Created
March 20, 2019 09:47
-
-
Save panicpotatoe/dcc956002ed879394e91d184c227a520 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Created on Fri Dec 21 18:59:49 2018 | |
@author: Nhan Tran | |
""" | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
# Importing the dataset | |
dataset = pd.read_csv('./Sample Data/PART 2. REGRESSION - Polynomial Regression - Polynomial_Regression/Polynomial_Regression/Position_Salaries.csv') | |
X = dataset.iloc[:, 1:2].values | |
y = dataset.iloc[:, 2].values | |
# Splitting the dataset into the Training set and Test set | |
from sklearn.model_selection import train_test_split | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) | |
""" | |
# Scaling | |
from sklearn.preprocessing import StandardScaler | |
sc_X = StandardScaler() | |
X_train = sc_X.fit_transform(X_train) | |
X_test = sc_X.transform(X_test) | |
""" | |
# Fitting Linear Regression to the dataset | |
from sklearn.linear_model import LinearRegression | |
lin_reg = LinearRegression() | |
lin_reg.fit(X, y) | |
# Visualizing the Linear Regression results | |
def viz_linear(): | |
plt.scatter(X, y, color='red') | |
plt.plot(X, lin_reg.predict(X), color='blue') | |
plt.title('Truth or Bluff (Linear Regression)') | |
plt.xlabel('Position level') | |
plt.ylabel('Salary') | |
plt.show() | |
return | |
viz_linear() | |
# Fitting Polynomial Regression to the dataset | |
from sklearn.preprocessing import PolynomialFeatures | |
poly_reg = PolynomialFeatures(degree=4) | |
X_poly = poly_reg.fit_transform(X) | |
pol_reg = LinearRegression() | |
pol_reg.fit(X_poly, y) | |
# Visualizing the Polymonial Regression results | |
def viz_polymonial(): | |
plt.scatter(X, y, color='red') | |
plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color='blue') | |
plt.title('Truth or Bluff (Linear Regression)') | |
plt.xlabel('Position level') | |
plt.ylabel('Salary') | |
plt.show() | |
return | |
viz_polymonial() | |
# Additional feature | |
# Making the plot line (Blue one) more smooth | |
def viz_polymonial_smooth(): | |
X_grid = np.arange(min(X), max(X), 0.1) | |
X_grid = X_grid.reshape(len(X_grid), 1) #Why do we need to reshape? (https://www.tutorialspoint.com/numpy/numpy_reshape.htm) | |
# Visualizing the Polymonial Regression results | |
plt.scatter(X, y, color='red') | |
plt.plot(X_grid, pol_reg.predict(poly_reg.fit_transform(X_grid)), color='blue') | |
plt.title('Truth or Bluff (Linear Regression)') | |
plt.xlabel('Position level') | |
plt.ylabel('Salary') | |
plt.show() | |
return | |
viz_polymonial_smooth() | |
# Predicting a new result with Linear Regression | |
lin_reg.predict([[5.5]]) | |
#output should be 249500 | |
# Predicting a new result with Polymonial Regression | |
pol_reg.predict(poly_reg.fit_transform([[5.5]])) | |
#output should be 132148.43750003 |
Hi @waelabdessmad you can go just like this sample
`from sklearn.metrics import r2_score
print(r2_score(y, pol_reg(x)))`
x is your test and y is your target
hope it helps.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hello ,
I wanted to to calculate the r-squared in this code can you help me?