Last active
August 14, 2025 06:21
-
-
Save pamelafox/a6733a5edd53c09040864a27c1093b54 to your computer and use it in GitHub Desktop.
GPT-5 code
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import openai | |
from azure.identity import DefaultAzureCredential, get_bearer_token_provider | |
client = openai.AzureOpenAI( | |
api_version=os.environ["AZURE_OPENAI_VERSION"], | |
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"], | |
azure_ad_token_provider=get_bearer_token_provider(DefaultAzureCredential(), | |
"https://cognitiveservices.azure.com/.default"), | |
) | |
response = client.chat.completions.create( | |
model=os.environ["AZURE_OPENAI_DEPLOYMENT"], | |
messages=[ | |
{"role": "user", "content": "Explain beta-reduction in lambda calculus."}, | |
], | |
reasoning_effort="minimal", | |
verbosity="low" | |
) | |
print(response.choices[0].message.content) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import openai | |
from azure.identity import DefaultAzureCredential, get_bearer_token_provider | |
from pydantic import BaseModel | |
client = openai.AzureOpenAI( | |
api_version=os.environ["AZURE_OPENAI_VERSION"], | |
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"], | |
azure_ad_token_provider=get_bearer_token_provider(DefaultAzureCredential(), | |
"https://cognitiveservices.azure.com/.default"), | |
) | |
class MathExplanation(BaseModel): | |
steps: list[str] | |
answer: int | |
completion = client.beta.chat.completions.parse( | |
model=os.environ["AZURE_OPENAI_DEPLOYMENT"], | |
messages=[ | |
{"role": "system", "content": "You answer math problems."}, | |
{"role": "user", "content": "What is 23 * 7? Show your steps."}, | |
], | |
response_format=MathExplanation, | |
) | |
message = completion.choices[0].message | |
if message.refusal: | |
print(message.refusal) | |
else: | |
print(message.parsed) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import azure.identity | |
import openai | |
from dotenv import load_dotenv | |
from pydantic import BaseModel | |
# Setup the OpenAI client to use either Azure, OpenAI.com, or Ollama API | |
load_dotenv(override=True) | |
API_HOST = os.getenv("API_HOST", "github") | |
if API_HOST == "azure": | |
token_provider = azure.identity.get_bearer_token_provider( | |
azure.identity.DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default" | |
) | |
client = openai.AzureOpenAI( | |
api_version=os.environ["AZURE_OPENAI_VERSION"], | |
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"], | |
azure_ad_token_provider=token_provider, | |
) | |
MODEL_NAME = os.environ["AZURE_OPENAI_DEPLOYMENT"] | |
elif API_HOST == "ollama": | |
client = openai.OpenAI(base_url=os.environ["OLLAMA_ENDPOINT"], api_key="nokeyneeded") | |
MODEL_NAME = os.environ["OLLAMA_MODEL"] | |
elif API_HOST == "github": | |
client = openai.OpenAI(base_url="https://models.github.ai/inference", api_key=os.environ["GITHUB_TOKEN"]) | |
MODEL_NAME = os.getenv("GITHUB_MODEL", "openai/gpt-5") | |
else: | |
client = openai.OpenAI(api_key=os.environ["OPENAI_KEY"]) | |
MODEL_NAME = os.environ["OPENAI_MODEL"] | |
response = client.chat.completions.create( | |
model=MODEL_NAME, | |
messages=[ | |
{"role": "user", "content": "Explain beta-reduction in lambda calculus."}, | |
], | |
reasoning_effort="minimal", | |
verbosity="low" | |
) | |
print(response.choices[0].message.content) | |
class MathExplanation(BaseModel): | |
steps: list[str] | |
answer: int | |
completion = client.beta.chat.completions.parse( | |
model=MODEL_NAME, | |
messages=[ | |
{"role": "system", "content": "You answer math problems."}, | |
{"role": "user", "content": "What is 23 * 7? Show your steps."}, | |
], | |
response_format=MathExplanation, | |
) | |
message = completion.choices[0].message | |
if message.refusal: | |
print(message.refusal) | |
else: | |
print(message.parsed) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment