Created
February 5, 2016 19:17
-
-
Save pannous/99f93fcf6515b93a2076 to your computer and use it in GitHub Desktop.
A simple MNIST classifer AND autoencoder in one
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""A simple MNIST classifer AND autoencoder in one | |
""" | |
# Import data | |
import input_data | |
mnist = input_data.read_data_sets("/data/mnist/", one_hot=True) | |
import tensorflow as tf | |
sess = tf.InteractiveSession() | |
# Create the model | |
x = tf.placeholder("float", [None, 784]) | |
# l_rate = tf.placeholder("float", [1])# 0.01 | |
l_rate = tf.Variable(0.001) | |
W1 = tf.Variable(tf.zeros([784,400])) | |
b1 = tf.Variable(tf.zeros([400])) | |
W2 = tf.Variable(tf.ones([400,20])) | |
b2 = tf.Variable(tf.zeros([20])) | |
# b2t = tf.Variable(tf.zeros([20])) | |
h= tf.nn.tanh( tf.matmul(x,W1)+b1) # | |
h=tf.nn.dropout(h) # THAT! | |
_y = tf.matmul(h,W2) + b2 # 10 Numbers + 10 'styles' | |
print("_y ",tf.rank(_y)) | |
y = tf.nn.softmax(tf.slice(_y,[0,0],[-1,10])) # softmax of all batches(-1) only on the numbers(10) | |
e1= tf.matmul(_y,tf.transpose(W2)) #+b2 | |
e1=tf.nn.tanh(e1) | |
x_=x_reconstructed= tf.nn.sigmoid(tf.matmul(e1,tf.transpose(W1))) | |
# Define loss and optimizer | |
y_ = tf.placeholder("float", [None,10]) | |
mnist_entropy = -tf.reduce_sum(y_*tf.log(y)) | |
# encod_entropy = -tf.reduce_sum(x_*tf.log(x)) | |
encod_entropy = tf.sqrt(tf.reduce_mean(tf.square(x - x_))) | |
cross_entropy = encod_entropy * mnist_entropy | |
# cross_entropy = -tf.reduce_sum(y_*tf.log(y)) | |
train_step = tf.train.AdamOptimizer(learning_rate=l_rate).minimize(cross_entropy) | |
pretrainer = tf.train.AdamOptimizer(learning_rate=l_rate).minimize(mnist_entropy) | |
# encod_step = tf.train.AdamOptimizer(learning_rate=l_rate).minimize(encod_entropy) | |
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(y,1), tf.argmax(y_,1)), "float")) | |
import sys | |
def eval(feed): | |
print("it %d"%i, end=' ') | |
print("cross_entropy ",cross_entropy.eval(feed), end=' ') | |
# print("encod_entropy ",encod_entropy.eval(feed), end=' ') | |
print("overal accuracy ",accuracy.eval({x: mnist.test.images, y_: mnist.test.labels}))#, end='\r'WWWWAAA) | |
# Train | |
tf.initialize_all_variables().run() | |
for i in range(1000):#pretrain | |
batch_xs, batch_ys = mnist.train.next_batch(100) | |
feed = {x: batch_xs, y_: batch_ys} | |
pretrainer.run(feed) | |
if(i%100==0):eval(feed) | |
for i in range(100000): | |
batch_xs, batch_ys = mnist.train.next_batch(100) | |
feed = {x: batch_xs, y_: batch_ys} | |
# if((i+1)%9000==0):sess.run(tf.assign(l_rate,l_rate*0.3)) | |
train_step.run(feed) | |
if(i%100==0):eval(feed) | |
# encod_step.run(feed) # alternating! |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment