Created
September 22, 2014 18:36
-
-
Save papaeye/cf029a358ca460be8922 to your computer and use it in GitHub Desktop.
Kuhn-Munkres algorithm based on http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from functools import partial | |
from itertools import product | |
STARRED = 1 | |
PRIMED = 2 | |
def kuhn_munkres(costs): | |
C, rows, cols, rotated = _step0(costs) | |
M = [[None] * (cols + 1) for _ in range(rows + 1)] | |
step = _step1 | |
while step is not None: | |
step = step(C, M, rows, cols) | |
indices = ((i, j) for i, j in _iter_indices(rows, cols) | |
if M[i][j] == STARRED) | |
if rotated: | |
return map(reversed, indices) | |
return indices | |
def _step0(costs): | |
rows, cols = len(costs), len(costs[0]) | |
if rows <= cols: | |
C = [row[:] for row in costs] | |
rotated = False | |
else: | |
C = [list(x) for x in zip(*costs)] | |
rows, cols = cols, rows | |
rotated = True | |
return C, rows, cols, rotated | |
def _step1(C, M, rows, cols): | |
for row in C: | |
min_v = min(row) | |
for j in range(cols): | |
row[j] -= min_v | |
return _step2 | |
def _step2(C, M, rows, cols): | |
for i, j in _iter_indices(rows, cols): | |
if C[i][j] == 0 and not M[i][cols] and not M[rows][j]: | |
M[i][j] = STARRED | |
M[i][cols] = True | |
M[rows][j] = True | |
for i in range(rows): | |
M[i][cols] = False | |
for j in range(cols): | |
M[rows][j] = False | |
return _step3 | |
def _step3(C, M, rows, cols): | |
for i, j in _iter_indices(rows, cols): | |
if M[i][j] == STARRED: | |
M[rows][j] = True | |
if M[rows].count(True) < rows: | |
return _step4 | |
def _step4(C, M, rows, cols): | |
for i, j in _iter_indices(rows, cols): | |
if C[i][j] or M[i][cols] or M[rows][j]: | |
continue | |
M[i][j] = PRIMED | |
k = _find_in_row(M, i, STARRED) | |
if k is None: | |
return partial(_step5, i=i, j=j) | |
M[i][cols] = True | |
M[rows][k] = False | |
return _step6 | |
def _step5(C, M, rows, cols, i, j): | |
path = [(i, j)] | |
while True: | |
i = _find_in_column(M, j, STARRED) | |
if i is None: | |
break | |
path.append((i, j)) | |
j = _find_in_row(M, i, PRIMED) | |
path.append((i, j)) | |
# convert path | |
for i, j in path: | |
if M[i][j] == STARRED: | |
M[i][j] = None | |
else: | |
M[i][j] = STARRED | |
# clear covers | |
for i in range(rows): | |
M[i][cols] = False | |
for j in range(cols): | |
M[rows][j] = False | |
# erase primes | |
for i, j in _iter_indices(rows, cols): | |
if M[i][j] == PRIMED: | |
M[i][j] = None | |
return _step3 | |
def _step6(C, M, rows, cols): | |
min_cost = min(C[i][j] for i, j in _iter_indices(rows, cols) | |
if not M[i][cols] and not M[rows][j]) | |
for i in range(rows): | |
if M[i][cols]: | |
for j in range(cols): | |
C[i][j] += min_cost | |
for j in range(cols): | |
if not M[rows][j]: | |
for i in range(rows): | |
C[i][j] -= min_cost | |
return _step4 | |
def _iter_indices(rows, cols): | |
return product(range(rows), range(cols)) | |
def _find_in_column(matrix, j, value): | |
for i, row in enumerate(matrix): | |
if row[j] == value: | |
return i | |
def _find_in_row(matrix, i, value): | |
for j, v in enumerate(matrix[i]): | |
if v == value: | |
return j |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment