Last active
February 20, 2025 21:45
-
-
Save pansapiens/91057057beb5c9d4e38d6c5d809ad72e to your computer and use it in GitHub Desktop.
HMMER tblout / domtblout to pandas.DataFrame
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# MIT License | |
# Copyright (c) 2022 Zebulun Arendsee (rhmmer code) | |
# Copyright (c) 2025 Andrew Perry (port to Python) | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE EOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# PUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
""" | |
This is a quick LLM-guided port using parts of https://github.com/arendsee/rhmmer | |
There are alternatives, like parsing with Bio.SearchIO.HmmerIO or using PyHMMER. | |
This one is a no nonsense tblout/domtblout to a pandas.DataFrame converter. | |
>>> hits_df = parse_hmmer_output("my_hits.tblout") | |
>>> hits_df.head() | |
""" | |
from typing import Literal, Dict, Any, Union, TextIO | |
import logging | |
import sys | |
import argparse | |
from pathlib import Path | |
import pandas as pd | |
import numpy as np | |
def detect_hmmer_format( | |
file: Union[str, Path, "TextIO"] | |
) -> Literal["tblout", "domtblout"]: | |
"""Detect if a file is in HMMER tblout or domtblout format based on header. | |
Args: | |
file: Path to HMMER output file or file-like object | |
Returns: | |
Format type: either "tblout" or "domtblout" | |
Raises: | |
ValueError: If format cannot be detected | |
""" | |
if isinstance(file, (str, Path)): | |
with open(file) as f: | |
return detect_hmmer_format(f) | |
for line in file: | |
if isinstance(line, bytes): | |
line = line.decode() | |
if "--- full sequence ---" in line: | |
if "this domain" in line: | |
return "domtblout" | |
elif "best 1 domain" in line: | |
return "tblout" | |
file.seek(0) | |
raise ValueError( | |
"Could not detect HMMER output format - file may be empty or invalid" | |
) | |
def parse_hmmer_output( | |
file: Union[str, Path, "TextIO"], | |
fmt_type: Union[Literal["tblout", "domtblout"], Literal["auto"]] = "auto", | |
) -> pd.DataFrame: | |
"""Parse HMMER tblout or domtblout format files into a pandas DataFrame. | |
Args: | |
file: Path to HMMER output file or file-like object | |
fmt_type: Format type, either "tblout", "domtblout" or "auto" (default) | |
Returns: | |
DataFrame containing the parsed HMMER results | |
""" | |
if fmt_type == "auto": | |
fmt_type = detect_hmmer_format(file) | |
logging.info(f"Auto-detected format: {fmt_type}") | |
# Column specifications for different formats | |
tblout_dtypes: Dict[str, Any] = { | |
"domain_name": str, | |
"domain_accession": str, | |
"query_name": str, | |
"query_accession": str, | |
"sequence_evalue": float, | |
"sequence_score": float, | |
"sequence_bias": float, | |
"best_domain_evalue": float, | |
"best_domain_score": float, | |
"best_domain_bis": float, | |
"domain_number_exp": float, | |
"domain_number_reg": "Int64", | |
"domain_number_clu": "Int64", | |
"domain_number_ov": "Int64", | |
"domain_number_env": "Int64", | |
"domain_number_dom": "Int64", | |
"domain_number_rep": "Int64", | |
"domain_number_inc": str, | |
} | |
domtblout_dtypes: Dict[str, Any] = { | |
"domain_name": str, | |
"domain_accession": str, | |
"domain_len": "Int64", | |
"query_name": str, | |
"query_accession": str, | |
"qlen": "Int64", | |
"sequence_evalue": float, | |
"sequence_score": float, | |
"sequence_bias": float, | |
"domain_N": "Int64", | |
"domain_of": "Int64", | |
"domain_cevalue": float, | |
"domain_ievalue": float, | |
"domain_score": float, | |
"domain_bias": float, | |
"hmm_from": "Int64", | |
"hmm_to": "Int64", | |
"ali_from": "Int64", | |
"ali_to": "Int64", | |
"env_from": "Int64", | |
"env_to": "Int64", | |
"acc": float, | |
} | |
dtypes = tblout_dtypes if fmt_type == "tblout" else domtblout_dtypes | |
n_fields = len(dtypes) | |
# Read file and filter comment lines | |
if isinstance(file, (str, Path)): | |
with open(file) as f: | |
lines = [line for line in f if not line.startswith("#")] | |
else: | |
lines = [] | |
for line in file: | |
# Convert bytes to str if needed | |
if isinstance(line, bytes): | |
line = line.decode() | |
if not line.startswith("#"): | |
lines.append(line) | |
file.seek(0) # Reset file position for potential reuse | |
# Extract the main data fields | |
data = [] | |
descriptions = [] | |
for line in lines: | |
fields = line.strip().split(maxsplit=n_fields) | |
if len(fields) >= n_fields: | |
data.append(fields[:n_fields]) | |
if fmt_type == "domtblout" and len(fields) > n_fields: | |
descriptions.append(" ".join(fields[n_fields:])) | |
elif fmt_type == "tblout" and len(fields) > n_fields: | |
descriptions.append(" ".join(fields[n_fields:])) | |
# Create DataFrame | |
df = pd.DataFrame(data, columns=list(dtypes.keys())) | |
# Convert types | |
for col, dtype in dtypes.items(): | |
if dtype in ("Int64", int, float): | |
df[col] = pd.to_numeric(df[col].replace("-", pd.NA), errors="coerce") | |
else: | |
df[col] = df[col].replace("-", pd.NA) | |
# Add descriptions for domtblout format | |
if fmt_type == "domtblout" and descriptions: | |
df["description"] = descriptions | |
elif fmt_type == "tblout" and descriptions: | |
df["description"] = descriptions | |
return df | |
def read_tblout(file: Union[str, Path]) -> pd.DataFrame: | |
"""Read a HMMER tblout format file. | |
Args: | |
file: Path to the tblout file | |
Returns: | |
DataFrame containing the parsed results | |
""" | |
return parse_hmmer_output(file, "tblout") | |
def read_domtblout(file: Union[str, Path]) -> pd.DataFrame: | |
"""Read a HMMER domtblout format file. | |
Args: | |
file: Path to the domtblout file | |
Returns: | |
DataFrame containing the parsed results | |
""" | |
return parse_hmmer_output(file, "domtblout") | |
def main(): | |
parser = argparse.ArgumentParser( | |
description="Parse HMMER tblout/domtblout files to TSV" | |
) | |
parser.add_argument("file", help="Input HMMER output file") | |
parser.add_argument( | |
"--format", | |
"-f", | |
choices=["tblout", "domtblout", "auto"], | |
default="auto", | |
help="HMMER output format (default: auto-detect)", | |
) | |
parser.add_argument( | |
"--output", "-o", default="-", help="Output file (default: stdout)" | |
) | |
args = parser.parse_args() | |
# Setup logging | |
logging.basicConfig( | |
level=logging.INFO, format="%(levelname)s: %(message)s", stream=sys.stderr | |
) | |
try: | |
df = parse_hmmer_output(args.file, args.format) | |
if args.output == "-": | |
df.to_csv(sys.stdout, sep="\t", index=False) | |
else: | |
df.to_csv(args.output, sep="\t", index=False) | |
except Exception as e: | |
logging.error(f"Error processing file: {e}") | |
sys.exit(1) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment