |
inversion H3; subst. | |
simpl in *. | |
by injection H0. | |
- rewrite /regexps_no_c_lt /=. | |
by apply regexp_lt_lt => /=; lia. | |
- rewrite /regexps_no_c_lt /=. | |
by apply regexp_lt_lt => /=; lia. | |
- move: H_ex11 => [H_ex11 H_ex11']. | |
move: H_ex12 => [H_ex12 H_ex12']. | |
split. | |
* move => r' H_in s H_s. | |
apply: s_in_regexp_c_lang_cs => /=. | |
apply in_app_or in H_in. | |
case: H_in => H_in. | |
+ have H_s' := H_ex11 _ H_in _ H_s. | |
inversion H_s'; subst. | |
simpl in *. | |
inversion H; subst. | |
apply s_in_regexp_lang_times => //. | |
exact: s_in_regexp_lang_plus_1. | |
+ have H_s' := H_ex12 _ H_in _ H_s. | |
inversion H_s'; subst. | |
simpl in *. | |
inversion H; subst. | |
apply s_in_regexp_lang_times => //. | |
exact: s_in_regexp_lang_plus_2. | |
* move => s' H_s'. | |
inversion H_s'; subst. | |
simpl in *. | |
inversion H; subst. | |
inversion H3; subst. | |
+ destruct s5. | |
-- simpl in *. | |
subst. | |
have H_sc: s_in_regexp_c_lang _ s' (re_times r11 r2) c0. | |
apply s_in_regexp_c_lang_cs. | |
simpl. | |
have ->: c0 :: s' = [] ++ c0 :: s' by []. | |
by apply s_in_regexp_lang_times. | |
apply H_ex11' in H_sc. | |
move: H_sc => [r0 [H_in H_s0]]. | |
exists r0. | |
split => //. | |
by apply in_or_app; left. | |
-- simpl in *. | |
injection H0 => H_eq H_eq_c. | |
subst. | |
have H_sc: s_in_regexp_c_lang _ (s5 ++ s'0) (re_times r11 r2) c0. | |
apply s_in_regexp_c_lang_cs. | |
simpl. | |
have ->: c0 :: (s5 ++ s'0) = (c0 :: s5) ++ s'0 by []. | |
by apply s_in_regexp_lang_times. | |
apply H_ex11' in H_sc. | |
move: H_sc => [r0 [H_in H_s0]]. | |
exists r0. | |
split => //. | |
by apply in_or_app; left. | |
+ destruct s5. | |
-- simpl in *. | |
subst. | |
have H_sc: s_in_regexp_c_lang _ s' (re_times r12 r2) c0. | |
apply s_in_regexp_c_lang_cs. | |
simpl. | |
have ->: c0 :: s' = [] ++ c0 :: s' by []. | |
by apply s_in_regexp_lang_times. | |
apply H_ex12' in H_sc. | |
move: H_sc => [r0 [H_in H_s0]]. | |
exists r0. | |
split => //. | |
by apply in_or_app; right. | |
-- simpl in *. | |
injection H0 => H_eq H_eq_c. | |
subst. | |
have H_sc: s_in_regexp_c_lang _ (s5 ++ s'0) (re_times r12 r2) c0. | |
apply s_in_regexp_c_lang_cs. | |
simpl. | |
have ->: c0 :: (s5 ++ s'0) = (c0 :: s5) ++ s'0 by []. | |
by apply s_in_regexp_lang_times. | |
apply H_ex12' in H_sc. | |
move: H_sc => [r0 [H_in H_s0]]. | |
exists r0. | |
split => //. | |
by apply in_or_app; right. | |
- rewrite /regexps_no_c_lt /=. | |
by apply regexp_lt_times_lt => /=; lia. | |
- move: H_ex => [H_ex H_ex']. | |
split. | |
* move => r' H_in s' H_s. | |
apply: s_in_regexp_c_lang_cs => /=. | |
have H_s' := H_ex _ H_in _ H_s. | |
inversion H_s'; subst. | |
simpl in *. | |
inversion H; subst. | |
inversion H4; subst. | |
rewrite app_assoc. | |
apply s_in_regexp_lang_times => //. | |
exact: s_in_regexp_lang_times. | |
* move => s' H_s'. | |
inversion H_s'; subst. | |
simpl in *. | |
inversion H; subst. | |
inversion H3; subst. | |
destruct s0. | |
+ simpl in *. | |
destruct s'1. | |
-- simpl in *. | |
subst. | |
have H_sc: s_in_regexp_c_lang _ s' (re_times r11 (re_times r12 r2)) c0. | |
apply s_in_regexp_c_lang_cs. | |
simpl. | |
have ->: c0 :: s' = [] ++ c0 :: s' by []. | |
apply s_in_regexp_lang_times => //. | |
have ->: c0 :: s' = [] ++ c0 :: s' by []. | |
by apply s_in_regexp_lang_times => //. | |
by apply H_ex' in H_sc. | |
-- injection H0 => H_eq H_eq_c; subst. | |
have H_sc: s_in_regexp_c_lang _ (s'1 ++ s'0) (re_times r11 (re_times r12 r2)) c0. | |
apply s_in_regexp_c_lang_cs. | |
simpl. | |
have ->: c0 :: (s'1 ++ s'0) = [] ++ c0 :: (s'1 ++ s'0) by []. | |
apply s_in_regexp_lang_times => //. | |
have ->: c0 :: (s'1 ++ s'0) = (c0 :: s'1) ++ s'0 by []. | |
by apply s_in_regexp_lang_times. | |
by apply H_ex' in H_sc. | |
+ simpl in *. | |
injection H0 => H_eq H_eq_c. | |
subst. | |
have H_sc: s_in_regexp_c_lang _ (s0 ++ (s'1 ++ s'0)) (re_times r11 (re_times r12 r2)) c0. | |
apply s_in_regexp_c_lang_cs. | |
simpl. | |
have ->: c0 :: (s0 ++ s'1 ++ s'0) = (c0 :: s0) ++ s'1 ++ s'0 by []. | |
apply s_in_regexp_lang_times => //. | |
by apply s_in_regexp_lang_times. | |
apply H_ex' in H_sc. | |
move: H_sc => [r0 [H_in H_r0]]. | |
exists r0. | |
split => //. | |
by rewrite -app_assoc. | |
- rewrite /regexps_no_c_lt /=. | |
by apply regexp_lt_lt => /=; lia. | |
- rewrite /regexps_no_c_lt /=. | |
by apply regexp_lt_lt => /=; lia. | |
- move: H_ex1 => [H_ex1 H_ex1']. | |
move: H_ex2 => [H_ex2 H_ex2']. | |
split. | |
* move => r' H_in s' H_s'. | |
apply: s_in_regexp_c_lang_cs => /=. | |
apply in_app_or in H_in. | |
case: H_in => H_in. | |
+ have H_s0 := H_ex2 _ H_in _ H_s'. | |
inversion H_s0; subst. | |
simpl in *. | |
have ->: c0 :: s' = [] ++ c0 :: s' by []. | |
apply s_in_regexp_lang_times => //. | |
exact: s_in_regexp_lang_star_1. | |
+ apply in_map_iff in H_in. | |
move: H_in => [r0 [H_eq_r0 H_in']]. | |
subst. | |
inversion H_s'; subst. | |
have H_s0 := H_ex1 _ H_in' _ H2. | |
inversion_clear H3; subst. | |
inversion_clear H_s0; subst. | |
simpl in *. | |
have ->: c0 :: (s5 ++ s0 ++ s') = (c0 :: s5 ++ s0) ++ s' by rewrite app_assoc. | |
apply s_in_regexp_lang_times => //. | |
have ->: c0 :: s5 ++ s0 = (c0 :: s5) ++ s0 by []. | |
exact: s_in_regexp_lang_star_2. | |
* move => s' H_s'. | |
inversion H_s'; subst. | |
simpl in *. | |
inversion H; subst. | |
destruct s5. | |
+ simpl in *. | |
subst. | |
apply s_in_regexp_c_lang_cs in H4. | |
apply H_ex2' in H4. | |
move: H4 => [r0 [H_in H_r0]]. | |
exists r0. | |
split => //. | |
apply in_or_app. | |
by left. | |
+ injection H0 => H_eq H_eq_c. | |
subst. | |
apply regexp_star_split in H3. | |
move: H3 => [s1 [s2 [H_eq [H_s12 H_s12']]]]. | |
subst. | |
apply s_in_regexp_c_lang_cs in H_s12. | |
apply H_ex1' in H_s12. | |
move: H_s12 => [r0 [H_in H_r0]]. | |
exists (re_times r0 (re_times (re_star r1) r2)). | |
split. | |
-- apply in_or_app. | |
right. | |
apply in_split in H_in. | |
move: H_in => [l'2 [l'3 H_eq]]. | |
subst. | |
move {H_ex1 H_ex1'}. | |
elim: l'2 => //=; first by left. | |
move => r'0 l'. | |
rewrite map_app /= => H_in. | |
right. | |
apply in_or_app. | |
by right; left. | |
-- rewrite -app_assoc. | |
apply s_in_regexp_lang_times => //. | |
exact: s_in_regexp_lang_times. | |
- rewrite /regexps_no_c_lt /=. | |
by apply regexp_lt_lt => /=; lia. | |
- move: H_ex => [H_ex H_ex']. | |
split. | |
* move => r' H_in s' H_s'. | |
apply: s_in_regexp_c_lang_cs => /=. | |
apply in_map_iff in H_in. | |
move: H_in => [r0 [H_eq_r0 H_in']]. | |
subst. | |
inversion_clear H_s'; subst. | |
have H_ex0 := H_ex _ H_in' _ H. | |
inversion_clear H_ex0; subst. | |
simpl in *. | |
have ->: c0 :: (s5 ++ s'0) = (c0 :: s5) ++ s'0 by []. | |
exact: s_in_regexp_lang_star_2. | |
* move => s' H_s'. | |
inversion H_s'; subst. | |
simpl in *. | |
apply regexp_star_split in H. | |
move: H => [s1 [s2 [H_eq [H_s1 H_s2]]]]. | |
subst. | |
apply s_in_regexp_c_lang_cs in H_s1. | |
apply H_ex' in H_s1. | |
move: H_s1 => [r0 [H_in H_r0]]. | |
exists (re_times r0 (re_star r)). | |
split. | |
+ apply in_split in H_in. | |
move: H_in => [l1 [l2 H_eq]]. | |
subst. | |
elim: l1 {H_ex' H_ex} => /=; first by left. | |
move => r1 l. | |
rewrite map_app /= => H_in. | |
by right. | |
+ exact: s_in_regexp_lang_times. | |
Defined. | |
Definition regexps_no_c : forall (rs : re char * char), regexps_no_c_t rs := | |
@well_founded_induction_type _ _ regexps_no_c_lt_well_founded regexps_no_c_t regexps_no_c_F. | |
Inductive accept_lt : re char * list char -> re char * list char -> Prop := | |
| accept_lt_string : forall rs rs' : re char * list char, | |
length (snd rs) < length (snd rs') -> | |
accept_lt rs rs' | |
| accept_lt_regexp : forall rs rs' : re char * list char, | |
length (snd rs) = length (snd rs') -> | |
regexp_lt (fst rs) (fst rs') -> | |
accept_lt rs rs'. | |
Definition accept_lt_lexprod'' (rs rs' : re char * list char) := | |
lexprod'' lt | |
(length (snd rs), regexp_size (fst rs), regexp_subsize (fst rs)) | |
(length (snd rs'), regexp_size (fst rs'), regexp_subsize (fst rs')). | |
Lemma accept_lt_lexprod''_wf : well_founded accept_lt_lexprod''. | |
Proof. | |
intro. | |
apply (wf_inverse_image _ _ _ (fun rs => (length (snd rs), regexp_size (fst rs), regexp_subsize (fst rs)))). | |
by apply wf_lexprod''; apply lt_wf. | |
Defined. | |
Lemma accept_lt_lexprod''_impl : forall rs rs', accept_lt rs rs' -> accept_lt_lexprod'' rs rs'. | |
Proof. | |
move => rs rs'. | |
elim => {rs rs'}. | |
- move => rs rs' H_lt. | |
rewrite /accept_lt_lexprod''. | |
exact: left_lex''. | |
- move => rs rs' H_eq H_lt. | |
rewrite /accept_lt_lexprod'' H_eq /=. | |
inversion H_lt; subst. | |
* exact: mid_lex''. | |
* rewrite H1. | |
exact: right_lex''. | |
Defined. | |
Lemma accept_lt_lexprod''_incl : inclusion _ accept_lt accept_lt_lexprod''. | |
Proof. | |
move => x y. | |
exact: accept_lt_lexprod''_impl. | |
Defined. | |
Lemma accept_lt_well_founded : well_founded accept_lt. | |
Proof. | |
apply (wf_incl _ _ _ accept_lt_lexprod''_incl). | |
exact: accept_lt_lexprod''_wf. | |
Defined. | |
Definition accept_p (rs : re char * list char) := | |
s_in_regexp_lang _ (snd rs) (fst rs). | |
Definition accept_t (rs : re char * list char) := | |
{ accept_p rs }+{ ~ accept_p rs }. | |
Definition accept_list_dec := @P_list_dec (re char) (list char) accept_lt accept_p. | |
End Accept. | |
Require Import Equations.Equations. | |
Open Scope equations_scope. | |
Section AcceptEquations. | |
Variable char : Type. | |
Variable char_eq_dec : forall c0 c1 : char, {c0 = c1}+{c0 <> c1}. | |
Instance wf_accept_lt : WellFounded (@accept_lt char). | |
apply accept_lt_well_founded. | |
Defined. | |
Equations acc (rs : re char * list char) : accept_t rs by wf rs (@accept_lt char) := | |
acc (re_zero, _) := right _; | |
acc (re_unit, []) := left _; acc (re_unit, _ :: _) := right _; | |
acc (re_char c, [c']) := match char_eq_dec c c' with left _ => left _ | right _ => right _ end; | |
acc (re_char _, []) := right _; acc (re_char _, _ :: _) := right _; | |
acc (re_plus r1 r2, s) := match acc (r1, s) with left _=> left _ | right _ => match acc (r2, s) with left _ => left _ | right _ => right _ end end; | |
acc (re_times r1 r2, []) := match acc (r1, []) with left _ => (match acc (r2, []) with left _ => left _ | right _ => right _ end) | right _ => right _ end; | |
acc (re_times re_zero _, _) := right _; | |
acc (re_times re_unit r2, c :: s) := match acc (r2, c :: s) with left _ => left _ | right _ => right _ end; | |
acc (re_times (re_char c) r2, c' :: s) := match char_eq_dec c c' with left _ => (match acc (r2, s) with left _ => left _ | right _ => right _ end) | right _ => right _ end; | |
acc (re_times (re_times r'1 r'2) r2, c :: s) := match acc (re_times r'1 (re_times r'2 r2), c :: s) with left _ => left _ | right _ => right _ end; | |
acc (re_times (re_plus r'1 r'2) r2, c :: s) := | |
match acc (re_times r'1 r2, c :: s) with left _ => left _ | right _ => match acc (re_times r'2 r2, c :: s) with left _ => left _ | right _ => right _ end end; | |
acc (re_times (re_star r1) r2, c :: s) := | |
match acc (r2, c :: s) with | |
| left _ => left _ | |
| right _ => (match regexps_no_c char_eq_dec (r1, c) with | |
| exist l H_l => | |
match @accept_list_dec char (re_times (re_star r1) r2, c :: s) acc (fun r0 => (re_times r0 (re_times (re_star r1) r2), s)) _ l with | |
| inleft (exist _ H_ex) => left _ | |
| inright H_l' => right _ | |
end | |
end) | |
end; | |
acc (re_star r, []) := left _; | |
acc (re_star r, c :: s) := | |
(match regexps_no_c char_eq_dec (r, c) with | |
| exist l H_l => | |
match @accept_list_dec char (re_star r, c :: s) acc (fun r0 => (re_times r0 (re_star r), s)) _ l with | |
| inleft (exist _ H_ex) => left _ | |
| inright H_l' => right _ | |
end | |
end). | |
Next Obligation. | |
by inversion H. | |
Qed. | |
Next Obligation. | |
exact: s_in_regexp_lang_unit. | |
Qed. | |
Next Obligation. | |
by inversion H. | |
Qed. | |
Next Obligation. | |
by inversion H. | |
Qed. | |
Next Obligation. | |
exact: s_in_regexp_lang_char. | |
Qed. | |
Next Obligation. | |
by inversion H; subst. | |
Qed. | |
Next Obligation. | |
by inversion H. | |
Qed. | |
Next Obligation. | |
apply accept_lt_regexp => //=. | |
apply regexp_lt_lt. | |
rewrite /=. | |
by lia. | |
Qed. | |
Next Obligation. | |
exact: s_in_regexp_lang_plus_1. | |
Qed. | |
Next Obligation. | |
apply accept_lt_regexp => //. | |
apply regexp_lt_lt. | |
rewrite /=. | |
by lia. | |
Qed. | |
Next Obligation. | |
exact: s_in_regexp_lang_plus_2. | |
Qed. | |
Next Obligation. | |
by inversion H. | |
Qed. | |
Next Obligation. | |
apply accept_lt_regexp => //. | |
apply regexp_lt_lt. | |
rewrite /=. | |
by lia. | |
Qed. | |
Next Obligation. | |
apply accept_lt_regexp => //. | |
apply regexp_lt_lt. | |
rewrite /=. | |
by lia. | |
Qed. | |
Next Obligation. | |
exact: s_in_regexp_lang_times _ _ _ _ a a0. | |
Qed. | |
Next Obligation. | |
inversion H; subst. | |
case: n. | |
by destruct s5, s'. | |
Qed. | |
Next Obligation. | |
case: n. | |
inversion H; subst. | |
by destruct s5, s'. | |
Qed. | |
Next Obligation. | |
inversion H; subst. | |
by inversion H3. | |
Qed. | |
Next Obligation. | |
apply accept_lt_regexp => //. | |
apply regexp_lt_lt. | |
rewrite /=. | |
by lia. | |
Qed. | |
Next Obligation. | |
have H_eq: [] ++ c0 :: s0 = c0 :: s0 by []. | |
rewrite -H_eq. | |
apply s_in_regexp_lang_times => //. | |
exact: s_in_regexp_lang_unit. | |
Qed. | |
Next Obligation. | |
inversion H; subst. | |
inversion H3; subst. | |
case: n. | |
by rewrite -H0 /=. | |
Qed. | |
Next Obligation. | |
exact: accept_lt_string. | |
Qed. | |
Next Obligation. | |
have H_eq: [c'] ++ s0 = c' :: s0 by []. | |
rewrite -H_eq. | |
apply s_in_regexp_lang_times => //. | |
exact: s_in_regexp_lang_char. | |
Qed. | |
Next Obligation. | |
inversion H; subst. | |
inversion H3; subst. | |
move: H0. | |
rewrite /=; case => Hs. | |
subst. | |
by case: n. | |
Qed. | |
Next Obligation. | |
inversion H; subst. | |
inversion H3; subst. | |
by inversion H0. | |
Qed. | |
Next Obligation. | |
apply accept_lt_regexp => //. | |
apply regexp_lt_lt. | |
rewrite /=. | |
by lia. | |
Qed. | |
Next Obligation. | |
inversion a; subst. | |
apply s_in_regexp_lang_times => //. | |
exact: s_in_regexp_lang_plus_1. | |
Qed. | |
Next Obligation. | |
apply accept_lt_regexp => //=. | |
apply regexp_lt_lt => /=. | |
by lia. | |
Qed. | |
Next Obligation. | |
inversion a; subst. | |
apply s_in_regexp_lang_times => //. | |
exact: s_in_regexp_lang_plus_2. | |
Qed. | |
Next Obligation. | |
inversion H; subst. | |
inversion H3; subst. | |
- case: n. | |
rewrite -H0. | |
exact: s_in_regexp_lang_times. | |
- case: n0. | |
rewrite -H0. | |
exact: s_in_regexp_lang_times. | |
Qed. | |
Next Obligation. | |
apply accept_lt_regexp => //. | |
by apply regexp_lt_times_lt => /=; lia. | |
Qed. | |
Next Obligation. | |
inversion a; subst. | |
inversion H3; subst. | |
rewrite app_assoc. | |
apply s_in_regexp_lang_times => //. | |
exact: s_in_regexp_lang_times. | |
Qed. | |
Next Obligation. | |
inversion H; subst. | |
inversion H3; subst. | |
contradict n. | |
rewrite -app_assoc in H0. | |
rewrite -H0. | |
apply s_in_regexp_lang_times => //. | |
exact: s_in_regexp_lang_times. | |
Qed. | |
Next Obligation. | |
apply accept_lt_regexp => //=. | |
by apply regexp_lt_lt => /=; lia. | |
Qed. | |
Next Obligation. | |
rewrite /accept_p /= in a. | |
rewrite /accept_p /=. | |
have ->: c0 :: s0 = [] ++ c0 :: s0 by []. | |
apply s_in_regexp_lang_times => //. | |
exact: s_in_regexp_lang_star_1. | |
Qed. | |
Next Obligation. | |
exact: accept_lt_string. | |
Qed. | |
Next Obligation. | |
inversion H0; subst. | |
simpl in *. | |
subst. | |
have H_l0 := H1 _ H _ H8. | |
inversion H_l0; subst. | |
simpl in *. | |
inversion H9; subst. | |
have ->: c0 :: s5 ++ s0 ++ s'0 = ((c0 :: s5) ++ s0) ++ s'0 by rewrite app_assoc. | |
apply s_in_regexp_lang_times => //. | |
by apply s_in_regexp_lang_star_2. | |
Qed. | |
Next Obligation. | |
inversion H1; subst. | |
destruct s5. | |
- simpl in *. | |
by subst. | |
- injection H2 => H_eq H_eq_c. | |
subst. | |
clear H2. | |
apply regexp_star_split in H5. | |
move: H5 => [s1 [s2 [H_s1 [H_s2 H_eq]]]]. | |
subst. | |
have H_sc: s_in_regexp_c_lang _ s1 r1 c0 by apply s_in_regexp_c_lang_cs. | |
apply H0 in H_sc. | |
move: H_sc => [r0 [H_in H_r0]]. | |
have H_l'' := H_l' _ H_in. | |
case: H_l''. | |
rewrite /accept_p /=. | |
rewrite -app_assoc. | |
apply s_in_regexp_lang_times => //. | |
by apply s_in_regexp_lang_times. | |
Qed. | |
Next Obligation. | |
exact: s_in_regexp_lang_star_1. | |
Qed. | |
Next Obligation. | |
exact: accept_lt_string. | |
Qed. | |
Next Obligation. | |
inversion H0; subst. | |
simpl in *. | |
subst. | |
have H_l' := H1 _ H _ H8. | |
inversion H_l'; subst. | |
simpl in *. | |
rewrite /accept_p /=. | |
have ->: c0 :: (s5 ++ s') = (c0 :: s5) ++ s' by []. | |
by apply s_in_regexp_lang_star_2. | |
Qed. | |
Next Obligation. | |
have H_s' := star_times H1. | |
have [s1 [s2 [H_eq [H_s1 H_s2]]]] := regexp_star_split H1. | |
subst. | |
have H_c_l: s_in_regexp_c_lang _ (s1 ++ s2) (re_times r (re_star r)) c0 by apply s_in_regexp_c_lang_cs. | |
have H_s0: forall r', (forall s, s_in_regexp_c_lang _ s r c0 -> s_in_regexp_lang _ s r') -> s_in_regexp_lang _ (c0 :: (s1 ++ s2)) (re_times (re_char c0) (re_times r' (re_star r))). | |
move => r' H_sc. | |
have ->: c0 :: (s1 ++ s2) = [c0] ++ (s1 ++ s2) by []. | |
apply s_in_regexp_lang_times; first by apply s_in_regexp_lang_char. | |
apply s_in_regexp_lang_times => //. | |
apply H_sc. | |
by apply s_in_regexp_c_lang_cs. | |
have H_s1' := H0 s1. | |
have H_cs: s_in_regexp_c_lang _ s1 r c0 by apply s_in_regexp_c_lang_cs. | |
apply H_s1' in H_cs. | |
move: H_cs => [r' [H_in H_ss]]. | |
apply H_l' in H_in. | |
case: H_in. | |
rewrite /accept_p /=. | |
by apply s_in_regexp_lang_times. | |
Qed. | |
End AcceptEquations. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment