Skip to content

Instantly share code, notes, and snippets.

@parkerlreed
Last active November 25, 2024 22:52
Show Gist options
  • Save parkerlreed/6d48fe3a9cb5bdab78cf3feecc94f67a to your computer and use it in GitHub Desktop.
Save parkerlreed/6d48fe3a9cb5bdab78cf3feecc94f67a to your computer and use it in GitHub Desktop.
Wii Balance Board Scale
import os
import struct
import time
import numpy as np
import pyfiglet # For ASCII art text
# Path to the joystick device
JOYSTICK_DEVICE = "/dev/input/js0"
# Joystick event format
EVENT_FORMAT = "IhBB"
EVENT_SIZE = struct.calcsize(EVENT_FORMAT)
# Polynomial coefficients from np.polyfit
POLY_COEFF = [1.89584106e-08, 9.73656453e-03, 5.30274624] # Replace with your coefficients
poly_func = np.poly1d(POLY_COEFF)
def open_joystick(device_path):
"""Open the joystick device."""
try:
return open(device_path, "rb")
except FileNotFoundError:
print(f"Joystick device not found at {device_path}.")
return None
def process_joystick_event(event):
"""Process a single joystick event."""
timestamp, value, event_type, axis_number = struct.unpack(EVENT_FORMAT, event)
# Only process axis events (event type 2)
if event_type == 2: # 2 is for axis events
return axis_number, value
return None, None
def estimate_weight(total_load):
"""Estimate weight using the polynomial calibration model."""
return poly_func(total_load)
def main():
# Open the joystick device
js_device = open_joystick(JOYSTICK_DEVICE)
if not js_device:
return
print("Reading data from the Wii Balance Board...")
try:
# Baseline values for each axis
baselines = [-32767] * 4 # Assuming 4 axes
relative_loads = [0] * 4
# Variables for averaging
total_loads = [] # Accumulates total loads for averaging
start_time = time.time()
while True:
event = js_device.read(EVENT_SIZE)
if event:
axis_number, value = process_joystick_event(event)
if axis_number is not None and axis_number < 4:
# Calculate relative load
relative_load = value - baselines[axis_number]
relative_loads[axis_number] = relative_load
# Calculate total load
total_load = sum(relative_loads)
total_loads.append(total_load)
# Every 5 seconds, calculate and print the average
if time.time() - start_time >= 5:
if total_loads:
avg_total_load = sum(total_loads) / len(total_loads)
avg_weight_kg = estimate_weight(avg_total_load)
avg_weight_lbs = avg_weight_kg * 2.20462
# Clear the screen for a clean display
os.system('clear')
# Print large ASCII text for weight
ascii_weight = pyfiglet.figlet_format(f"{avg_weight_lbs:.2f} lbs")
print(ascii_weight)
# Print regular details
print(f"Average Total Load (5s): {avg_total_load:.2f}")
print(f"Estimated Average Weight (5s): {avg_weight_kg:.2f} kg ({avg_weight_lbs:.2f} lbs)")
# Reset for the next interval
total_loads = []
start_time = time.time()
time.sleep(0.01)
except KeyboardInterrupt:
print("\nExiting...")
finally:
js_device.close()
if __name__ == "__main__":
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment